CN114887638B - 一种熔融盐氧化偶联或脱氢方法 - Google Patents

一种熔融盐氧化偶联或脱氢方法 Download PDF

Info

Publication number
CN114887638B
CN114887638B CN202210458766.9A CN202210458766A CN114887638B CN 114887638 B CN114887638 B CN 114887638B CN 202210458766 A CN202210458766 A CN 202210458766A CN 114887638 B CN114887638 B CN 114887638B
Authority
CN
China
Prior art keywords
molten salt
reaction
ethylbenzene
methane
dehydrogenation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210458766.9A
Other languages
English (en)
Other versions
CN114887638A (zh
Inventor
祝星
吴海迪
高文桂
冯智颖
李孔斋
王�华
魏永刚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kunming University of Science and Technology
Original Assignee
Kunming University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kunming University of Science and Technology filed Critical Kunming University of Science and Technology
Priority to CN202210458766.9A priority Critical patent/CN114887638B/zh
Publication of CN114887638A publication Critical patent/CN114887638A/zh
Application granted granted Critical
Publication of CN114887638B publication Critical patent/CN114887638B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/20Carbon compounds
    • B01J27/232Carbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/10Magnesium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/76Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation of hydrocarbons with partial elimination of hydrogen
    • C07C2/82Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation of hydrocarbons with partial elimination of hydrogen oxidative coupling
    • C07C2/84Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation of hydrocarbons with partial elimination of hydrogen oxidative coupling catalytic
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/42Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with a hydrogen acceptor
    • C07C5/48Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with a hydrogen acceptor with oxygen as an acceptor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

本发明公开了一种熔融盐氧化偶联或脱氢方法,以甲烷、乙烷和乙苯等烃类为原料,使用碳酸盐等熔融盐作为反应介质,引入一些氧化物作为催化剂,利用化学链技术或共进料的方式,在熔融盐反应器中将甲烷氧化偶联成高碳烷烃或烯烃、将乙烷等烷烃氧化脱氢成烯烃,将乙苯氧化脱氢成苯乙烯等,氧源的补充方式分为共进料或反应后再补充的方式,此反应可以一直不断地进行产生目标产物。与此同时,本发明利用的熔融盐材料价格低、有良好的抗积碳、储热、导热特性等优点,同时也能够提高催化剂的催化性能。

Description

一种熔融盐氧化偶联或脱氢方法
技术领域
本发明属于能源环境和能源化工领域,具体涉及一种熔融盐氧化偶联或脱氢方法。
背景技术
随着经济社会的高速发展,人类对能源的消耗日益增大,为了有效解决人类的能源短缺问题,必须经济高效地利用现有的化石能源。烷烃和芳香烃等来源于天然气或石油的化石能源,如何高效环保地通过化学途径把这些烷烃和芳香烃转化为具有高附加值地化工产品,已成为目标地研究热点之一。在化学链或者共进料氧化脱氢工艺中,烷烃或芳香烃利用催化剂中的晶格氧选择性地氧化成产物和水中,然后耗氧催化剂被或空气再氧化。催化剂的氧的得失在烷烃或芳香烃不断脱氢的循环中进行。催化剂在化学链或者共进料氧化偶联或脱氢中起着至关重要的作用,因为它对烷烃或芳香烃具有高活化率和高选择性氢燃烧活性。
熔融盐作为反应介质对烷烃或芳香烃氧化偶联或脱氢是一个很好的选择。熔融盐是盐类熔化形成的、由阳离子和阴离子组成的离子熔体,目前熔融盐的研究和应用所涉及学科领域比较广,包括冶金学、电化学、材料学等等。近几十年来熔融盐的研究和应用发展很快,其中有甲烷与CO2在熔融盐中催化重整制合成气,熔盐改性膜反应器的甲烷氧化偶联,中低温氧化甲烷为氢气和一氧化碳的熔盐电化学方法等等。最近几年来碳酸盐熔融盐催化剂的研究已掀起了一股热潮,主要都是利用碳酸盐(Li2CO3、Na2CO3、K2CO3等)作熔融盐介质,用于甲烷和CO2氧化偶联和乙烷的氧化脱氢制烯烃等等。
烯烃是世界上产量最大的化学产品之一,烯烃工业是石油化工产业的核心,烯烃产品占据了石化产品的绝大部分,在国民经济中占有重要的地位。世界上已将烯烃产量作为衡量一个国家石油化工发展水平的重要标志之一。在传统的烯烃生产中,大部分都是由烷烃脱氢而来。由于副产物H2的生成,商业蒸汽裂解过程中的烯烃的产量受到平衡限制,并且其能耗高,对环境不友好。而本发明采用的新的烯烃生产技术,打破热力学平衡限制,减少能源消耗。烯烃的生产包括熔融盐中甲烷的氧化偶联、熔融盐中乙烷的氧化脱氢、熔融盐中乙苯的氧化脱氢等等。
甲烷转化技术可以大致分为直接转化技术和间接转化技术。直接转化技术又包括甲烷部分氧化制取有机含氧化合物以及甲烷氧化偶联制取多碳烷烃、烯烃等,相关技术仍然更多停留在实验室层面。甲烷间接转化技术则是先从甲烷制取合成气,再由合成气合成各种化工原料及油品。由于合成气通过费托反应制备以液态的烃或碳氢化合物为主燃料的技术较为成熟,因此工业上更多选取间接转化技术来利用甲烷。但是间接转化技术仍有不可忽视的缺点,包括流程较为复杂、能耗大、生产成本较高等。而甲烷的氧化偶联直接制取多碳烷烃烯烃就有希望解决这一难题。在熔融盐体系中采用甲烷化学链氧化偶联或者共进料氧化偶联,可以使甲烷氧化偶联脱掉的氢和熔融盐中的氧结合生成水,这是一个放热反应。其次,在熔融盐的环境下具有良好的抗积碳效果。
相对来说,由乙烷生产乙烯的方法则更直接,在熔融盐体系中乙烷化学链氧化脱氢或者共进料氧化脱氢生产乙烯,熔融盐体系中的氧物种可以参与乙烷脱氢的反应,打破热力学平衡限制,促进乙烷转化率和选择性的提高,同时熔融盐体系也拥有着良好的抗积碳、储热、导热特性等优点。
对于乙苯制苯乙烯的生产而言,有两种类型的脱氢:直接脱氢和氧化脱氢。目前,乙苯直接脱氢制苯乙烯的方法主要应用于工业,占苯乙烯总产量的约90%。但乙苯直接脱氢反应是吸热和负压,它需要过热水蒸气参与反应。蒸汽反应过程消耗大量能量,催化剂容易烧结,导致寿命缩短。而且由于热力学平衡的影响,苯乙烯的产率也比较低,经济效益不好。因此,乙苯氧化脱氢是一个很好的选择。在熔融盐中化学链或共进料的乙苯氧化脱氢可以用氧来烧掉脱氢的氢,促进反应的向右进行,提高苯乙烯的产率,同时在反应中聚苯乙烯的聚集可能会导致积碳形成,在熔融盐中可以避免积碳的生成。同时在反应中聚苯乙烯的聚集可能会导致积碳形成,在熔融盐中可以避免积碳的生成。
发明内容
为克服传统工艺的存在催化剂易失活、积碳以及产率不高等问题。本发明的目的在于使用化学链技术或者共进料的方式,将氧化偶联或脱氢技术运用到熔融盐体系中,该方法不仅降低了催化剂的成本,而且能够利用熔融盐的抗积碳、储热、导热特性等优点,循环不断地利用催化剂进行反应,延长催化剂的寿命。
一种熔融盐氧化偶联或脱氢方法,包括但不限于:甲烷在熔融盐中化学链偶联脱氢、烷烃在熔融盐中化学链氧化脱氢、芳香烃在熔融盐中化学链氧化脱氢、甲烷与氧源共进料在熔融盐偶联脱氢,烷烃与氧源共进料在熔融盐氧化脱氢、芳香烃与氧源共进料在熔融盐中氧化脱氢;进料方式为共进料或分步进料;
优选的,所述化学链和共进料所用氧源为O2、CO2中的任意一种;
优选的,所述熔融盐成分为碳酸盐,或碳酸盐外加氧化物;
优选的,所述碳酸盐组分为Li2CO3、Na2CO3、K2CO3中的一种或多种混盐;
优选的,所述熔融盐体系中催化剂可以外加氧化物,所述氧化物包括但不限于过渡金属氧化物中的任一种或多种;
优选的,所述化学链技术进行氧化偶联或脱氢反应时,催化剂中必须存在一种或多种外加氧化物;
优选的,所述甲烷为反应物时,甲烷与熔融态催化剂中的氧物种反应,两个甲烷分子碳氢键断裂,生成乙烷和乙烯,而断裂掉的氢则可以和氧物种反应生成H2O。对于此反应来说,还有副产物CO和CO2;如果采用CO2与甲烷共进料的方式进行反应,则能有效抑制副产物CO2的生成;以甲烷和CO2为原料气,氧化镁、氧化亚铁等氧化物和碳酸盐作为催化剂,利用它们的氧化还原性能,在熔融盐反应器中将甲烷氧化偶联成乙烯和乙烷,反应温度在600℃以上,甲烷和CO2转化率分别可达到20%和60%以上,产物中C2组分的选择性可达到70%以上,连续反应12小时以上,催化剂性能稳定;
优选的,所述烷烃作为反应物时,发生烷烃的氧化脱氢反应;以乙烷和CO2为原料气,采用化学链技术将原料气分步通入反应器的方式进行氧化脱氢反应;以碳酸钠、碳酸钾等碳酸盐作为催化剂,在反应温度为600-900℃时通入乙烷与催化剂进行反应生成乙烯和水,同时存在逆煤气变化反应:H2+CO2=H2O+CO,碳酸盐中的CO2和乙烷过度氧化产生的CO2会与乙烷脱掉的H2反应生成H2O+CO,有利于乙烷氧化脱氢反应的正向进行;之后再通入CO2补充氧化物反应掉的的氧物种和碳酸盐消耗的碳酸根离子;在24个小时以上的氧化还原循环过程中,乙烷的转化率可稳定在50%以上,乙烯的选择性也为80%以上;
优选的,所述芳香烃为反应物时,发生芳香烃的氧化脱氢反应;以乙苯和CO2为原料气,采用化学链技术将原料气分步通入反应器的方式进行氧化脱氢反应;以氧化铁等氧化物和碳酸锰等碳酸盐作为催化剂,锰元素多价态的优势,保证了氧化还原循环反应的进行;在反应温度为500-700℃时通入乙苯与催化剂进行反应生成乙烯和水,同时伴随着甲苯、苯等副产物;乙苯也会存在部分的燃烧反应,生成CO2和H2O;之后再通入CO2补充氧化物反应掉的的氧物种和碳酸盐反应掉的碳酸根离子,使用的熔融盐氧化还原催化剂进行反应时,催化剂的晶格氧能够烧掉乙苯脱掉的氢促进反应的向右进行,提高苯乙烯的选择性,抑制甲苯和苯等副产物的生成;在24个小时以上的氧化还原循环过程中,乙苯的转化率可稳定在60%以上,苯乙烯的选择性也为80%以上。
本发明的有益效果是:
1)在熔融盐催化剂体系下采用化学链氧化偶联或脱氢和共进料氧化偶联或脱氢技术可以利用氧物种来烧掉原料脱去的氢,促进反应的正向进行,抑制副产物的生成,提高产物的产率;
2)使用熔融盐催化剂体系,能够充分利用其良好的抗积碳、储热、导热特性等优点,同时熔融盐催化剂制备简单,成本低廉,相比于其他传统催化剂有更大的经济效益;
3)反应在熔融盐体系中进行,通过熔融盐优越的热传导性能使反应温度场更加均匀,避免热点问题的产生,保证反应稳定性和持续性,同时使反应过后的余热大部分储存于熔融盐中,熔融盐循环使用,提高系统热利用率,达到节能降耗的目的。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明在熔融盐中乙烷氧化脱氢制乙烯反应过程图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
实施例1
以质量比为1:1的氧化镁(MgO)和碳酸锂(Li2CO3)作为熔融盐催化剂体系,反应是在一个在大气压下运行的微流反应器系统中进行,该反应器由不锈钢管组成,使摩尔比为1:0.5:0.5:3的甲烷、CO2、O2、Ar气体以流量为50mL/min的速度进入反应器为反应原料气,反应温度控制在750℃左右,使甲烷在熔融盐中发生氧化偶联反应。通过对产物进行质谱色谱检测,对合成气组分分析和计算可得甲烷转化率达到30.2%,C2组分的收率达到24.7%,在连续不断的通入原料气进行反应,反应24小时,催化剂性能稳定。
实施例2
以摩尔比为1:1:1的碳酸锂(Li2CO3)、碳酸钠(Na2CO3)和碳酸钾(K2CO3)作为熔融盐催化剂体系,反应在一个固定床反应器中进行,反应器为内径为2.5cm的不锈钢管。在进行乙烷的氧化脱氢反应前,需将10g混合良好的熔融盐装入管中,用带有热电偶的炉子进行外部加热,以测量炉的温度。使用带有多个质量流量控制器的来控制输送气体混合物。将炉以10℃/min的速率加热到所需的温度(710℃-770℃)。将混合物熔化超过熔点后,以50mL/min的流速然后通入10vol%CO2(平衡Ar)以进行碳酸盐饱和,大约10min。从出口流出的气体被引导到质谱仪中进行检测。然后,用Ar气清除过量的气体CO2,直到质谱仪中的CO2信号(m/z=44)达到稳定值。值得注意的是,由于碳酸盐的不断分解,质谱仪中稳定的CO2信号应在0以上。乙烷在熔融盐中化学链氧化脱氢在一个循环反应中进行,包括一个氧化脱氢步骤和随后的CO2利用步骤。对于氧化脱氢步骤,以50mL/min通入10vol%乙烷(平衡Ar),然后进行50mL/min Ar气体吹扫10min。在CO2利用步骤中,以50mL/min的流速将10vol%CO2(平衡Ar)通入反应器20min,以确保碳酸盐饱和。在进行的60次循环实验中,熔融盐催化剂展示了良好的循环稳定性和抗积碳性能,同时乙烯的产率为40.2%,CO的产率也高达73.5%,对C3-C5和甲烷的选择性略高于热裂解,可忽略不计。
实施例3
以摩尔比为1:1:4的碳酸锰(MnCO3)、碳酸钾(K2CO3)和氧化铁(Fe2O3)作为熔融盐催化剂体系,反应在一个固定床反应器中进行,反应器为内径为1cm的不锈钢管,在进行乙苯的氧化脱氢反应前,将10g混合良好的熔融盐装入管中,用带有热电偶的炉子进行外部加热,以测量炉的温度。使用带有多个质量流量控制器的来控制输送气体混合物。将炉以10℃/min的速率加热到所需的温度(400-500℃),将熔融盐解热到反应温度后,以50mL/min的流速然后通入10vol%CO2(平衡Ar)以进行碳酸盐饱和,大约10min。然后,用Ar气清除过量的气体CO2,直到质谱仪中的CO2信号(m/z=44)达到稳定值(由于碳酸盐的不断分解,稳定值大于0)。此时开始通入乙苯进行反应,乙苯(分压约为0.1atm)在起泡器中由50mL/min Ar气流带动吹入反应器中,通入15min后开始用50mL/min Ar气吹扫20min。氧化阶段由CO2作为氧源,以50mL/min的流速将10vol%CO2(平衡Ar)通入反应器20min,以确保熔融盐催化剂充分恢复。在进行的30次循环实验中,熔融盐催化剂消除了积碳,使反应体系平稳进行,乙苯的转化率可达72.5%,苯乙烯选择性高达92.7%。同时反应利用了CO2,对降低温室气体对环境的影响具有重大意义。
在本说明书的描述中,参考术语“一个实施例”、“示例”、“具体示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上公开的本发明优选实施例只是用于帮助阐述本发明。优选实施例并没有详尽叙述所有的细节,也不限制该发明仅为所述的具体实施方式。显然,根据本说明书的内容,可作很多的修改和变化。本说明书选取并具体描述这些实施例,是为了更好地解释本发明的原理和实际应用,从而使所属技术领域技术人员能很好地理解和利用本发明。本发明仅受权利要求书及其全部范围和等效物的限制。

Claims (1)

1.一种熔融盐氧化脱氢方法,其特征在于,包括:
以乙苯和CO2为原料气,采用化学链技术将原料气分步通入反应器的方式进行氧化脱氢反应;以摩尔比为1:1:4的碳酸锰MnCO3、碳酸钾K2CO3和氧化铁Fe2O3作为熔融盐催化剂;
在反应温度为500-700℃时通入乙苯与熔融盐催化剂进行反应生成苯乙烯和水;之后再通入CO2补充熔融盐催化剂中氧化物反应掉的氧物种和碳酸盐反应掉的碳酸根离子;
在24个小时以上的氧化还原循环过程中,乙苯的转化率在60%以上,苯乙烯的选择性在80%以上。
CN202210458766.9A 2022-04-27 2022-04-27 一种熔融盐氧化偶联或脱氢方法 Active CN114887638B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210458766.9A CN114887638B (zh) 2022-04-27 2022-04-27 一种熔融盐氧化偶联或脱氢方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210458766.9A CN114887638B (zh) 2022-04-27 2022-04-27 一种熔融盐氧化偶联或脱氢方法

Publications (2)

Publication Number Publication Date
CN114887638A CN114887638A (zh) 2022-08-12
CN114887638B true CN114887638B (zh) 2023-10-20

Family

ID=82719521

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210458766.9A Active CN114887638B (zh) 2022-04-27 2022-04-27 一种熔融盐氧化偶联或脱氢方法

Country Status (1)

Country Link
CN (1) CN114887638B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4549032A (en) * 1983-05-26 1985-10-22 Metallgesellschaft Aktiengesellschaft Process for producing styrene
US4678862A (en) * 1986-01-31 1987-07-07 Atlantic Richfield Company Molten salt hydrocarbon conversion process using oxygen containing feed
CN101177241A (zh) * 2007-11-05 2008-05-14 昆明理工大学 甲烷与二氧化碳在熔融盐中催化重整制合成气的方法
CA2695195A1 (en) * 2007-07-31 2009-02-05 Ruozhi Song Dehydrogenation of ethylbenzene and ethane using mixed metal oxide or sulfated zirconia catalysts to produce styrene
CN109833877A (zh) * 2017-11-29 2019-06-04 中国科学院大连化学物理研究所 一种化学链部分氧化甲烷制合成气催化剂及其制备和应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11813592B2 (en) * 2017-06-15 2023-11-14 North Carolina State University Oxygen carrying materials with surface modification for redox-based catalysis and methods of making and uses thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4549032A (en) * 1983-05-26 1985-10-22 Metallgesellschaft Aktiengesellschaft Process for producing styrene
US4678862A (en) * 1986-01-31 1987-07-07 Atlantic Richfield Company Molten salt hydrocarbon conversion process using oxygen containing feed
CA2695195A1 (en) * 2007-07-31 2009-02-05 Ruozhi Song Dehydrogenation of ethylbenzene and ethane using mixed metal oxide or sulfated zirconia catalysts to produce styrene
CN101177241A (zh) * 2007-11-05 2008-05-14 昆明理工大学 甲烷与二氧化碳在熔融盐中催化重整制合成气的方法
CN109833877A (zh) * 2017-11-29 2019-06-04 中国科学院大连化学物理研究所 一种化学链部分氧化甲烷制合成气催化剂及其制备和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Molten-salt-mediated carbon dioxide capture and superequilibrium utilization with ethane oxidative dehydrogenation;Junchen Liu,et al.;《Cell Reports Physical Science》;第2卷(第7期);第100503(1-17)页, 论文材料第1-28页 *
甲烷在熔融盐中热化学循环转化体系的热力学分析;敖先权等;《天然气化工》;第1-6页 *

Also Published As

Publication number Publication date
CN114887638A (zh) 2022-08-12

Similar Documents

Publication Publication Date Title
Deboy et al. Kinetics of the oxidative coupling of methane over 1 wt% SrLa2O3
JP4001234B2 (ja) 二酸化炭素酸化剤を用いたアルキル芳香族炭化水素の触媒脱水素化方法
US6887455B2 (en) Catalytic generation of hydrogen
Sun et al. Chemical looping-based energy transformation via lattice oxygen modulated selective oxidation
Pino et al. Catalytic partial-oxidation of methane on a ceria-supported platinum catalyst for application in fuel cell electric vehicles
TW201002662A (en) Hybrid autothermal catalytic process for converting alkanes to alkenes and catalysts useful for same
Liu et al. From fundamentals to chemical engineering on oxidative coupling of methane for ethylene production: A review
Wang et al. Chemical looping reforming of toluene as a biomass tar model compound over two types of oxygen carriers: 2CuO-2NiO/Al2O3 and CaFe2O4
US5498370A (en) Process for hydroshifting dimethyl ether
Arutyunov et al. Gas-phase oxypyrolysis of light alkanes
Tanaka et al. Catalytic oxidative coupling of methane assisted by electric power over a semiconductor catalyst
Ortiz et al. Thermodynamic analysis and process simulation for the H2 production by dry reforming of ethanol with CaCO3
Schmidt et al. New ways to make old chemicals
Huang et al. Ethylene production over A/B-site doped BaCoO3 perovskite by chemical looping oxidative dehydrogenation of ethane
CN114887638B (zh) 一种熔融盐氧化偶联或脱氢方法
Jin et al. The role of modified manganese perovskite oxide for selective oxidative dehydrogenation of ethane: Not only selective H2 combustion but also ethane activation
Saupsor et al. Performance comparison among different multifunctional reactors operated under energy self-sufficiency for sustainable hydrogen production from ethanol
Konnov Direct Non-Oxidative Conversion of Methane over Metal-Containing Zeolites: Main Strategies for Shifting the Thermodynamic Equilibrium (A Review)
CN114917936B (zh) 一种用于甲烷化学链部分氧化的新型硫酸基金属载氧体设计和实验方法
Madduluri et al. Role of Cobalt oxide-based catalysts for styrene production: A review on significance of various promoters, calcination temperature, chemical behavior of support materials and synthesis procedure
CN104043456B (zh) 丙烷氧化脱氢催化剂、制备方法及其用途
Schmidt Millisecond chemical reactions and reactors
RU2633354C1 (ru) Катализатор и способ раздельного получения водорода и монооксида углерода из метана
CN100427383C (zh) 熔融盐中用晶格氧催化氧化天然气制氢的方法
US2513994A (en) Production of synthesis gas

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant