CN114889267A - 一种生物质增强型多功能材料及其制备方法与应用 - Google Patents

一种生物质增强型多功能材料及其制备方法与应用 Download PDF

Info

Publication number
CN114889267A
CN114889267A CN202210514674.8A CN202210514674A CN114889267A CN 114889267 A CN114889267 A CN 114889267A CN 202210514674 A CN202210514674 A CN 202210514674A CN 114889267 A CN114889267 A CN 114889267A
Authority
CN
China
Prior art keywords
carbon nanotube
biomass
nanofiber
multifunctional material
functional layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210514674.8A
Other languages
English (en)
Other versions
CN114889267B (zh
Inventor
翁明岑
张沛乾
丁敏
叶元基
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujian University of Technology
Original Assignee
Fujian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujian University of Technology filed Critical Fujian University of Technology
Priority to CN202210514674.8A priority Critical patent/CN114889267B/zh
Publication of CN114889267A publication Critical patent/CN114889267A/zh
Application granted granted Critical
Publication of CN114889267B publication Critical patent/CN114889267B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B23/00Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B23/00Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose
    • B32B23/04Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose comprising such cellulosic plastic substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B23/08Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose comprising such cellulosic plastic substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/005Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising one layer of ceramic material, e.g. porcelain, ceramic tile
    • B32B9/007Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising one layer of ceramic material, e.g. porcelain, ceramic tile comprising carbon, e.g. graphite, composite carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/04Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B9/045Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/02Polyamines
    • C08G73/026Wholly aromatic polyamines
    • C08G73/0266Polyanilines or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/48Conductive polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/16Capacitors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2301/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2301/02Cellulose; Modified cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/02Polyamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明公开了一种生物质增强型多功能材料及其制备方法与应用。首先,将生物质纳米纤维分散液与碳纳米管分散液搅拌混匀,得到碳纳米管‑纳米纤维混合液,所述混合液通过真空抽滤法或液相蒸发法到碳纳米管‑纳米纤维薄膜,接着通过原位聚合法在碳纳米管‑纳米纤维薄膜表面聚合导电聚合物,得到惰性功能层材料;最后,将惰性功能层材料与活性热膨胀层材料复合,得到生物质增强型多功能材料。本发明通过可控的物理/化学交联,改善碳纳米管基复合薄膜的电、机械和电化学性能,进而应用于柔性电磁屏蔽器件、柔性驱动器及超级电容器中。

Description

一种生物质增强型多功能材料及其制备方法与应用
技术领域
本发明涉及驱动材料领域,具体涉及一种生物质增强型多功能材料及其制备方法与应用。
背景技术
柔性驱动器在软机器人、传感器、人工智能和视觉智能等领域受到广泛关注。通过不同的设计策略,不同的材料已被用于制造具有不同类型机构的致动器。特别是,通过结合多功能材料,如迈科烯、纳米线、碳基纳米材料和液晶弹性体,已经广泛开发了多刺激响应型柔性驱动器。除了传统柔性驱动器的一般功能外,多刺激响应型柔性驱动器还具有先进的热、电或/和光耦合机械性能,并伴随着对外部刺激的智能变形响应。柔性驱动器的实际应用需要集成储能、信息采集和反馈等功能的智能系统。然而,随着信息技术和电子设备的飞速发展,电磁辐射污染在日常生活中屡见不鲜,不可避免地对智能系统的信息采集和反馈造成严重干扰。此外,现有的通过电信号传递信息的多功能执行器往往需要内置储能模块,面临体积大、可持续性不足等问题。同时,这些功能部件的组装和连接通常需要外部电路。这将增加智能系统设计和制造的复杂性。如果驱动器集成了电磁干扰屏蔽特性,则功能化驱动器可以在外部刺激的引导下发生定向形变,从而保护智能系统免受严重的电磁污染。此外,如果将电化学活性材料集成到驱动材料中,不仅可以满足多功能驱动器集成柔性储能模块的需求,还可以显着降低智能系统的质量和体积。因此,多功能、集成化智能驱动器的设计与制备是十分重要的。
碳纳米管作为一种典型的碳纳米材料,已广泛应用于电磁干扰屏蔽、能量收集/存储、和柔性驱动器等领域。单根碳纳米管具有极高的固有拉伸强度(>100 GPa)和杨氏模量(>1 TPa)。然而,纯碳纳米管薄膜的机械性能通常很差,因为在碳纳米管之间的管与管连接处的范德华力相互作用较弱。碳纳米管的取向和界面交联是增强界面相互作用以提高碳纳米管薄膜机械性能的两种典型策略。一方面,通过排列碳纳米管制备高取向的碳纳米管薄膜,可以提高碳纳米管之间的连接性,从而提高碳纳米管薄膜的堆积密度和机械强度。然而,值得注意的是,碳纳米管的高度取向排列和密集堆积将不可避免地消除碳纳米管薄膜中的多孔结构,削弱其电化学性能。另一方面,以聚合物共混为代表的界面交联是提高碳纳米管薄膜力学性能的另一种重要方法。但是,由于聚合物的导电性较差,碳纳米管-聚合物复合薄膜的导电性较差。被大大削弱。因此,设计具有强机械强度和高导电性的碳纳米管复合薄膜是亟待解决的关键问题。
发明内容
本发明的目的在于提供一种生物质增强型多功能材料及其制备方法与应用。
为实现上述目的,本发明采用如下的技术方案:
一种生物质增强型多功能材料,具有双层结构,是由活性热膨胀层与惰性功能层通过粘结剂层采用粘结或压合的方式层叠设置而成。
所述粘结剂为压敏胶、光固化胶、热固化胶、非导电性固化胶中的一种或两种以上的的组合。
所述生物质增强型多功能材料的制备方法,包括如下步骤:
1)制备惰性功能层材料
1-1)将生物质纳米纤维分散液与碳纳米管分散液搅拌混匀,得到碳纳米管-纳米纤维混合液;
1-2)将碳纳米管-纳米纤维混合液通过真空抽滤法或液相蒸发法,得到碳纳米管-纳米纤维薄膜;
1-3)通过原位聚合法,在碳纳米管-纳米纤维薄膜表面聚合导电聚合物,烘干,得到导电聚合物@碳纳米管-纳米纤维薄膜,即为惰性功能层材料;
2)将惰性功能层材料与活性热膨胀层材料复合,得到生物质增强型多功能材料
所述的生物质纳米纤维可以为纳米纤维素、纤维素纳米晶、细菌纤维素、木质素纤维素及它们的改性衍生物中的一种或两种以上的组合。改性方式为四甲基哌啶氧化物氧化法,磺酸盐改性,两性离子掺杂,季铵盐改性,硅烷改性,酯化改性,乙酰化改性,醋酐接枝改性,丙烯酸枝改性等。优选地,改性方式为四甲基哌啶氧化物氧化法。
所述的生物质纳米纤维中,纳米纤维素,纤维素纳米晶,木质素纤维素及它们的改性衍生物的来源可以为针叶木,阔叶木,竹子等。
所述生物质纳米纤维分散液的浓度为0.1-5 mg/mL,优选为1 mg/mL。
所述碳纳米管分散液的浓为0.01-100 mg/mL,优选为1 mg/mL。
所述生物质纳米纤维分散液与碳纳米管分散液的的质量比为4:1.
所述导电聚合物为聚苯胺,聚吡咯,聚噻吩,聚乙炔和聚吲哚等。优选地,导电聚合物为聚苯胺。
所述的活性热膨胀层材料为聚丙烯、聚乙烯、硅橡胶、氟硅橡胶、聚甲基丙烯酸甲酯、聚对苯二甲酸乙二醇酯、聚氨酯、环氧树脂、聚丙烯酸乙酯、聚丙烯酸丁酯、聚苯乙烯、聚丁二烯和聚丙烯腈中的一种或两种以上的组合。优选地,活性热膨胀层为聚丙烯。
本发明采用以上技术方案,通过可控的物理/化学交联,改善碳纳米管基复合薄膜的电、机械和电化学性能,进而应用于柔性电磁屏蔽器件、柔性驱动器及超级电容器中。
本发明的有益效果在于;仿生设计是改善材料性能的有效策略。首先,受蛛网结构的启发,本发明选择纳米纤维(纳米纤维素、细菌纤维素等)作为粘合剂,与碳纳米管协同构建了具有蛛网状网络结构的碳纳米管-纳米纤维薄膜。由于纳米纤维表面具有丰富的含氧官能团,它们的加入可以通过氢键与碳纳米管形成物理纠缠,从而增强了碳纳米管基复合薄膜的机械性能。此外,得益于纳米纤维超细的网状结构,它们对碳纳米管基复合薄膜电导率的负面影响也大大降低。因此,添加纳米纤维可以协同调控和优化碳纳米管基复合薄膜的机械和电学性能之间的平衡。其次,通过模仿蜘蛛网捕捉小昆虫的过程,可以实现聚苯胺等导电聚合物纳米粒子在碳纳米管基复合薄膜上的原位聚合。导电聚合物纳米粒子填充了碳纳米管基复合薄膜的部分孔隙。导电聚合物的聚合不仅可以赋予碳纳米管基复合薄膜赝电容性能,还可以通过化学交联进一步提高电/机械性能。
附图说明
图1是不同细菌纤维素含量时,碳纳米管-细菌纤维素薄膜的电/力学性能。
图2是聚对苯二甲酸乙二醇酯/聚苯胺@碳纳米管-细菌纤维素柔性驱动器的湿度(a)、近红外光(b)与电驱动(c)性能。
图3是在X波段内,聚苯胺@碳纳米管-细菌纤维素薄膜的电磁干扰屏蔽效能。
图4 是基于聚对苯二甲酸乙二醇酯/聚苯胺@碳纳米管-细菌纤维素薄膜的对称型超级电容器的恒电流充电/放电曲线。
具体实施方式
下面结合附图和具体实施例对本发明作进一步详细说明,但本发明的保护范围并不限于所述内容。
实施例1
本实施例中,纳米纤维素、碳纳米管分散液、过硫酸铵、苯胺、盐酸、丙酮、聚丙烯薄膜等材料均为普通市售产品。其中,纳米纤维素购于中山纳纤丝新材料有限公司;碳纳米管分散液(XFWPMC-M33)购于南京先丰纳米材料科技有限公司;过硫酸铵、苯胺、盐酸、丙酮购于国药集团;聚丙烯薄膜购于得力集团有限公司。
1)取40 mL浓度为1 mg/mL的碳纳米管分散液与10 mL浓度为1 mg/mL的纳米纤维素分散液,充分混合得到碳纳米管-纳米纤维素混合液。
2)通过真空抽滤上述混合液,并常温干燥后得到碳纳米管-纳米纤维素薄膜。
3)将碳纳米管-纳米纤维素薄膜浸泡于0.2 mol/L的苯胺溶液中,低温静置2小时。随后,在冰浴条件下,缓慢地滴入0.2 mol/L的过硫酸铵溶液,使碳纳米管-纳米纤维素薄膜在低温下下原位聚合12小时,得到聚苯胺@碳纳米管-纳米纤维素薄膜。
4)将聚苯胺@碳纳米管-纳米纤维素薄膜用丙酮、酒精和去离子水依次冲洗,并烘干,得到多功能聚苯胺@碳纳米管-纳米纤维素薄膜,可直接用于柔性电磁屏蔽器件。
5)将聚苯胺@碳纳米管-纳米纤维素薄膜与聚丙烯薄膜复合,即可得到柔性驱动器。
6)将两片聚丙烯/聚苯胺@碳纳米管-纳米纤维素薄膜与半固态电解质组装可得到柔性超级电容器。
实施例2
本实施例中,细菌纤维素、碳纳米管分散液、过硫酸铵、苯胺、盐酸、丙酮、聚对苯二甲酸乙二醇酯薄膜等材料均为普通市售产品。其中,细菌纤维素购于桂林奇宏科技有限公司;碳纳米管分散液(XFWPMC-M33)购于南京先丰纳米材料科技有限公司;过硫酸铵、苯胺、盐酸、丙酮购于国药集团;聚对苯二甲酸乙二醇酯薄膜购于阿里巴巴集团。
1)取40 mL浓度为1 mg/mL的碳纳米管分散液与10 mL浓度为1 mg/mL的细菌纤维素分散液,充分混合得到碳纳米管-细菌纤维素混合液。
2)通过真空抽滤上述混合液,并常温干燥后得到碳纳米管-细菌纤维素薄膜。
3)将碳纳米管-细菌纤维素薄膜浸泡于0.2 mol/L的苯胺溶液中,低温静置2小时。随后,在冰浴条件下,缓慢地滴入0.2 mol/L的过硫酸铵溶液,使碳纳米管-细菌纤维素薄膜在低温下下原位聚合12小时,得到聚苯胺@碳纳米管-细菌纤维素薄膜。
4)将聚合后的聚苯胺@碳纳米管-细菌纤维素薄膜用丙酮、酒精和去离子水依次冲洗,并烘干,得到多功能聚苯胺@碳纳米管-细菌纤维素薄膜,可直接用于柔性电磁屏蔽器件。
5)将聚苯胺@碳纳米管-细菌纤维素薄膜与聚对苯二甲酸乙二醇酯薄膜复合,即可得到柔性驱动器。
6)将两片聚对苯二甲酸乙二醇酯/聚苯胺@碳纳米管-细菌纤维素薄膜与半固态电解质组装可得到柔性超级电容器。
以下通过实施例2,说明本发明的有益效果:
(1)图1是不同细菌纤维素含量时,碳纳米管-细菌纤维素薄膜的电/力学性能图。可以看出,通过引入细菌纤维素可以大幅提升碳纳米管-细菌纤维素薄膜的力学性能,同时仅削弱少许的电学性能。特别是,当细菌纤维素的含量达到20%时,其电导率大于10 S cm-1,杨氏模量大于1 GPa。
(2)图2是聚对苯二甲酸乙二醇酯/聚苯胺@碳纳米管-细菌纤维素柔性驱动器的湿度(a)、近红外光(b)与电驱动(c)性能。通过构建聚对苯二甲酸乙二醇酯/聚苯胺@碳纳米管-细菌纤维素双层结构薄膜,可以用作由光、电和湿度驱动的多刺激响应型柔性驱动器。驱动机制是聚苯胺@碳纳米管-细菌纤维素薄膜的湿膨胀效应和聚对苯二甲酸乙二醇酯与聚苯胺@碳纳米管-细菌纤维素薄膜两层之间的不对称热膨胀效应。
(3)聚苯胺@碳纳米管-细菌纤维素薄膜具有高导电性、优异的机械性能和三维网络结构。因此,聚苯胺@碳纳米管-细菌纤维素薄膜可用作柔性轻质的电磁干扰屏蔽材料。在X波段内,采集聚苯胺@碳纳米管-细菌纤维素薄膜的电磁干扰屏蔽效能值,如图3所示。厚度为22 μm的聚苯胺@碳纳米管-细菌纤维素薄膜的电磁干扰屏蔽效能值为25.8 dB,达到商用水平(>20 dB)。
(4)如图4所示,基于聚对苯二甲酸乙二醇酯/聚苯胺@碳纳米管-细菌纤维素薄膜的对称型超级电容器的恒电流充电/放电曲线具有小电压降的三角形状,表现出双电层行为和快速离子传输。经过计算,该超级电容器在不同电流密度下呈现出高面积电容。具体而言,其面积电容在0.5 mA cm-2的电流密度下达到235.7 mF cm-2;在5 mA cm-2的高电流密度下仍保持229.3 mF cm-2

Claims (10)

1.一种生物质增强型多功能材料的制备方法,其特征在于,包括如下步骤:
1)制备惰性功能层材料
1-1)将生物质纳米纤维分散液与碳纳米管分散液搅拌混匀,得到碳纳米管-纳米纤维混合液;
1-2)将碳纳米管-纳米纤维混合液通过真空抽滤法或液相蒸发法,得到碳纳米管-纳米纤维薄膜;
1-3)通过原位聚合法,在碳纳米管-纳米纤维薄膜表面聚合导电聚合物,得到惰性功能层材料;
2)将惰性功能层材料与活性热膨胀层材料复合,得到生物质增强型多功能材料。
2.根据权利要求1所述的一种生物质增强型多功能材料的制备方法,其特征在于,步骤2)所述的活性热膨胀层材料为聚丙烯、聚乙烯、硅橡胶、氟硅橡胶、聚甲基丙烯酸甲酯、聚对苯二甲酸乙二醇酯、聚氨酯、环氧树脂、聚丙烯酸乙酯、聚丙烯酸丁酯、聚苯乙烯、聚丁二烯和聚丙烯腈中的一种或两种以上的组合。
3.根据权利要求1所述的一种生物质增强型多功能材料的制备方法,其特征在于,步骤1)所述的生物质纳米纤维为纳米纤维素、纤维素纳米晶、细菌纤维素、木质素纤维素及它们的改性衍生物中的一种或两种以上的组合,改性衍生物的改性方式为四甲基哌啶氧化物氧化法,磺酸盐改性,两性离子掺杂,季铵盐改性法,硅烷改性法,酯化改性法,乙酰化改性法,醋酐接枝改性法或丙烯酸枝改性法。
4.根据权利要求3所述的一种生物质增强型多功能材料的制备方法,其特征在于,所述的生物质纳米纤维的来源为针叶木,阔叶木或竹子。
5.根据权利要求1所述的一种生物质增强型多功能材料的制备方法,其特征在于,步骤1-1)所述生物质纳米纤维分散液与碳纳米管分散液的的质量比为4:1。
6.根据权利要求1所述的一种生物质增强型多功能材料的制备方法,其特征在于,步骤1-3)所述导电聚合物为聚苯胺,聚吡咯,聚噻吩,聚乙炔、聚吲哚中的一种。
7.根据权利要求1所述的一种生物质增强型多功能材料的制备方法,其特征在于,步骤2)所述惰性功能层材料与活性热膨胀层材料采用粘结或压合的方式进行叠层设置。
8.一种生物质增强型多功能材料,其特征在于,其是由活性热膨胀层与惰性功能层通过粘结剂层采用粘结或压合的方式层叠设置而成,所述惰性功能层是采用权利要求1步骤1)的制备方法制备而成,所述活性热膨胀层由聚丙烯、聚乙烯、硅橡胶、氟硅橡胶、聚甲基丙烯酸甲酯、聚对苯二甲酸乙二醇酯、聚氨酯、环氧树脂、聚丙烯酸乙酯、聚丙烯酸丁酯、聚苯乙烯、聚丁二烯、聚丙烯腈中的一种或两种以上的材料成型;所述粘结剂层由压敏胶、光固化胶、热固化胶、非导电性固化胶中的一种或两种以上的材料成型。
9.根据权利要求1-8任一制备方法得到的生物质增强型多功能材料在柔性驱动器或电容器中的应用。
10.根据权利要求1-8任一制备方法得到的惰性功能层材料在柔性电磁屏蔽器件中的应用。
CN202210514674.8A 2022-05-11 2022-05-11 一种生物质增强型多功能材料及其制备方法与应用 Active CN114889267B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210514674.8A CN114889267B (zh) 2022-05-11 2022-05-11 一种生物质增强型多功能材料及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210514674.8A CN114889267B (zh) 2022-05-11 2022-05-11 一种生物质增强型多功能材料及其制备方法与应用

Publications (2)

Publication Number Publication Date
CN114889267A true CN114889267A (zh) 2022-08-12
CN114889267B CN114889267B (zh) 2023-11-17

Family

ID=82721353

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210514674.8A Active CN114889267B (zh) 2022-05-11 2022-05-11 一种生物质增强型多功能材料及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN114889267B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104924701A (zh) * 2015-06-18 2015-09-23 福建师范大学 一种碳基材料/聚合物复合材料及其制备方法
CN107297929A (zh) * 2017-06-16 2017-10-27 福建师范大学 致动材料和双向弯曲型致动器及其制备方法
WO2018200966A1 (en) * 2017-04-27 2018-11-01 Texas Tech University System High frequency supercapacitors and methods of making same
US20190206632A1 (en) * 2018-01-03 2019-07-04 Nanotek Instruments, Inc. Supercapacitor and Electrode Having Cellulose Nanofiber-Spaced Graphene Sheets and Production Process
CN113248757A (zh) * 2021-06-18 2021-08-13 福建工程学院 一种可自修复材料、驱动材料及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104924701A (zh) * 2015-06-18 2015-09-23 福建师范大学 一种碳基材料/聚合物复合材料及其制备方法
WO2018200966A1 (en) * 2017-04-27 2018-11-01 Texas Tech University System High frequency supercapacitors and methods of making same
CN107297929A (zh) * 2017-06-16 2017-10-27 福建师范大学 致动材料和双向弯曲型致动器及其制备方法
US20190206632A1 (en) * 2018-01-03 2019-07-04 Nanotek Instruments, Inc. Supercapacitor and Electrode Having Cellulose Nanofiber-Spaced Graphene Sheets and Production Process
CN113248757A (zh) * 2021-06-18 2021-08-13 福建工程学院 一种可自修复材料、驱动材料及其制备方法

Also Published As

Publication number Publication date
CN114889267B (zh) 2023-11-17

Similar Documents

Publication Publication Date Title
Lu et al. Latest advances in flexible symmetric supercapacitors: from material engineering to wearable applications
Choi et al. Twistable and stretchable sandwich structured fiber for wearable sensors and supercapacitors
Lao et al. Flexible regenerated cellulose/boron nitride nanosheet high-temperature dielectric nanocomposite films with high energy density and breakdown strength
Zhang et al. Recent advances in functional fiber electronics
Liu et al. Self-healable, high-strength hydrogel electrode for flexible sensors and supercapacitors
Tayeb et al. Nanocellulose applications in sustainable electrochemical and piezoelectric systems: A review
Wang et al. Conducting polymer nanowire arrays for high performance supercapacitors
Sen et al. Preparation of single-walled carbon nanotube reinforced polystyrene and polyurethane nanofibers and membranes by electrospinning
Zheng et al. Nanostructured paper for flexible energy and electronic devices
Devarayan et al. Flexible transparent electrode based on PANi nanowire/nylon nanofiber reinforced cellulose acetate thin film as supercapacitor
Li et al. Freestanding bacterial cellulose–polypyrrole nanofibres paper electrodes for advanced energy storage devices
Nystrom et al. A nanocellulose polypyrrole composite based on microfibrillated cellulose from wood
Lan et al. Sustainable natural bio‐origin materials for future flexible devices
Shang et al. Extreme temperature-tolerant organohydrogel electrolytes for laminated assembly of biaxially stretchable pseudocapacitors
CN108335919A (zh) 一种金属有机框架/导电聚合物复合材料、其制备和应用
Zhang et al. Facile preparation of highly transparent conducting nanopaper with electrical robustness
CN108530806A (zh) 具有高输出的双层结构柔性压电薄膜及其制备和应用方法
Hsu et al. Nanocellulose-based conductive membranes for free-standing supercapacitors: a review
Nizam et al. Nanocellulose-based composites: fundamentals and applications in electronics
Wu et al. Highly durable and flexible paper electrode with a dual fiber matrix structure for high-performance supercapacitors
Kim Multifunctional smart biopolymer composites as actuators
Liu et al. Synchronous dual roles of copper sulfide on the insulating PET fabric for high-performance portable flexible supercapacitors
Gao et al. Flexible and sensitive piezoresistive electronic skin based on TOCN/PPy hydrogel films
Terasawa Self-standing high-performance transparent actuator based on poly (dimethylsiloxane)/TEMPO-oxidized cellulose nanofibers/ionic liquid gel
US20150294800A1 (en) Free-standing hybrid nanomembrane as energy storage electrode and the fabrication method thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant