CN114890976B - 用于革兰氏阳性菌选择性杀伤的基于罗丹明的aie光敏剂及其凝胶敷料制备方法和应用 - Google Patents

用于革兰氏阳性菌选择性杀伤的基于罗丹明的aie光敏剂及其凝胶敷料制备方法和应用 Download PDF

Info

Publication number
CN114890976B
CN114890976B CN202210194779.XA CN202210194779A CN114890976B CN 114890976 B CN114890976 B CN 114890976B CN 202210194779 A CN202210194779 A CN 202210194779A CN 114890976 B CN114890976 B CN 114890976B
Authority
CN
China
Prior art keywords
photosensitizer
compound
aggregation
gram
rhodamine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210194779.XA
Other languages
English (en)
Other versions
CN114890976A (zh
Inventor
王静云
曾爽
刘晓胜
李海东
陈麒先
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian University of Technology
Original Assignee
Dalian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian University of Technology filed Critical Dalian University of Technology
Priority to CN202210194779.XA priority Critical patent/CN114890976B/zh
Publication of CN114890976A publication Critical patent/CN114890976A/zh
Application granted granted Critical
Publication of CN114890976B publication Critical patent/CN114890976B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D311/00Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings
    • C07D311/02Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D311/78Ring systems having three or more relevant rings
    • C07D311/80Dibenzopyrans; Hydrogenated dibenzopyrans
    • C07D311/82Xanthenes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • A61K41/0057Photodynamic therapy with a photosensitizer, i.e. agent able to produce reactive oxygen species upon exposure to light or radiation, e.g. UV or visible light; photocleavage of nucleic acids with an agent
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/001Preparation for luminescence or biological staining
    • A61K49/0013Luminescence
    • A61K49/0017Fluorescence in vivo
    • A61K49/0019Fluorescence in vivo characterised by the fluorescent group, e.g. oligomeric, polymeric or dendritic molecules
    • A61K49/0021Fluorescence in vivo characterised by the fluorescent group, e.g. oligomeric, polymeric or dendritic molecules the fluorescent group being a small organic molecule
    • A61K49/0041Xanthene dyes, used in vivo, e.g. administered to a mice, e.g. rhodamines, rose Bengal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L26/00Chemical aspects of, or use of materials for, wound dressings or bandages in liquid, gel or powder form
    • A61L26/0009Chemical aspects of, or use of materials for, wound dressings or bandages in liquid, gel or powder form containing macromolecular materials
    • A61L26/0014Chemical aspects of, or use of materials for, wound dressings or bandages in liquid, gel or powder form containing macromolecular materials obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L26/00Chemical aspects of, or use of materials for, wound dressings or bandages in liquid, gel or powder form
    • A61L26/0061Use of materials characterised by their function or physical properties
    • A61L26/0066Medicaments; Biocides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L26/00Chemical aspects of, or use of materials for, wound dressings or bandages in liquid, gel or powder form
    • A61L26/0061Use of materials characterised by their function or physical properties
    • A61L26/008Hydrogels or hydrocolloids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/02Drugs for dermatological disorders for treating wounds, ulcers, burns, scars, keloids, or the like
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/40Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
    • A61L2300/404Biocides, antimicrobial agents, antiseptic agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1088Heterocyclic compounds characterised by ligands containing oxygen as the only heteroatom
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Epidemiology (AREA)
  • Materials Engineering (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Dermatology (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Communicable Diseases (AREA)
  • Oncology (AREA)
  • Biomedical Technology (AREA)
  • Dispersion Chemistry (AREA)
  • Radiation-Therapy Devices (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

本发明公开了一种用于革兰氏阳性菌选择性杀伤的基于罗丹明的AIE光敏剂制备方法和应用,所述聚集诱导发光光敏剂的结构式如下所示;由于光敏剂还结合水凝胶性质,从而不仅对伤口感染模型具有高效光动力抑菌功能,还可借助水凝胶的性质实现促伤口愈合,进一步扩展光敏剂在抗菌治疗领域的应用。

Description

用于革兰氏阳性菌选择性杀伤的基于罗丹明的AIE光敏剂及 其凝胶敷料制备方法和应用
技术领域
本发明属于生物材料及生物医学技术领域,具体涉及可对革兰氏阳性菌鉴别且选择性高效杀伤的基于罗丹明的聚集诱导发光(AIE)光敏剂的合成制备方法、AIE光敏剂水凝胶对耐药菌伤口感染的光动力治疗及促伤口愈合的应用。
背景技术
伤口感染是临床常见的疾病之一,尤其常发生在手术切口和烧伤中[1]。如果不及时治疗,细菌会在皮肤表面甚至体内大量繁殖,严重威胁人体健康甚至生命[2]。抗生素疗法是目前最常用、最有效的抗菌疗法。而细菌种类繁多,主要分为革兰氏阳性菌和革兰氏阴性菌。因此,实现细菌种类的快速鉴定对于选择合适的抗生素对细菌进行针对性治疗非常重要。然而,目前的细菌鉴定技术,如革兰氏染色法、平板培养法、基因相关技术、免疫学方法等,往往费时、费钱、费力,对患者的及时治疗极为不利[3]。此外,随着抗生素的滥用,细菌对药物的耐药性不断增强。耐甲氧西林金黄色葡萄球菌(MRSA)的出现就是抗生素滥用的后果,这也使得治疗更加困难,患者的生命风险指数更高。因此,寻求和开发一种不会引起细菌耐药性的治疗方法对于细菌感染的治疗具有重要意义。
近年来,光动力疗法(PDT)的研究为解决细菌耐药性问题提供了可能。与抗生素疗法的机制不同,光动力疗法通过光敏剂产生有害的活性氧(ROS),从而可破坏细菌的DNA或细胞壁,使细菌快速死亡[4]。这种可快速破坏细菌形态的治疗机制很难使细菌再生并产生耐药性。然而,目前开发的光敏剂大多水溶性差,普遍具有聚集诱导荧光猝灭(ACQ)效应,限制了光敏剂与细菌膜的相互作用,以及ROS产率较低,从而降低了对细菌的光动力治疗效果。唐本忠等人提出的聚集诱导荧光增强(AIE)光敏剂则打破了ACQ的限制[5]。但目前的AIE光敏剂主要是基于三苯胺和四苯乙烯的结构设计,且大多激发波长短,限制组织透光深度和实际临床治疗应用。此外,已报道的AIE光敏剂大多不具备鉴别不同类型细菌的功能。
罗丹明是一类具有生物安全性和优异水溶性的染料,许多生物商业染料都是基于罗丹明母体结构设计。但这类染料激发波长短、荧光发射强、系间串跃效率低,导致活性氧产率低。因此,基于罗丹明的具有近红外(NIR)吸收发射及AIE性能的光敏剂未见报道。此外,Carbomer-940常被用于制备医用凝胶。因此,有AIE效应的光敏剂,可进一步与Carbomer-940结合,制成具有PDT功能的可注射水凝胶伤口敷料,这不仅使光敏剂更方便、更长时间地附着在伤口表面,还可利用水凝胶保持湿润的伤口环境和允许氧气渗透的优点促进伤口愈合[6]。这种新策略充分利用了水凝胶的特性,同时也提高了光敏剂的临床适用性。不仅简单有效,而且可适用于各种常见的具有AIE效果的光敏剂。
参考文献
[1]M.Herron,A.Agarwal,P.R.Kierski,D.F.Calderon,L.B.T eixeira,M.J.Schurr,C.J.Murphy,C.J.Czuprynski,J.F.McAnulty,N.L.Abbott,Adv.HealthcareMater.2014,3,916.
[2]A.Langdon,N.Crook,G.Dantas,Genome Med.2016,8,39.
[3]J.Wang,X.Wang,Y.Li,S.Yan,Q.Zhou,B.Gao,J.Peng,J.Du,Q.Fu,S.Jia,J.Zhang,L.Zhan,Anal.Sci.2012,28,237.
[4]H.Chen,S.Li,M Wu,Kenry,Z.Huang,C.S.Lee,B Liu,Angew.Chem.Int.Ed.2020,59,632.
[5]J.Luo,Z.Xie,J.W.Y.Lam,L.Cheng,H.Chen,C.Qiu,H.S.Kwok,X.Zhan,Y.Liu,D.Zhu,B.Z.Tang,Chem.Commun.2001,1740.
[6]X.Zhao,Y.Liang,Y.Huang,J.He,Y.Han,B.Guo,Adv.Funct.Mater.2020,30,1910748.
发明内容
本发明所要解决的技术问题是提供一种可对革兰氏阳性菌鉴别且选择性高效杀伤的基于罗丹明的聚集诱导发光(AIE)光敏剂(CS-2I)及其制备方法,并且进一步提供该光敏剂与卡波姆940利用简单物理共混法制备复合水凝胶(CS-2I@gel)抗菌敷料的方法。同时提供其在小鼠活体伤口感染治疗中的应用。由于上述光敏剂还结合水凝胶性质,从而对伤口感染模型不仅具有高效光动力抑菌功能,还可借助水凝胶的性质实现促伤口愈合,进一步扩展光敏剂在抗菌治疗领域的应用。
一种可对革兰氏阳性菌鉴别且选择性高效杀伤的基于罗丹明的聚集诱导发光(AIE)光敏剂,所述可对革兰氏阳性菌鉴别且高效杀伤的AIE光敏剂以罗丹明染料为荧光团母体,并通过分子共轭以及重原子修饰使其具有近红外光照下生成活性氧的能力,并且可在水溶液中利用H聚集的方式自组装形成纳米粒子。所述对革兰氏阳性菌鉴别且高效杀伤的AIE光敏剂的结构式如下所示:
上述光敏剂的制备方法以及反应式如下:
CS-2I光敏剂合成路线:
(1)化合物1的合成:将环己酮逐滴添加到浓H2SO4中并冷却至0-4℃。然后,在剧烈搅拌下分部分添加2-(4-二乙氨基-2-羟基苯甲酰基)苯甲酸。将反应混合物在90℃下加热2-4h,反应结束后冷却,并倒入冰水中。然后添加高氯酸,过滤所得沉淀物并用冷水洗涤,获得红色固体中间体化合物1用于下一步,无需进一步纯化。
基于以上技术方案,优选的,所述环己酮与浓H2SO4比例为32mmol:40-60mL,优选为32mmol:50mL;所述环己酮与2-(4-二乙氨基-2-羟基苯甲酰基)苯甲酸的摩尔比为2-3:1,优选为2:1。
基于以上技术方案,优选的,所述浓H2SO4的浓度(质量分数)为98%。
基于以上技术方案,优选的,所述高氯酸的浓度为70%。
基于以上技术方案,优选的,当所述环己酮为32mmol、浓H2SO4为50mL时,冰水的用量为200g,高氯酸的浓度为70%,其用量为3.5mL,冷水的用量为200mL。
(2)化合物CS-2I的合成:将上步所得化合物1与3,5-二碘-4-羟基苯甲醛分别加入至冰乙酸中,并加热至80-100℃反应过夜。反应结束后,减压旋蒸除去溶剂,并利用硅胶柱提纯得出终产物。
基于以上技术方案,优选的,所述化合物1与3,5-二碘-4-羟基苯甲醛的摩尔比为1:1-2.5,优选为1:1.2,例如化合物1为1eq.,3,5-二碘-4-羟基苯甲醛为1.2eq.。
一种复合水凝胶(CS-2I@gel)抗菌敷料,可由上述可对革兰氏阳性菌鉴别且高效杀伤的基于罗丹明的聚集诱导发光(AIE)光敏剂与卡波姆-940复合而成,
基于以上技术方案,优选的,所述聚集诱导发光光敏剂溶液(水溶液)的浓度为10-100μM,所述卡波姆-940的质量浓度为1.5-3%。
上述复合水凝胶的制备方法为:向聚集诱导发光光敏剂溶液(水溶液)中加入卡波姆-940,在60-80℃加热条件下搅拌25-40min后,滴加三乙醇胺,直至pH为7-7.4。具体为:将聚集诱导发光光敏剂(化合物CS-2I)加入纯水中预先配置好浓度为10-100μM的溶液,在60-80℃加热下,称取溶液质量1.5-3%的卡波姆-940,在剧烈搅拌下加入,加热搅拌25-40min后,用滴管滴加三乙醇胺数滴,直至pH为7-7.4。待凝胶冷却后放置4℃保存。
基于以上技术方案,优选的,卡波姆-940的质量浓度为2%。
基于以上技术方案,优选的,加热搅拌的时间为30min。
上述的聚集诱导发光光敏剂或上述复合水凝胶抗菌敷料在光动力抑菌、以及促伤口愈合中的应用。
本发明的有益效果是:
1)光敏剂的合成步骤少,且原料经济,后处理过程相对简单;
2)本发明合成的光敏剂具有聚集诱导荧光增强(AIE)性质,并在水溶液中可自组装形成粒径200nm的有机纳米粒子,这对于生物成像极为有利,打破常规光敏剂在水中荧光淬灭的束缚;
3)本发明合成的光敏剂在660nm激光照射下,可在750nm处具有最大荧光发射,因此具有近红外成像的潜能。且在与细菌孵育一定时间内(15min),对革兰氏阳性菌具有特异选择性成像功能,在混菌实验中可对革兰氏阳性菌进行快速荧光鉴别;
4)本发明合成的光敏剂在660nm激光照射下,可有效的在溶液中或在细菌内生成单线态氧,并且可在低药物浓度(250nM)和低的光剂量下(6J/cm2)对金黄色葡萄球菌以及耐甲氧西林金黄色葡萄球菌有99%的抑菌率;
5)本发明合成的光敏剂通过与卡波姆-940进行物理共混方式制备复合水凝胶敷料CS-2I@gel。CS-2I@gel在保持上述光敏剂原有荧光性质及对细菌光动力杀伤功能外,还拥有水凝胶的高粘附力以及促伤口愈合性质。
故而,本发明所述光敏剂既可对革兰氏阳性菌进行快速鉴别,又可对革兰氏阳性菌(包括耐药菌)实现高效光动力杀伤,同时还制备成水凝胶复合材料进一步扩展光动力抗菌在伤口感染愈合模型中的临床应用。
附图说明
图1是在PBS(pH=7.4)介质中,CS-2I的紫外可见光谱图。
图2是在PBS(pH=7.4)介质中,CS-2I在660nm激发下,溶液的荧光发射谱图。
图3是CS-2I在不同DMSO/PBS比例体系中,660nm激发下,750nm处的荧光强度变化图。
图4是CS-2I在PBS(pH=7.4)介质中,通过纳米粒度分析仪所测得的粒径。
图5是CS-2I在PBS(pH=7.4)介质中的TEM图像。
图6是在含有1,3-二苯基苯并呋喃(DPBF,单线态氧探针)的CS-2I乙醇溶液中,在415nm处的吸收值与光照时间的关系。
图7是将CS-2I与不同类型细菌进行共孵育荧光成像。选用了革兰氏阳性菌中的金黄色葡萄球菌以及耐药金黄色葡萄球菌以及革兰氏阴性菌中的铜绿假单胞菌以及大肠杆菌作为实验对象。
图8是观察CS-2I共混细菌中对革兰氏阳性菌的鉴别能力。
图9是在S.aerus以及MRSA细菌内,利用2,7-二氯二氢荧光素二乙酸酯(DCFH-DA,活性氧荧光探针)对光照后1O2的检测图。
图10是观察本发明光敏剂PDT抑菌能力。
图11是通过SEM成像观察本发明所述光敏剂与细菌孵育并光照后对细菌结构的影响。
图12是本发明所述光敏剂与卡波姆-940共混制成凝胶CS-2I@gel形貌。
图13是将CS-2I@gel装入注射器中,可通过注射器将其连续喷涂,并且将该水凝胶放置在紫外光以及近红外光下,可分别观察CS-2I的特征荧光发射。
图14是通过涂板法观察不同凝胶处理的抑菌效率。
图15是选用Balb/c小鼠制备MRSA伤口感染模型且经过不同处理后皮肤愈合情况。
图16是提取每组治疗后小鼠的皮肤表面细菌进行孵育,观察治疗后小鼠皮肤细菌菌落数。
具体实施方式
下面结合实施例和附图对本发明做进一步的详细说明。
实施例1
光敏剂CS-2I的制备
(1)化合物1的合成
将环己酮(3.3mL,32mmol)逐滴添加到浓H2SO4(98%,50mL)中并冷却至0℃。然后,在剧烈搅拌(400-600rpm)下分部分添加2-(4-二乙氨基-2-羟基苯甲酰基)苯甲酸(5.01g,16mmol)。将反应混合物在90℃下加热2h,反应结束后冷却,并倒入冰水中(200g)。然后添加高氯酸(70%;3.5mL),过滤所得沉淀物并用冷水(200mL)洗涤,获得的中间体化合物1直接用于下一步,无需进一步纯化。
(2)化合物CS-2I的合成
将上步所得化合物1(600mg,1.9mmol)与3,5-二碘-4-羟基苯甲醛(852mg,2.28mmol)分别加入至冰乙酸(50mL)中,并加热至90℃过夜。反应结束后,柱层析得黑紫色终产物CS-2I(310mg),产率22.3%。
1H NMR(400MHz,MeOD,δ):8.31(d,J=7.0,1H),8.05(s,2H),7.98(s,1H),7.84(td,J=7.5,1.2,1H),7.76(td,J=7.7,1.2,1H),7.33(t,J=6.9,1H),7.26(s,1H),7.23(d,J=2.3,1H),7.11(d,J=9.3,1H),3.72(q,J=7.1,4H),2.89(d,J=22.3,2H),2.41(dd,J=13.1,7.6,2H),1.85(td,J=12.3,6.1,2H),1.33(t,J=7.1,6H).13C NMR(126MHz,DMSO-d6,δ)166.46,159.81,157.75,156.76,155.17,141.29,133.18,132.55,131.33,130.69,130.27,129.61,129.51,128.71,127.91,121.87,118.10,116.71,95.48,86.89,45.46,43.99,26.12,25.15,20.96,12.37.
实施例2
复合水凝胶CS-2I@gel的制备
将实施例1中制备的CS-2I加入纯水中预先配置好浓度为10μM的溶液。在80℃加热下,称取溶液质量2%的卡波姆-940,在剧烈搅拌下加入。加热搅拌30min后,用滴管滴加三乙醇胺数滴,直至pH为7。待凝胶冷却后放置4℃保存。
实施例3
光敏剂CS-2I的紫外、荧光光谱测试
(1)实验方法
光谱表征具体步骤为:取适量实施例2中制备的光敏剂CS-2I溶于二甲基亚砜(DMSO)制成浓度为1mM的测试母液备用。从测试母液中吸取30μL至PE管,加入PBS(pH=7.4)至终体积为3mL,此时浓度为10μM。将溶液移至比色皿中,分别在紫外-可见光谱仪及荧光光谱仪上,测试光敏剂在溶剂中的光谱性质。
(2)实验结果
紫外光谱结果显示在PBS介质中,光敏剂CS-2I吸收谱带范围为400-800nm,且在640nm有显著的紫外吸收峰(图1);在PBS介质中,CS-2I在660nm激发下,溶液荧光发射谱带范围为650-80nm,在750nm处有显著荧光发射峰(图2)。这一结果表明光敏剂CS-2I具有近红外成像潜能。
实施例4
光敏剂CS-2I在不同DMSO/PBS比例体系中荧光测试
(1)实验方法
配置一系列含有实施例2中制备的光敏剂CS-2I(10μM)不同DMSO/PBS比例(0/10、1/9、2/8、3/7、4/6、5/5、6/4、7/3、8/2、9/1、10/0)溶液,并在660nm激发下,观察750nm处荧光强度变化。
(2)实验结果
CS-2I在不同DMSO/PBS比例体系中,随着PBS含量增大,荧光逐渐增强,并且在纯水环境中荧光强度也显著强于在纯DMSO体系中,这一结果体现出CS-2I的AIE性质(图3)。
实施例5
粒径测试及TEM成像
(1)实验方法
配置含有实施例2中制备的光敏剂CS-2I(10μM)的PBS溶液(pH=7.4),利用纳米粒度分析仪进行粒径测试。同时,取少量溶液滴在镀膜铜网上,待溶液挥发后,利用透射电镜观察光敏剂CS-2I在PBS溶液的形貌。
(2)实验结果
CS-2I在PBS(pH=7.4)介质中,通过纳米粒度分析仪所测得的粒径,结果表明CS-2I在PBS中会形成平均粒径为200nm的纳米粒子(图4)。且通过TEM同样观察到CS-2I在PBS中会自组装形成粒径为200nm的球形纳米粒子(图5),同时结合图3进一步证明CS-2I发生了聚集诱导荧光增强效应。
实施例6
光敏剂CS-2I在溶液中生成活性氧测试
(1)实验方法
使用1,3-二苯基苯并呋喃(DPBF)检测光敏剂CS-2I产生单线态氧的能力。DPBF的检测步骤是:在比色皿中配备含有实施例2中制备的光敏剂(10μM)及DPBF(10μM)的溶液(溶剂为乙醇),随后于580nm波长单色光下照射(光功率:10mW/cm2),每隔1min,测定相应紫外吸收光谱。含有光敏剂但无光照或无光敏剂的DPBF溶液作为阴性对照组。DPBF是利用吸收光谱法检测1O2的捕获剂,其特点是在1O2存在的溶液体系中,DPBF可被快速氧化,共轭体系被破坏,因而其在415nm处的紫外吸收会大幅降低,利用该现象可定性指示光敏剂在溶液体系中1O2的产生效率。
(2)实验结果
在含有DPBF的光敏剂CS-2I溶液,其在415nm处的吸收值随着光照时间增长,DPBF的特征吸收峰(415nm)逐渐下降,表明光敏剂CS-2I在光照下具有生成单线态氧能力(图6)。
实施例7
光敏剂CS-2I与不同细菌共孵育荧光成像
从固体平板中挑选细菌菌落(金黄色葡萄球菌、耐甲氧西林金黄色葡萄球菌、大肠杆菌、铜绿假单胞菌)接种于装有10mL LB液体培养基的玻璃试管中,在恒温摇床中150rpm,37℃培养12小时。将细菌菌液转移到15mL离心管中5000rpm离心5分钟。弃上清液,沉淀物用PBS(10mM)清洗三次后,定容至10mL。细菌浓度通过紫外吸收光谱OD600nm处测得。细菌成像时,用PBS(10mM)稀释菌液至108CFU/mL。
(1)实验方法
选用了革兰氏阳性菌中的金黄色葡萄球菌(S.aerus)以及耐药金黄色葡萄球菌(MRSA)以及革兰氏阴性菌中的铜绿假单胞菌(P.aeruginosa)以及大肠杆菌(E.coli)作为实验对象。不同细菌与实施例2中制备的光敏剂CS-2I(10μM)培养不同时间后,置于激光共聚焦下进行成像(FV3000,Olympus)。
(2)实验结果
从图7中可以看出,光敏剂CS-2I(10μM)与革兰氏阳性菌培养5min后,可观察到视野内所有细菌发射出红色荧光,说明CS-2I可在短时间内快速进入革兰氏阳性菌。而对于革兰氏阴性菌至少需要30min才有部分细菌发出荧光。上述结果表明,光敏剂CS-2I可对革兰氏阳性菌进行快速荧光染色,且在一定时间内对革兰氏阳性菌具有特异选择性(图7)。
实施例8
光敏剂CS-2I在共混细菌中对革兰氏阳性菌特异性识别成像
(1)实验方法
先将革兰氏阴性菌(大肠杆菌,106CFU/mL)利用一种绿色荧光质膜染料(FM 1-43)标记,再与革兰氏阳性菌(耐甲氧西林金黄色葡萄球菌,106CFU/mL)共混后,加入实施例2中制备的光敏剂CS-2I(10μM)供孵育5分钟后置于激光共聚焦下进行成像(FV3000,Olympus)。
(2)实验结果
从图8中可以发现,共混细菌中仅有耐甲氧西林金黄色葡萄球菌发出红色荧光,与已被绿色荧光标记的大肠杆菌完全无重叠,由此表明光敏剂CS-2I具有快速鉴别革兰氏阳性菌的能力(图8)。
实施例9
光敏剂CS-2I在细菌中活性氧荧光成像
细菌内活性氧检测使用2,7-二氯二氢荧光素二乙酸酯(DCFH-DA,活性氧荧光探针)来完成。DCFH-DA是一种膜通透性无荧光染料,当其进入细菌内环境,在胞浆内酯酶的水解作用下会被转变为无荧光衍生物DCFH,该极性结构无法正常透过细胞膜,因此被截留在细菌内部。在活性氧的作用下,DCFH被氧化脱氢,转化为强绿色荧光DCF,从而可根据细胞内绿色荧光信号强度判断活性氧产生水平。
(1)实验方法
用PBS(10mM)稀释菌液至108CFU/mL。取1mL菌液涡旋分散后置于PE管中,随后加入实施例2中制备的光敏剂CS-2I(10μM)与DCFH-DA(10μM)共孵育30min后,弃掉培养液,用PBS清洗3次除去多余的光敏剂及DCFH-DA染料。重新加入1mL PBS后,用特定波长单色光照射5min后,共聚焦显微镜下观察细菌内绿色荧光信号。DCF激发波长:488nm,荧光发射接收波长:500-530nm。L为用660nm光源光照的简称。
(2)实验结果
在S.aerus以及MRSA细菌中,利用活性氧探针DCFH-DA对光照后1O2的产生进行了检测,在活性氧的作用下,DCFH-DA被氧化为强绿色荧光染料DCF。两种细菌摄取CS-2I(Ps)后,利用660nm光源照射10min(20mW/cm2)后放置共聚焦荧光显微镜成像,可在细胞内观察到强烈绿色荧光,说明细胞内有大量的1O2产生;而在相同的条件下,无光照光敏剂孵育摄取的S.aerus以及MRSA内仅能观测到相对微弱的绿色荧光(图9)。
实施例10
光敏剂CS-2I对革兰氏阳性菌光动力抗菌性能测试
(1)实验方法
用PBS(10mM)稀释菌液至108CFU/mL。取1mL菌液涡旋分散后置于PE管中,随后加入不同浓度实施例2中制备的光敏剂CS-2I(浓度分别为0、0.25、03.50、1、2μM)共孵育10min后,弃掉培养液,用PBS清洗3次除去多余的光敏剂。加入2mL新鲜PBS,用660nm波长单色光(10mW/cm2)照射10min后,将菌液涂至LB固体培养基上,继续放入培养箱孵育24h后察板上菌落数。
(2)实验结果
无论对于S.aerus或者MRSA,在光照下,CS-2I浓度在250nM下就对革兰氏阳性菌有强的抑制能力。由此表明,CS-2I具有高效的光动力抗菌能力(图10)。
实施例11
光敏剂CS-2I光动力杀伤细菌后形态变化
(1)实验方法
首先将细菌悬浮液(108CFU/mL,1.6mL)与实施例2中制备的光敏剂CS-2I(10μM)在12孔板中混合,并在37℃下孵育30分钟,然后用660nm光照(20mW/cm2)10分钟。之后,收集细菌并用PBS洗涤两次,然后用戊二醛(2.5%)固定一天,然后用乙醇(30、50、70、80、90和100%,v/v)脱水。最后,将固定的细菌干燥并喷金用于SEM(SU8220,HITACHI,Japan)成像观察。
(2)实验结果
与未进行光照处理的耐甲氧西林金黄色葡萄球菌(MRSA)相比,光照组细菌膜出现明显的塌陷与破裂,表明本发明所述光敏剂光动力治疗后可破坏细菌结构,有效防止其再生(图11)。
实施例12
CS-2I@gel的粘附性测试
(1)实验方法
将实施例3制备好的CS-2I@gel分别涂抹在手套或者手指皮肤上,并分别与塑料试管、瓶盖等物体接触悬挂。
(2)实验结果
CS-2I@gel外观颜色为青蓝色,且具有一定粘附力,可对皮肤、塑料试管、瓶盖等进行黏附。这种黏附性质有利于水凝胶长时间附着于伤口感染处(图12)。
实施例13
CS-2I@gel的可注射性与荧光性质测试
(1)实验方法
将实施例3制备好的CS-2I@gel装入注射器中,在纸片上连续喷涂DUT字样。并分别放置在紫外光以及近红外光下观察荧光发射性质。
(2)实验结果
将CS-2I@gel装入注射器中,可通过注射器将其连续喷涂,具有可注射性。在紫外光以及近红外光下,可观察到CS-2I@gel分别发射出绿色以及近红外荧光。这也表明由于CS-2I具有AIE效应,在水凝胶中并不影响CS-2I的发光性质(图13)。
实施例14
CS-2I@gel对革兰氏阳性菌光动力抗菌性能测试
(1)实验方法
用PBS(10mM)稀释MRSA菌液至108CFU/mL。将200μL菌液涂至琼脂糖凝胶板上,待干燥后在固定区域上涂抹相同体积的不同水凝胶(Car-940、实施例3制备好的CS-2I@gel),并分别经过660nm光照(20mW/cm2)10分钟与不光照处理。
(2)实验结果
仅有CS-2I@gel+L组的处理区域观察不到MRSA的菌落,而在利用Car-940(卡波姆-940)、Car-940+L、CS-2I@gel处理的琼脂板上能观察到显著的菌落生长,表明含有光敏剂CS-2I的水凝胶同样具有光敏剂的光动力抗菌性质(图14)。
实施例15
CS-2I及CS-2I@gel对于小鼠皮肤伤口感染的治疗应用
(1)实验方法
选用雌性BALB/c小鼠作为活体治疗模型,严格遵循我国关于实验动物福利和实验动物伦理的相关规定,并经大连理工大学动物伦理审查委员会批准。皮肤伤口感染模型制备:在BALB/c小鼠背部切出1cm2伤口,除Control组小鼠外,其余每组老鼠在伤口上涂抹50μL耐甲氧西林金黄色葡萄球菌(108CFU/mL)感染伤口。并分别用50μL PBS、实施例2制备的CS-2I(2μM)、万古霉素(5μM)、实施例2制备的CS-2I(2μM)+L、实施例3制备的CS-2I@gel、实施例3制备的CS-2I@gel+L进行处理,其中L为660nm光源(20mW/cm2,10min),连续治疗两天。每两天观察伤口炎症及愈合情况。并于第7天,处死所有小鼠,取伤口组织,提取表面细菌进行孵育计数。
(2)实验结果
可以发现经过CS-2I+L以及CS-2I@gel+L处理的小鼠具有最佳的皮肤愈合效果,尤其CS-2I@gel+L组小鼠在治疗后第7天伤口已完全愈合,皮肤愈合效果显著高于未经光照以及万古霉素(Van)治疗的小鼠(图15)。并且Control(无菌对照组)、CS-2I+L以及CS-2I@gel+L处理的小鼠在第7天的伤口表面无明显MRSA菌落数,表明CS-2I+L以及CS-2I@gel+L光动力治疗后可以有效对伤口部位抑菌(图16)。

Claims (9)

1.一种用于革兰氏阳性菌鉴别且选择性杀伤的基于罗丹明的聚集诱导发光光敏剂,其特征在于,所述聚集诱导发光光敏剂的结构式如下所示:
2.根据权利要求1所述的聚集诱导发光光敏剂的制备方法,其特征在于,包括如下步骤:
(1)化合物1的合成:将环己酮逐滴添加到浓H2SO4中并冷却至0-4℃,然后,在搅拌下添加2-(4-二乙氨基-2-羟基苯甲酰基)苯甲酸,将反应混合物在90℃下加热2-4h,获得化合物1;
(2)化合物CS-2I的合成:将所得化合物1与3,5-二碘-4-羟基苯甲醛加入至冰乙酸中,加热至80-100℃反应过夜,获得化合物CS-2I;
反应式如下:
3.根据权利要求2所述的制备方法,其特征在于,在化合物1的合成过程中,所述环己酮与浓H2SO4比例为32mmol:40-60mL;所述浓H2SO4的质量分数为98%。
4.根据权利要求2所述的制备方法,其特征在于,在化合物1的合成过程中,反应结束后冷却,并倒入冰水中,然后添加高氯酸,过滤所得沉淀物并用冷水洗涤,获得化合物1。
5.根据权利要求2所述的制备方法,其特征在于,在化合物CS-2I的合成过程中,所述化合物1与3,5-二碘-4-羟基苯甲醛的摩尔比为1:1-2.5。
6.根据权利要求2所述的制备方法,其特征在于,在化合物CS-2I的合成过程中,反应结束后,减压旋蒸除去溶剂,并利用硅胶柱提纯得出终产物。
7.一种复合水凝胶抗菌敷料,其特征在于,由权利要求1所述的聚集诱导发光光敏剂与卡波姆-940复合而成。
8.根据权利要求7所述的复合水凝胶抗菌敷料,其特征在于,所述聚集诱导发光光敏剂溶液的浓度为10-100μM,所述卡波姆-940的质量浓度为1.5-3%。
9.根据权利要求7或8所述的复合水凝胶抗菌敷料,其特征在于,所述复合水凝胶的制备方法为:向聚集诱导发光光敏剂溶液中加入卡波姆-940,在60-80℃条件下搅拌25-40min后,滴加三乙醇胺,直至pH为7-7.4。
CN202210194779.XA 2022-03-01 2022-03-01 用于革兰氏阳性菌选择性杀伤的基于罗丹明的aie光敏剂及其凝胶敷料制备方法和应用 Active CN114890976B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210194779.XA CN114890976B (zh) 2022-03-01 2022-03-01 用于革兰氏阳性菌选择性杀伤的基于罗丹明的aie光敏剂及其凝胶敷料制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210194779.XA CN114890976B (zh) 2022-03-01 2022-03-01 用于革兰氏阳性菌选择性杀伤的基于罗丹明的aie光敏剂及其凝胶敷料制备方法和应用

Publications (2)

Publication Number Publication Date
CN114890976A CN114890976A (zh) 2022-08-12
CN114890976B true CN114890976B (zh) 2023-08-18

Family

ID=82715191

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210194779.XA Active CN114890976B (zh) 2022-03-01 2022-03-01 用于革兰氏阳性菌选择性杀伤的基于罗丹明的aie光敏剂及其凝胶敷料制备方法和应用

Country Status (1)

Country Link
CN (1) CN114890976B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115960090B (zh) * 2022-12-30 2024-03-29 中山大学 一种罗丹明b修饰吡啶配体的制备方法及其光催化抗菌应用
CN117924329B (zh) * 2023-12-26 2024-10-29 南方医科大学南方医院 一种具有聚集诱导发光特性的荧光化合物及其制备方法与应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110423487A (zh) * 2019-08-01 2019-11-08 湖南大学 一种Rhodol衍生物染料及其应用
CN112521381A (zh) * 2020-01-24 2021-03-19 香港科技大学 具有不同正电荷的aie光敏剂及其制备方法和抗菌应用
CN113861156A (zh) * 2021-11-01 2021-12-31 中国科学院苏州纳米技术与纳米仿生研究所 近红外聚集诱导发光有机荧光染料及其制备方法与应用
CN113956190A (zh) * 2021-10-29 2022-01-21 大连理工大学 可激活肿瘤细胞焦亡的细胞器靶向光敏剂及其制备方法和应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110423487A (zh) * 2019-08-01 2019-11-08 湖南大学 一种Rhodol衍生物染料及其应用
CN112521381A (zh) * 2020-01-24 2021-03-19 香港科技大学 具有不同正电荷的aie光敏剂及其制备方法和抗菌应用
CN113956190A (zh) * 2021-10-29 2022-01-21 大连理工大学 可激活肿瘤细胞焦亡的细胞器靶向光敏剂及其制备方法和应用
CN113861156A (zh) * 2021-11-01 2021-12-31 中国科学院苏州纳米技术与纳米仿生研究所 近红外聚集诱导发光有机荧光染料及其制备方法与应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
郭柯馨 ; 樊江莉 ; 彭孝军 ; 王静云 ; 孙世国 ; 孙平平 ; .一种应用于活细胞中检测Hg~(2+)的罗丹明类荧光探针.中国科技论文在线.2009,(06),441-446. *

Also Published As

Publication number Publication date
CN114890976A (zh) 2022-08-12

Similar Documents

Publication Publication Date Title
Lee et al. Ultrafast discrimination of Gram-positive bacteria and highly efficient photodynamic antibacterial therapy using near-infrared photosensitizer with aggregation-induced emission characteristics
CN114890976B (zh) 用于革兰氏阳性菌选择性杀伤的基于罗丹明的aie光敏剂及其凝胶敷料制备方法和应用
Su et al. Orange-red to NIR emissive carbon dots for antimicrobial, bioimaging and bacteria diagnosis
Zhang et al. Killing three birds with one stone: Near-infrared light triggered nitric oxide release for enhanced photodynamic and anti-inflammatory therapy in refractory keratitis
Zhang et al. Fe-TCPP@ CS nanoparticles as photodynamic and photothermal agents for efficient antimicrobial therapy
Zhou et al. Multifunctional nanocomplex for surface-enhanced Raman scattering imaging and near-infrared photodynamic antimicrobial therapy of vancomycin-resistant bacteria
Zhao et al. Multifunctional therapeutic strategy of Ag-synergized dual-modality upconversion nanoparticles to achieve the rapid and sustained cidality of methicillin-resistant Staphylococcus aureus
Wang et al. Wound therapy via a photo-responsively antibacterial nano-graphene quantum dots conjugate
CN110028553B (zh) 一种抗菌纳米探针Au-PEG-AMP-Ce6的制备方法和应用
Liu et al. NIR-emitting carbon dots for discriminative imaging and photo-inactivation of pathogenic bacteria
Farajzadeh et al. Biological properties of hexadeca-substituted metal phthalocyanines bearing different functional groups
Wang et al. An enzyme-responsive and photoactivatable carbon-monoxide releasing molecule for bacterial infection theranostics
Wen et al. Nitrogen-doped carbon dots/curcumin nanocomposite for combined Photodynamic/photothermal dual-mode antibacterial therapy
Fan et al. ROS conversion promotes the bactericidal efficiency of Eosin Y based photodynamic therapy
Sun et al. Tertiary amines convert 1O2 to H2O2 with enhanced photodynamic antibacterial efficiency
Zhang et al. The fluorescence imaging and precise suppression of bacterial infections in chronic wounds by porphyrin-based metal–organic framework nanorods
US20210290611A1 (en) A bifunctional aggregation-induced emission luminogen for monitoring and killing of multidrug-resistant bacteria
Yue et al. In situ generation of peroxynitrite (ONOO−) for enhanced antibacterial photodynamic therapy
CN112933226B (zh) 一种靶向抗菌纳米材料AuNS-PEG-AMP的制备及其应用
Cong et al. Copper deposited diatom-biosilica with enhanced photothermal and photodynamic performance for infected wound therapy
Xiang et al. Nitroreductase-responsive nanoparticles for in situ fluorescence imaging and synergistic antibacterial therapy of bacterial keratitis
CN106668871A (zh) 一种抑制乳腺癌细胞生长的光敏型磁性纳米粒体系的制备方法及应用
Zhu et al. Dye-sensitized rare-earth-doped nanoprobe for simultaneously enhanced NIR-II imaging and precise treatment of bacterial infection
WO2021227206A1 (zh) 一种含二乙胺的吖嗪联肼类化合物及其制备方法与应用
CN116712544A (zh) 一种具有光动力-光热协同抗菌活性的超分子纳米材料的制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant