CN114879801A - Current generation circuit with adjustable temperature coefficient - Google Patents

Current generation circuit with adjustable temperature coefficient Download PDF

Info

Publication number
CN114879801A
CN114879801A CN202210619911.7A CN202210619911A CN114879801A CN 114879801 A CN114879801 A CN 114879801A CN 202210619911 A CN202210619911 A CN 202210619911A CN 114879801 A CN114879801 A CN 114879801A
Authority
CN
China
Prior art keywords
current
temperature coefficient
mos transistor
mos
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210619911.7A
Other languages
Chinese (zh)
Inventor
宋佳音
杨中
付江铎
陈文亚
黄一斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Jicui Intelligent Integrated Circuit Design Technology Research Institute Co ltd
Original Assignee
Jiangsu Jicui Intelligent Integrated Circuit Design Technology Research Institute Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Jicui Intelligent Integrated Circuit Design Technology Research Institute Co ltd filed Critical Jiangsu Jicui Intelligent Integrated Circuit Design Technology Research Institute Co ltd
Priority to CN202210619911.7A priority Critical patent/CN114879801A/en
Publication of CN114879801A publication Critical patent/CN114879801A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current 
    • G05F1/46Regulating voltage or current  wherein the variable actually regulated by the final control device is DC
    • G05F1/56Regulating voltage or current  wherein the variable actually regulated by the final control device is DC using semiconductor devices in series with the load as final control devices
    • G05F1/565Regulating voltage or current  wherein the variable actually regulated by the final control device is DC using semiconductor devices in series with the load as final control devices sensing a condition of the system or its load in addition to means responsive to deviations in the output of the system, e.g. current, voltage, power factor
    • G05F1/567Regulating voltage or current  wherein the variable actually regulated by the final control device is DC using semiconductor devices in series with the load as final control devices sensing a condition of the system or its load in addition to means responsive to deviations in the output of the system, e.g. current, voltage, power factor for temperature compensation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Amplifiers (AREA)

Abstract

The invention discloses a temperature coefficient adjustable current generating circuit, which has a larger current temperature coefficient adjusting range and can improve the accuracy of the generated current, and comprises a voltage-to-current module and a temperature coefficient adjusting module, wherein one end of the voltage-to-current module is connected with a band gap reference voltage source, the other end of the voltage-to-current module is connected with one end of the temperature coefficient adjusting module, and the other end of the temperature coefficient adjusting module is a current output end; the voltage-to-current module is used for converting the voltage of the band-gap reference voltage source into a first temperature coefficient current and carrying out primary adjustment on the magnitude of the first temperature coefficient current to obtain a primary adjustment current; the temperature coefficient adjusting module is used for adjusting the temperature coefficient of the primary adjusting current and compensating the size of the primary adjusting current; and the other end of the temperature coefficient adjusting module outputs a second temperature coefficient current after the temperature coefficient is adjusted and the current magnitude is compensated.

Description

一种温度系数可调的电流产生电路A current generating circuit with adjustable temperature coefficient

技术领域technical field

本发明涉及集成电路技术领域,具体为一种温度系数可调的电流产生电路。The invention relates to the technical field of integrated circuits, in particular to a current generating circuit with an adjustable temperature coefficient.

背景技术Background technique

芯片设计过程中,电路易受到PVT变化影响,PVT变化主要指芯片工艺、电压、温度的变化,在传统的偏置电流产生电路中,PVT变化不仅会导致偏置电流温度系数及大小产生变化,而且易导致偏置电流电路增益及线性度恶化,从而影响相关电路性能的稳定。宽温度范围电路典型情况为:先进工艺条件下放大器尤其是动态放大器的电学性能随温度变化较大,芯片温度的变化,会导致电学性能(例如芯片工作稳定性、电流大小准确性)恶化。In the process of chip design, the circuit is easily affected by the change of PVT. The change of PVT mainly refers to the change of chip technology, voltage and temperature. In the traditional bias current generation circuit, the change of PVT will not only lead to the change of the temperature coefficient and size of the bias current, Moreover, it is easy to cause the deterioration of the gain and linearity of the bias current circuit, thereby affecting the stability of the related circuit performance. A typical situation of a wide temperature range circuit is that the electrical performance of amplifiers, especially dynamic amplifiers, varies greatly with temperature under advanced process conditions, and changes in chip temperature will lead to deterioration of electrical performance (such as chip operating stability, current size accuracy).

目前常用的降低PVT变化对电路影响的方式是:通过偏置电流温度系数的调节来适应温度变化,但现有技术中电流温度系数调节时,电流大小会随电流温度系数的变化等比例的放大或缩小,导致偏置电流产生电路输出的电流稳定性和准确性降低,从而影响整个芯片工作的稳定性。为防止电流大小变化较大而降低电路稳定性,电流温度系数的调节范围不能太大,但电流温度系数的调节范围受限导致整个电流产生电路的适用范围较窄,无法满足宽温度范围电路(例如先进工艺下的动态放大器)的应用需求。At present, the commonly used method to reduce the influence of PVT changes on the circuit is to adjust the temperature coefficient of the bias current to adapt to the temperature change. However, when the current temperature coefficient is adjusted in the prior art, the magnitude of the current will be proportionally amplified with the change of the current temperature coefficient. Or shrinking, resulting in reduced current stability and accuracy of the output of the bias current generation circuit, thereby affecting the stability of the entire chip operation. In order to prevent the current size from changing greatly and reducing the stability of the circuit, the adjustment range of the current temperature coefficient cannot be too large, but the limited adjustment range of the current temperature coefficient leads to a narrow application range of the entire current generation circuit, which cannot meet the wide temperature range circuit ( For example, the application requirements of dynamic amplifiers under advanced technology.

发明内容SUMMARY OF THE INVENTION

针对现有技术中存在的偏置电流温度系数调节电路的可调节范围较小的问题,以及电流温度系数变化导致电流大小的准确性降低的问题,本发明提供了一种温度系数可调的电流产生电路,其可扩大电流温度系数的调节范围,同时可提高产生的电流大小的准确性。Aiming at the problems in the prior art that the adjustable range of the bias current temperature coefficient adjustment circuit is small, and the problem that the accuracy of the current size is reduced due to the change of the current temperature coefficient, the present invention provides a current with an adjustable temperature coefficient The generating circuit can expand the adjustment range of the current temperature coefficient, and at the same time can improve the accuracy of the generated current.

为实现上述目的,本发明采用如下技术方案:To achieve the above object, the present invention adopts the following technical solutions:

一种温度系数可调的电流产生电路,其包括电压转电流模块、温度系数调节模块,所述电压转电流模块一端连接带隙基准电压源,所述电压转电流模块另一端连接所述温度系数调节模块一端,所述温度系数调节模块另一端为电流输出端;A current generation circuit with adjustable temperature coefficient, which includes a voltage-to-current module and a temperature-coefficient adjustment module, one end of the voltage-to-current module is connected to a bandgap reference voltage source, and the other end of the voltage-to-current module is connected to the temperature coefficient One end of the adjustment module, the other end of the temperature coefficient adjustment module is the current output end;

所述电压转电流模块用于将所述带隙基准电压源的电压转换为第一温度系数电流,并对所述第一温度系数电流的大小进行一次调节,获得一次调节电流;The voltage-to-current module is configured to convert the voltage of the bandgap reference voltage source into a first temperature coefficient current, and adjust the magnitude of the first temperature coefficient current once to obtain a primary adjustment current;

所述温度系数调节模块用于对所述一次调节电流的温度系数进行调节,并对所述一次调节电流的大小进行补偿;The temperature coefficient adjustment module is used to adjust the temperature coefficient of the primary adjustment current, and to compensate the size of the primary adjustment current;

所述温度系数调节模块另一端输出温度系数调节后的以及电流大小补偿后的第二温度系数电流。The other end of the temperature coefficient adjustment module outputs the second temperature coefficient current after the temperature coefficient adjustment and current magnitude compensation.

其进一步特征在于,It is further characterized in that,

所述电压转电流模块包括运算放大器、第一开关控制单元、电流温度系数调节单元,所述运算放大器的正向输入端连接所述带隙基准电压源,所述带隙基准电压源的电压为零温度系数电压,所述运算放大器的反向输入端连接所述电流温度系数调节单元一端,所述第一开关控制单元一端、电流温度系数调节单元另一端均连接所述温度系数调节模块一端,所述运算放大器、电流温度系数调节单元用于产生与温度系数相关的第一温度系数电流,所述第一开关控制单元用于对所述第一温度系数电流的电流大小进行一次调节,所述第一开关控制单元包括若干开关,所述开关分别通过控制电压VBP、控制字TA<n:1>控制;The voltage-to-current module includes an operational amplifier, a first switch control unit, and a current temperature coefficient adjustment unit. The forward input end of the operational amplifier is connected to the bandgap reference voltage source, and the voltage of the bandgap reference voltage source is zero temperature coefficient voltage, the reverse input end of the operational amplifier is connected to one end of the current temperature coefficient adjustment unit, one end of the first switch control unit and the other end of the current temperature coefficient adjustment unit are both connected to one end of the temperature coefficient adjustment module, The operational amplifier and the current temperature coefficient adjustment unit are used to generate a first temperature coefficient current related to the temperature coefficient, the first switch control unit is used to adjust the current size of the first temperature coefficient current once, and the The first switch control unit includes a plurality of switches, and the switches are respectively controlled by the control voltage VBP and the control word TA<n:1>;

所述第一开关控制单元包括N个MOS管MP3和N个MOS管MP4,其中,N为正整数,所述电流温度系数调节单元包括MOS管MP1、电阻R1,所述运算放大器的输出端分别连接所述电阻R1一端、MOS管MP1栅极,所述MOS管MP1漏极连接所述温度系数调节模块中的MOS管MP2漏极、栅极,所述MOS管MP2源极分别连接N个所述MOS管MP3源极、温度系数调节模块中的MOS管MP5栅极,N个所述MOS管MP4的栅极均通过控制电压VBP控制,N个所述MOS管MP4漏极与N个MOS管MP3漏极一一对应连接,所述MOS管MP3的栅极通过所述控制字TA<n:1>控制,所述MOS管MP4源极连接MOS管MP5、温度系数调节模块中的MOS管MP7、MP9、MP11源极;The first switch control unit includes N MOS transistors MP3 and N MOS transistors MP4, where N is a positive integer, the current temperature coefficient adjustment unit includes a MOS transistor MP1 and a resistor R1, and the output ends of the operational amplifier are respectively Connect one end of the resistor R1 and the gate of the MOS transistor MP1, the drain of the MOS transistor MP1 is connected to the drain and gate of the MOS transistor MP2 in the temperature coefficient adjustment module, and the source of the MOS transistor MP2 is respectively connected to N all The source of the MOS transistor MP3, the gate of the MOS transistor MP5 in the temperature coefficient adjustment module, the gates of the N MOS transistors MP4 are controlled by the control voltage VBP, the drain of the N MOS transistors MP4 and the N MOS transistors The drains of MP3 are connected in a one-to-one correspondence, the gate of the MOS transistor MP3 is controlled by the control word TA<n:1>, the source of the MOS transistor MP4 is connected to the MOS transistor MP5 and the MOS transistor MP7 in the temperature coefficient adjustment module , MP9, MP11 source;

所述MOS管MP1~MP4均为PMOS管;The MOS transistors MP1 to MP4 are all PMOS transistors;

所述温度系数调节模块包括第一电流镜~第四电流镜、第二开关控制单元、第三开关控制单元,所述第一电流镜用于将所述电源转电流模块输出的所述第一温度系数电流按比例K1、K2进行复制,第二电流镜、第三电流镜用于对经过所述第一电流镜的电流按比例K5进行复制,所述第一电流镜、第二开关控制单元、第二电流镜一端顺次连接构成第一电流支路,第三电流镜一端、第三开关控制单元、第四电流镜一端顺次连接构成第二电流支路,所述第二电流镜另一端与所述第三电流镜另一端连接,通过所述第二开关控制单元对所述第一电流支路的导通或关闭进行控制,通过所述第三开关控制单元对所述第二电流支路的导通或关闭进行控制,所述第四电流镜另一端为所述电流输出端,用于输出温度系数调节后的以及电流大小补偿后的所述第二温度系数电流,所述第二开关控制单元中的若干开关通过控制字TC1<n:1>控制,所述第三开关单元中的若干开关分别通过控制字TC1<n:1>、控制电压VBN1、VBN2控制,通过控制字TC1<n:1>对第二开关控制单元中开关的控制,实现一次调节电流的温度系数调节,通过所述控制字TC1<n:1>、控制电压VBN1、VBN2对第三开关单元中的开关的控制,实现一次调节电流的电流大小补偿;The temperature coefficient adjustment module includes a first current mirror to a fourth current mirror, a second switch control unit, and a third switch control unit, and the first current mirror is used to convert the power supply to the first current output by the current module. The temperature coefficient current is replicated in proportion to K1 and K2, the second current mirror and the third current mirror are used to replicate the current passing through the first current mirror in proportion to K5, and the first current mirror and the second switch control unit One end of the second current mirror is connected in sequence to form a first current branch, one end of the third current mirror, one end of the third switch control unit, and one end of the fourth current mirror are connected in sequence to form a second current branch, and the other end of the second current mirror is connected in sequence to form a second current branch. One end is connected to the other end of the third current mirror, the turn-on or turn-off of the first current branch is controlled by the second switch control unit, and the second current branch is controlled by the third switch control unit The turn-on or turn-off of the branch is controlled, and the other end of the fourth current mirror is the current output end, which is used to output the second temperature coefficient current after the temperature coefficient adjustment and current magnitude compensation. Several switches in the second switch control unit are controlled by the control word TC1<n:1>, and several switches in the third switch unit are controlled by the control word TC1<n:1>, the control voltages VBN1 and VBN2 respectively, and the control words are controlled by the control word TC1<n:1>. TC1<n:1> controls the switches in the second switch control unit to realize the temperature coefficient adjustment of the primary adjustment current. Through the control word TC1<n:1>, the control voltages VBN1 and VBN2, The control of the switch realizes the compensation of the current size of the primary adjustment current;

所述第一电流镜包括MOS管MP2、MOS管MP5、MP7,所述第二电流镜支路包括MOS管MN1~MN4,所述第三电流镜支路包括MOS管MP8~MP11,所述第四电流镜支路包括MOS管MN7~MN10,所述第二开关控制单元包括N个MOS管MP6,所述第三开关控制单元包括M个MOS管MP24、M个MOS管MN5、M个MOS管MN6,其中,M为正整数,所述MOS管MP5源极分别连接所述MOS管MP2、MP4、MP7、MP9、MP11源极,所述MOS管MP5漏极分别连接所述MOS管MN1漏极、栅极以及MOS管MN3栅极,所述MOS管MN1源极分别连接所述MOS管MN2栅极、源极以及MOS管MN4栅极,所述MOS管MP9漏极分别连接所述MOS管MP9栅极、MOS管MP11栅极、MOS管MP8漏极,所述MOS管MP8栅极分别连接MOS管MP8源极、MOS管MP10栅极、MOS管MN3源极,所述MOS管MN3漏极连接所述MOS管MN4漏极,所述MOS管MN2源极分别连接所述MOS管MN4源极、MOS管MN6、MN8、MN10源极,所述MOS管MP11漏极连接所述MOS管MP10漏极,所述MOS管MP10源极连接M个MOS管MP24源极、MOS管MN7源极、栅极以及MOS管MN9栅极,所述MOS管MP24漏极依次串联所述MOS管MN5、MN6,M个所述MOS管MP6栅极通过控制字TC1<n:1>控制,所述MOS管MP24栅极通过控制字TC1<n:1>控制,M个所述MOS管MN5通过控制电压VBN1控制,M个所述MOS管MN6通过控制电源VBN2控制,所述MOS管MN7漏极分别连接MOS管MN8漏极、栅极以及MOS管MN10栅极,所述MOS管MN10漏极连接所述MOS管MN9漏极,所述MOS管MN9源极为所述电流输出端;The first current mirror includes MOS transistors MP2, MOS transistors MP5 and MP7, the second current mirror branch includes MOS transistors MN1 to MN4, the third current mirror branch includes MOS transistors MP8 to MP11, and the third current mirror branch includes MOS transistors MP8 to MP11. The four current mirror branches include MOS transistors MN7-MN10, the second switch control unit includes N MOS transistors MP6, and the third switch control unit includes M MOS transistors MP24, M MOS transistors MN5, and M MOS transistors MN6, wherein M is a positive integer, the source of the MOS transistor MP5 is connected to the sources of the MOS transistors MP2, MP4, MP7, MP9, and MP11 respectively, and the drain of the MOS transistor MP5 is respectively connected to the drain of the MOS transistor MN1 , the gate and the gate of the MOS transistor MN3, the source of the MOS transistor MN1 is respectively connected to the gate of the MOS transistor MN2, the source and the gate of the MOS transistor MN4, the drain of the MOS transistor MP9 is respectively connected to the MOS transistor MP9 The gate, the gate of the MOS transistor MP11, the drain of the MOS transistor MP8, the gate of the MOS transistor MP8 is respectively connected to the source of the MOS transistor MP8, the gate of the MOS transistor MP10, and the source of the MOS transistor MN3, and the drain of the MOS transistor MN3 is connected to The drain of the MOS transistor MN4, the source of the MOS transistor MN2 are respectively connected to the source of the MOS transistor MN4, the source of the MOS transistors MN6, MN8 and MN10, and the drain of the MOS transistor MP11 is connected to the drain of the MOS transistor MP10. , the source of the MOS tube MP10 is connected to the source of M MOS tubes MP24, the source and gate of the MOS tube MN7 and the gate of the MOS tube MN9, and the drain of the MOS tube MP24 is connected in series with the MOS tubes MN5, MN6, M The gates of the MOS transistors MP6 are controlled by the control word TC1<n:1>, the gates of the MOS transistors MP24 are controlled by the control word TC1<n:1>, the M MOS transistors MN5 are controlled by the control voltage VBN1, The M MOS transistors MN6 are controlled by the control power supply VBN2, the drain of the MOS transistor MN7 is respectively connected to the drain and gate of the MOS transistor MN8 and the gate of the MOS transistor MN10, and the drain of the MOS transistor MN10 is connected to the MOS transistor MN9 drain, the source of the MOS transistor MN9 is the current output end;

所述MOS管MP5~MP11、MOS管MP24均为PMOS管,所述MOS管MN1~MN10均为NMOS管。The MOS transistors MP5 to MP11 and the MOS transistor MP24 are all PMOS transistors, and the MOS transistors MN1 to MN10 are all NMOS transistors.

一种电压转电流的方法,该方法应用了上述电压转电流模块,其特征在于,使用所述电压转电流模块将带隙基准电压源的零温度系数电压转换为电流的步骤包括:A1、零温度系数电压经运算放大器放大,获得放大电流;A voltage-to-current method, which applies the above-mentioned voltage-to-current module, characterized in that the step of using the voltage-to-current module to convert a zero temperature coefficient voltage of a bandgap reference voltage source into a current includes: A1, zero temperature coefficient The temperature coefficient voltage is amplified by the operational amplifier to obtain the amplified current;

A2、放大电流经电流温度系数调节单元转换,获得第一温度系数电流;A2. The amplified current is converted by the current temperature coefficient adjustment unit to obtain the first temperature coefficient current;

A3、通过控制电压VBP、控制字TA<n:1>对第一开关控制单元中的开关进行控制,实现第一温度系数电流的电流大小的一次调节,获得一次调节电流。A3. Control the switches in the first switch control unit through the control voltage VBP and the control word TA<n:1>, so as to realize the primary adjustment of the current size of the first temperature coefficient current, and obtain the primary adjustment current.

其进一步特征在于,It is further characterized in that,

步骤A2中,放大电流经电流温度系数调节单元中的MOS管MP1、电阻R1补偿,产生与电阻R1温度系数相关的第一温度系数电流;In step A2, the amplified current is compensated by the MOS transistor MP1 and the resistor R1 in the current temperature coefficient adjustment unit to generate a first temperature coefficient current related to the temperature coefficient of the resistor R1;

步骤A3中,通过控制电压VBP、控制字TA<n:1>分别对第一开关控制单元中的N个MOS管MP4、N个MOS管MP3进行控制,第一开关控制单元对第一温度系数电流的进行调节的具体步骤包括:第一温度系数电流流经所述MOS管MP4时,通过控制电压VBP对N个MOS管MP4的栅极进行控制,同时通过控制字TA<n:1>控制N个MOS管MP3的栅极,对第一温度系数电流的电流大小进行一次调节;In step A3, the N MOS transistors MP4 and N MOS transistors MP3 in the first switch control unit are respectively controlled by the control voltage VBP and the control word TA<n:1>, and the first switch control unit controls the first temperature coefficient. The specific steps of adjusting the current include: when the first temperature coefficient current flows through the MOS transistor MP4, the gates of the N MOS transistors MP4 are controlled by the control voltage VBP, and at the same time, the gates of the N MOS transistors MP4 are controlled by the control word TA<n:1>. The gates of the N MOS transistors MP3 adjust the current size of the first temperature coefficient current once;

通过控制字TA<n:1>控制MOS管MP3的栅极的具体步骤包括:A321、当n=0,TA<n:1>=0时,相对应位的MOS管MP3闭合,相对应位的MOS管MP4的电流通过MOS管MP3进入MOS管MP1支路,实现MOS管MP1电流与MOS管MP2电流的相加;A322、当n=1,TA<n:1>=1时,MOS管MP3关断,MOS管MP4到MOS管MP1支路的电流通过MOS管MP3关断,从而实现第一温度系数电流的电流大小调节,获得具有正温度系数的电流。The specific steps of controlling the gate of the MOS transistor MP3 through the control word TA<n:1> include: A321. When n=0 and TA<n:1>=0, the MOS transistor MP3 of the corresponding bit is closed, and the corresponding bit The current of the MOS tube MP4 enters the branch of the MOS tube MP1 through the MOS tube MP3 to realize the addition of the current of the MOS tube MP1 and the current of the MOS tube MP2; A322, when n=1, TA<n:1>=1, the MOS tube MP3 is turned off, and the current of the branch from the MOS transistor MP4 to the MOS transistor MP1 is turned off through the MOS transistor MP3, thereby realizing the current size adjustment of the first temperature coefficient current and obtaining a current with a positive temperature coefficient.

由于运算放大器的反向输入端电压为反馈电压,反馈电压与控制电压VBG相等,且均为零温度系数电压,该反馈电压经过一个接地的电阻R1,电阻R1具有负温度系数特性,因此该电阻R1所在的电流支路具有一个正温度系数电流。通过MOS管MP2的电流Imp2=Imp1-Imp4,Imp1=Ir1,因此,调节通过MOS管MP4和MOS管MP3的电流大小,可以直接改变通过MOS管MP2的电流Imp2的大小,MOS管MP4和MOS管MP3的电流大小由控制字控制,因此,通过控制字TA<n:1>调节MOS管MP4和MOS管MP3的电流大小,能够实现第一温度系数电流的电流大小调节。Since the reverse input voltage of the operational amplifier is the feedback voltage, the feedback voltage is equal to the control voltage VBG, and both are zero temperature coefficient voltages. The feedback voltage passes through a grounded resistor R1, and the resistor R1 has a negative temperature coefficient, so the resistance The current branch where R1 is located has a positive temperature coefficient current. The current Imp2=Imp1-Imp4, Imp1=Ir1 through the MOS tube MP2, therefore, adjusting the current through the MOS tube MP4 and the MOS tube MP3 can directly change the size of the current Imp2 through the MOS tube MP2, the MOS tube MP4 and the MOS tube The current size of MP3 is controlled by the control word. Therefore, the current size of the first temperature coefficient current can be adjusted by adjusting the current size of the MOS transistor MP4 and the MOS transistor MP3 through the control word TA<n:1>.

一种电流温度系数调节方法,该方法应用了上述温度系数调节模块,其特征在于,使用所述温度系数调节模块对电流的温度系数进行调节的步骤包括:B1、通过第二开关控制单元控制,使第一电流支路导通;A current temperature coefficient adjustment method, the method applies the above temperature coefficient adjustment module, characterized in that, the step of using the temperature coefficient adjustment module to adjust the temperature coefficient of the current comprises: B1, controlling through a second switch control unit, turning on the first current branch;

B2、通过第一电流镜对第一正温度系数电流按比例K1、K2进行复制;B2. Copy the first positive temperature coefficient current in proportion to K1 and K2 through the first current mirror;

B3、通过控制字TC1<m:1>及控制电压VBN1、VBN2对第三开关控制单元中的开关进行控制,实现温度系数调节后的电流大小的补偿;B3. Control the switch in the third switch control unit through the control word TC1<m:1> and the control voltages VBN1 and VBN2, so as to realize the compensation of the current size after the temperature coefficient adjustment;

B4、通过第四电流镜对补偿后的电流进行复制,在所述电流输出端输出第二温度系数电流。B4. Copy the compensated current through the fourth current mirror, and output the second temperature coefficient current at the current output terminal.

其进一步特征在于,It is further characterized in that,

MOS管MP5与MOS管MP2的尺寸比为K1,经过MOS管MP5的电流与MOS管MP2的电流之比为K1,即Imp5=K1*Imp2;The size ratio of the MOS tube MP5 and the MOS tube MP2 is K1, and the ratio of the current passing through the MOS tube MP5 to the current of the MOS tube MP2 is K1, that is, Imp5=K1*Imp2;

MOS管MP7与MOS管MP2的尺寸比为K1,经过MOS管MP7的电流与MOS管MP2的电流之比为K2,即Imp7=K2*Imp2;The size ratio of the MOS tube MP7 and the MOS tube MP2 is K1, and the ratio of the current passing through the MOS tube MP7 to the current of the MOS tube MP2 is K2, that is, Imp7=K2*Imp2;

步骤B2中,通过第一电流镜中的MOS管MP5、MP7对流经MOS管MP2的电流分别按比例K1、K2进行复制;In step B2, the current flowing through the MOS transistor MP2 is copied according to the proportions K1 and K2 through the MOS transistors MP5 and MP7 in the first current mirror, respectively;

步骤B2中,流过第一电流镜中MOS管MP2的电流为电压转电流模块转换获得的一次调节电流,所述一次调节电流的温度系数为TC1,则流经MOS管MP2的电流的温度系数为TC1*T,其中,T表示温度,实现一次调节电流的温度系数的一次调节;In step B2, the current flowing through the MOS transistor MP2 in the first current mirror is the primary regulated current converted by the voltage-to-current module, and the temperature coefficient of the primary regulated current is TC1, then the temperature coefficient of the current flowing through the MOS transistor MP2 is It is TC1*T, where T represents the temperature, which realizes the one-time adjustment of the temperature coefficient of the one-time adjustment current;

步骤B2中,流过第一电流支路中的MOS管MN1的电流为Imn1=Imp5+mtc*Imp6~7=K1*Imp2+mtc*K2*Imp2,In step B2, the current flowing through the MOS transistor MN1 in the first current branch is Imn1=Imp5+mtc*Imp6~7=K1*Imp2+mtc*K2*Imp2,

其中Imp5表示流过MOS管MP5的电流,Imp6~7表示流过MOS管MP6与MOS管MP7的电流,Imp2表示流过MOS管MP2的电流,mtc代表与MOS管MN1导通连接的MOS管MP7或MOS管MP6的晶体管个数,即在控制字TC1<n:1>控制作用下,相应位的MOS管MP6闭合导通的个数),m≥mtc≥0,流过MOS管MN5、MN6的电流温度系数为K1+mtc*K2;Imp5 represents the current flowing through the MOS transistor MP5, Imp6-7 represent the current flowing through the MOS transistor MP6 and the MOS transistor MP7, Imp2 represents the current flowing through the MOS transistor MP2, and mtc represents the MOS transistor MP7 connected to the MOS transistor MN1. Or the number of transistors of the MOS tube MP6, that is, under the control of the control word TC1<n:1>, the number of the MOS tube MP6 of the corresponding bit is closed and turned on), m≥mtc≥0, flowing through the MOS tubes MN5 and MN6 The current temperature coefficient is K1+mtc*K2;

步骤B3中,MOS管MN5、MN6通过其栅极的控制电压VBN1、VBN2进行控制,控制电压VBN1、VBN2为零温度系数电压;In step B3, the MOS transistors MN5 and MN6 are controlled by the control voltages VBN1 and VBN2 of their gates, and the control voltages VBN1 and VBN2 are zero temperature coefficient voltages;

步骤B3中,通过控制字TC1<m:1>对相应的MOS管MP24进行控制,实现流过MOS管MN5、MN6的电流大小的调节,满足电流补偿要求。In step B3, the corresponding MOS transistor MP24 is controlled by the control word TC1<m:1>, so as to realize the adjustment of the magnitude of the current flowing through the MOS transistors MN5 and MN6 to meet the current compensation requirement.

采用本发明上述结构可以达到如下有益效果:该温度系数可调的电流产生电路中,包含有电压转电流模块、温度系数调节模块,电压转电流模块将带隙基准电压源的电压转换为具有一定温度系数的第一温度系数电流,并对第一温度系数电流的电流大小进行一次调节,温度系数调节模块对一次调节电流的温度系数进行再次调节,从而扩大了电流温度系数调节范围,以满足宽偏置电流温度系数的应用需求。温度系数调节模块具有电流大小补偿功能,能够对温度系数调节后的电流大小进行补偿,避免了因电流温度系数变化而导致电流大小的准确性降低的问题出现,提高了该电流产生电路产生的电流大小的准确性。The above structure of the present invention can achieve the following beneficial effects: the current generation circuit with adjustable temperature coefficient includes a voltage-to-current module and a temperature-coefficient adjustment module, and the voltage-to-current module converts the voltage of the bandgap reference voltage source into a voltage with a certain The first temperature coefficient current of the temperature coefficient, and the current size of the first temperature coefficient current is adjusted once, and the temperature coefficient adjustment module adjusts the temperature coefficient of the first adjustment current again, thereby expanding the current temperature coefficient adjustment range to meet the wide Application requirements for bias current temperature coefficient. The temperature coefficient adjustment module has the function of current size compensation, which can compensate the current size after the temperature coefficient adjustment, avoiding the problem of reducing the accuracy of the current size due to the change of the current temperature coefficient, and improving the current generated by the current generation circuit. size accuracy.

附图说明Description of drawings

图1为本发明的电路结构框图;Fig. 1 is the circuit structure block diagram of the present invention;

图2为本发明的电路原理图;Fig. 2 is the circuit schematic diagram of the present invention;

图3为本发明的N个MOS管MP3和N个MOS管MP4连接的阵列结构示意图;3 is a schematic diagram of an array structure in which N MOS transistors MP3 and N MOS transistors MP4 are connected according to the present invention;

图4为通过本发明电流温度系数调节模块调节获得的电流温度系数仿真图。FIG. 4 is a simulation diagram of the current temperature coefficient obtained by adjusting the current temperature coefficient adjustment module of the present invention.

具体实施方式Detailed ways

为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、装置、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。In order to make those skilled in the art better understand the solutions of the present invention, the technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention. It should be noted that the The terms "comprising" and "having" and any variations thereof in the description and claims and the above-mentioned drawings are intended to cover non-exclusive inclusion, for example, a process, method, apparatus, product comprising a series of steps or units Or apparatus is not necessarily limited to those steps or units expressly listed, but may include other steps or units not expressly listed or inherent to the process, method, product or apparatus.

针对现有技术中存在的偏置电流温度系数调节电路的可调节范围较小的问题,以及电流温度系数变化导致电流大小的准确性降低的问题,本发明提供了一种温度系数可调电流产生电路的具体实施例。In view of the problems in the prior art that the adjustable range of the bias current temperature coefficient adjustment circuit is small, and the problem that the accuracy of the current size is reduced due to the change of the current temperature coefficient, the present invention provides a temperature coefficient adjustable current generator. Specific examples of circuits.

见图1,一种温度系数可调的电流产生电路,其包括电压转电流模块1、温度系数调节模块2,电压转电流模块1一端连接带隙基准电压源,电压转电流模块1另一端连接温度系数调节模块一端,温度系数调节模块2另一端为电流输出端;电压转电流模块1用于将带隙基准电压源的电压转换为第一温度系数电流,并对第一温度系数电流的大小进行一次调节,获得一次调节电流;温度系数调节模块2用于对一次调节电流的温度系数进行调节,并对一次调节电流的大小进行补偿;温度系数调节模块2另一端的电流输出端IPTAT输出温度系数调节后的以及电流大小补偿后的第二温度系数电流。Referring to Figure 1, a current generation circuit with adjustable temperature coefficient includes a voltage-to-current module 1 and a temperature-coefficient adjustment module 2. One end of the voltage-to-current module 1 is connected to a bandgap reference voltage source, and the other end of the voltage-to-current module 1 is connected to One end of the temperature coefficient adjustment module, the other end of the temperature coefficient adjustment module 2 is the current output terminal; the voltage to current module 1 is used to convert the voltage of the bandgap reference voltage source into the first temperature coefficient current, and the magnitude of the first temperature coefficient current is determined. Perform one adjustment to obtain the primary adjustment current; the temperature coefficient adjustment module 2 is used to adjust the temperature coefficient of the primary adjustment current and compensate the size of the primary adjustment current; the current output terminal IPTAT at the other end of the temperature coefficient adjustment module 2 outputs the temperature The coefficient-adjusted and current magnitude-compensated second temperature coefficient current.

见图2,电压转电流模块1包括运算放大器11、第一开关控制单元12、电流温度系数调节单元13,运算放大器11的正向输入端连接带隙基准电压源,带隙基准电压源的电压为零温度系数电压,运算放大器11的反向输入端分别连接第一开关控制单元12一端、电流温度系数调节单元13一端,第一开关控制单元12另一端、电流温度系数调节单元13另一端均连接温度系数调节模块2一端,运算放大器11、电流温度系数调节单元13用于产生与温度系数相关的第一温度系数电流,第一开关控制单元12用于对第一温度系数电流的电流大小进行一次调节,第一开关控制单元12包括若干开关,开关分别通过控制电压VBP、控制字TA<n:1>控制。Referring to Fig. 2, the voltage-to-current module 1 includes an operational amplifier 11, a first switch control unit 12, and a current temperature coefficient adjustment unit 13. The forward input end of the operational amplifier 11 is connected to a bandgap reference voltage source, and the voltage of the bandgap reference voltage source is A zero temperature coefficient voltage, the inverting input terminal of the operational amplifier 11 is respectively connected to one end of the first switch control unit 12 and one end of the current temperature coefficient adjustment unit 13, and the other end of the first switch control unit 12 and the other end of the current temperature coefficient adjustment unit 13 are both connected. One end of the temperature coefficient adjustment module 2 is connected, the operational amplifier 11 and the current temperature coefficient adjustment unit 13 are used to generate the first temperature coefficient current related to the temperature coefficient, and the first switch control unit 12 is used to control the current size of the first temperature coefficient current. For one adjustment, the first switch control unit 12 includes a plurality of switches, and the switches are respectively controlled by the control voltage VBP and the control word TA<n:1>.

电压转电流模块2的具体电路结构为:第一开关控制单元12包括N个MOS管MP3和N个MOS管MP4,其中,N为正整数,N个MOS管MP3和N个MOS管MP4连接的电路结构见图3,电流温度系数调节单元包括MOS管MP1、电阻R1,运算放大器的输出端分别连接电阻R1一端、MOS管MP1漏极,MOS管MP1源极连接MOS管MP2漏极、栅极及温度系数调节模块一端,MOS管MP2源极分别连接N个MOS管MP4源极、温度系数调节模块,MOS管MP4的栅极均通过控制电压VBP控制,N个MOS管MP4漏极与N个MOS管MP3源极一一对应连接,MOS管MP3的栅极通过控制字TA<n:1>控制,MOS管MP3漏极均连接MOS管MP2、MP5栅极;本实施例中,MOS管MP1~MP4均为PMOS管。The specific circuit structure of the voltage-to-current module 2 is as follows: the first switch control unit 12 includes N MOS transistors MP3 and N MOS transistors MP4, wherein N is a positive integer, and the N MOS transistors MP3 and N MOS transistors MP4 are connected to each other. The circuit structure is shown in Figure 3. The current temperature coefficient adjustment unit includes a MOS transistor MP1 and a resistor R1. The output end of the operational amplifier is respectively connected to one end of the resistor R1 and the drain of the MOS transistor MP1. The source of the MOS transistor MP1 is connected to the drain and gate of the MOS transistor MP2. And one end of the temperature coefficient adjustment module, the source of the MOS transistor MP2 is connected to the source of the N MOS transistors MP4 and the temperature coefficient adjustment module, respectively. The gates of the MOS transistors MP4 are controlled by the control voltage VBP, and the drains of the N MOS transistors MP4 The sources of the MOS transistors MP3 are connected one-to-one, the gate of the MOS transistor MP3 is controlled by the control word TA<n:1>, and the drains of the MOS transistors MP3 are connected to the gates of the MOS transistors MP2 and MP5; in this embodiment, the MOS transistor MP1 ~MP4 are all PMOS tubes.

应用上述电压转电流模块将带隙基准电压源的零温度系数电压转换为电流的步骤包括:A1、带隙基准电压源产生的零温度系数电压经运算放大器11放大,获得放大电流;带隙基准电压源由带隙基准电压电路产生。The step of converting the zero temperature coefficient voltage of the bandgap reference voltage source into current by applying the above voltage-to-current module includes: A1, the zero temperature coefficient voltage generated by the bandgap reference voltage source is amplified by the operational amplifier 11 to obtain the amplified current; The voltage source is generated by a bandgap reference circuit.

A2、放大电流经电流温度系数调节单元13转换,获得第一温度系数电流;A2. The amplified current is converted by the current temperature coefficient adjustment unit 13 to obtain the first temperature coefficient current;

A3、通过控制电压VBP、控制字TA<n:1>对第一开关控制单元12中的开关进行控制,实现第一温度系数电流的电流大小的一次调节,获得一次调节电流。A3. The switches in the first switch control unit 12 are controlled by the control voltage VBP and the control word TA<n:1> to realize the primary adjustment of the current size of the first temperature coefficient current and obtain the primary adjustment current.

零温度系数电压经上述步骤A1、A2、A3产生具有一定温度系数电流的具体方式为:带隙基准源产生的零温度系数电压,经过由电流温度系数调节单元中的MOS管MP1和运算放大器OPA以及电阻R1,产生一个与电阻R1温度系数相关的第一温度系数电流,电阻R1为正温度系数电阻,因此产生的第一温度系数电流具有正温度系数。The specific way for the zero temperature coefficient voltage to generate a current with a certain temperature coefficient through the above steps A1, A2 and A3 is: the zero temperature coefficient voltage generated by the bandgap reference source passes through the MOS tube MP1 and the operational amplifier OPA in the current temperature coefficient adjustment unit. and the resistor R1, which generates a first temperature coefficient current related to the temperature coefficient of the resistor R1. The resistor R1 is a positive temperature coefficient resistor, so the generated first temperature coefficient current has a positive temperature coefficient.

第一开关控制单元12中的N个MOS管MP4(在图2中用MP4<n:1>表示)由控制电源VBP控制,起到对第一温度系数电流的大小进行调节的作用,由于Imp2+Imp4 or Imp3=Imp1+Ir1,其中,Imp2表示MOS管MP2的电流,Imp4表示MOS管MP4的电流,Imp3表示MOS管MP3的电流,Imp1表示MOS管MP1的电流,Ir1表示电阻R1的电流,因此通过调节控制字TA<n:1>即可实现N个MOS管MP3(在图2中用MP3<n:1>表示)、MP4所在支路的电流导通或关闭的调节,从而实现电压转电流模块输出电流大小的一次调节,即当控制字中的某一位n=0,TA<n:1>=0时,相对应位的MOS管MP3闭合,相对应位的MOS管MP4电流通过MOS管MP3接入MOS管MP1所在支路,起到与MOS管MP2电流相加的作用,当控制字中的某一位TA=1,TA<n:1>=1时,MOS管MP3关断,MOS管MP4到MOS管MP1支路上电流通过MOS管MP3关断,因此该电压转电流模块中可以调节电压转电流模块的输出正温度系数电流,该正温度系数电流由电阻R1确定,电流大小由MOS管MP5与MOS管MP2的尺寸比确定。The N MOS transistors MP4 (represented by MP4<n:1> in FIG. 2 ) in the first switch control unit 12 are controlled by the control power supply VBP, and play the role of adjusting the magnitude of the first temperature coefficient current. Since Imp2 +Imp4 or Imp3=Imp1+Ir1, where Imp2 represents the current of the MOS transistor MP2, Imp4 represents the current of the MOS transistor MP4, Imp3 represents the current of the MOS transistor MP3, Imp1 represents the current of the MOS transistor MP1, Ir1 represents the current of the resistor R1, Therefore, by adjusting the control word TA<n:1>, the N MOS transistors MP3 (represented by MP3<n:1> in Figure 2) and the current of the branch where MP4 are located can be adjusted to be turned on or off, so as to realize the voltage One-time adjustment of the output current of the current transfer module, that is, when a certain bit in the control word is n=0 and TA<n:1>=0, the MOS tube MP3 of the corresponding bit is closed, and the current of the MOS tube MP4 of the corresponding bit is closed. The MOS transistor MP3 is connected to the branch where the MOS transistor MP1 is located, which plays the role of adding the current of the MOS transistor MP2. When a certain bit in the control word TA=1, TA<n:1>=1, the MOS transistor MP3 Turn off, the current on the branch from MOS tube MP4 to MOS tube MP1 is turned off through MOS tube MP3, so the voltage-to-current module can adjust the output positive temperature coefficient current of the voltage-to-current module, and the positive temperature coefficient current is determined by the resistor R1, The magnitude of the current is determined by the size ratio of the MOS transistor MP5 and the MOS transistor MP2.

温度系数调节模块2包括第一电流镜21~第四电流镜24、第二开关控制单元25、第三开关控制单元26,第一电流镜21用于将电源转电流模块输出的第一温度系数电流按比例K1、K2进行复制,第二电流镜22、第三电流镜23用于对经过第一电流镜21的电流按比例K5进行复制,第一电流镜21、第二开关控制单元、第二电流镜一端顺次连接构成第一电流支路,第三电流镜一端、第三开关控制单元、第四电流镜一端顺次连接构成第二电流支路,第二电流镜另一端与第三电流镜另一端连接,通过第二开关控制单元对第一电流支路的导通或关闭进行控制,通过第三开关控制单元对第二电流支路的导通或关闭进行控制,第四电流镜另一端为电流输出端,用于输出温度系数调节后的以及电流大小补偿后的第二温度系数电流,第二开关控制单元中的若干开关通过控制字TC1<n:1>控制,第三开关单元中的若干开关分别通过控制字TC1<n:1>、控制电压VBN1、VBN2控制,通过控制字TC1<n:1>对第二开关控制单元中开关的控制,实现一次调节电流的温度系数调节,通过控制字TC1<n:1>、控制电压VBN1、VBN2对第三开关单元中的开关的控制,实现一次调节电流的电流大小补偿。The temperature coefficient adjustment module 2 includes a first current mirror 21 to a fourth current mirror 24, a second switch control unit 25, and a third switch control unit 26. The first current mirror 21 is used to convert the power supply to the first temperature coefficient output by the current module The current is replicated in proportions K1 and K2, the second current mirror 22 and the third current mirror 23 are used to replicate the current passing through the first current mirror 21 in proportion to K5, the first current mirror 21, the second switch control unit, the One end of the two current mirrors are connected in sequence to form a first current branch, one end of the third current mirror, one end of the third switch control unit, and one end of the fourth current mirror are connected in sequence to form a second current branch, and the other end of the second current mirror is connected to the third current branch. The other end of the current mirror is connected, and the second switch control unit controls the turn-on or turn-off of the first current branch, the third switch control unit controls the turn-on or turn-off of the second current branch, and the fourth current mirror The other end is the current output terminal, which is used to output the second temperature coefficient current after the temperature coefficient adjustment and the current magnitude compensation. Several switches in the second switch control unit are controlled by the control word TC1<n:1>, and the third switch Several switches in the unit are respectively controlled by the control word TC1<n:1>, the control voltages VBN1 and VBN2, and the temperature coefficient of the current can be adjusted once through the control of the switches in the second switch control unit by the control word TC1<n:1>. Adjustment, through the control of the switch in the third switch unit by the control word TC1<n:1>, the control voltages VBN1 and VBN2, the current size compensation of the primary adjustment current is realized.

温度系数调节模块的具体电路结构为:第一电流镜包括MOS管MP2、MOS管MP5、MP7,第二电流镜支路包括MOS管MN1~MN4,第三电流镜支路包括MOS管MP8~MP11,第四电流镜支路包括MOS管MN7~MN10,第二开关控制单元包括N个MOS管MP6,第三开关控制单元包括M个MOS管MP24、M个MOS管MN5、M个MOS管MN6,其中,M为正整数,MOS管MP5源极分别连接MOS管MP2、MP4、MP7、MP9、MP11源极,MOS管MP5漏极分别连接MOS管MN1漏极、栅极以及MOS管MN3栅极,MOS管MN1源极分别连接MOS管MN2栅极、源极以及MOS管MN4栅极,MOS管MP9漏极分别连接MOS管MP9栅极、MOS管MP11栅极、MOS管MP8漏极,MOS管MP8栅极分别连接MOS管MP8源极、MOS管MP10栅极、MOS管MN3源极,MOS管MN3漏极连接MOS管MN4漏极,MOS管MN2源极分别连接MOS管MN4源极、MOS管MN6、MN8、MN10源极,MOS管MP11漏极连接MOS管MP10漏极,MOS管MP10源极连接M个MOS管MP24源极、MOS管MN7源极、栅极以及MOS管MN9栅极,MOS管MP24漏极依次串联MOS管MN5、MN6,M个MOS管MP6栅极通过控制字TC1<n:1>控制,MOS管MP24栅极通过控制字TC1<n:1>控制,M个MOS管MN5通过控制电压VBN1控制,M个MOS管MN6通过控制电源VBN2控制,MOS管MN7漏极分别连接MOS管MN8漏极、栅极以及MOS管MN10栅极,MOS管MN10漏极连接MOS管MN9漏极,MOS管MN9源极为电流输出端IPTAT。The specific circuit structure of the temperature coefficient adjustment module is as follows: the first current mirror includes MOS transistors MP2, MOS transistors MP5 and MP7, the second current mirror branch includes MOS transistors MN1-MN4, and the third current mirror branch includes MOS transistors MP8-MP11 , the fourth current mirror branch includes MOS transistors MN7-MN10, the second switch control unit includes N MOS transistors MP6, and the third switch control unit includes M MOS transistors MP24, M MOS transistors MN5, and M MOS transistors MN6. Among them, M is a positive integer, the source of MOS tube MP5 is connected to the source of MOS tube MP2, MP4, MP7, MP9, MP11 respectively, the drain of MOS tube MP5 is respectively connected to the drain and gate of MOS tube MN1 and the gate of MOS tube MN3, The source of MOS transistor MN1 is respectively connected to the gate of MOS transistor MN2, the source and the gate of MOS transistor MN4, the drain of MOS transistor MP9 is respectively connected to the gate of MOS transistor MP9, the gate of MOS transistor MP11, the drain of MOS transistor MP8, and the drain of MOS transistor MP8 The gate is connected to the source of MOS tube MP8, the gate of MOS tube MP10, the source of MOS tube MN3, the drain of MOS tube MN3 is connected to the drain of MOS tube MN4, and the source of MOS tube MN2 is respectively connected to the source of MOS tube MN4 and the source of MOS tube MN6. , MN8, MN10 source, MOS tube MP11 drain is connected to MOS tube MP10 drain, MOS tube MP10 source is connected to M MOS tube MP24 source, MOS tube MN7 source, gate and MOS tube MN9 gate, MOS tube The drains of MP24 are connected in series with the MOS transistors MN5 and MN6, the gates of the M MOS transistors MP6 are controlled by the control word TC1<n:1>, the gates of the MOS transistors MP24 are controlled by the control word TC1<n:1>, and the M MOS transistors MN5 Controlled by the control voltage VBN1, M MOS transistors MN6 are controlled by the control power supply VBN2, the drain of the MOS transistor MN7 is respectively connected to the drain and gate of the MOS transistor MN8 and the gate of the MOS transistor MN10, and the drain of the MOS transistor MN10 is connected to the drain of the MOS transistor MN9. , the source of MOS tube MN9 is the current output terminal IPTAT.

本实施例中,MOS管MP5~MP11、MOS管MP24均为PMOS管,MOS管MN1~MN10均为NMOS管。MOS管MP5与MOS管MP2的尺寸比为K1,经过MOS管MP5的电流与MOS管MP2的电流之比为K1,即Imp5=K1*Imp2;MOS管MP7与MOS管MP2的尺寸比为K1,经过MOS管MP7的电流与MOS管MP2的电流之比为K2,即Imp7=K2*Imp2,其中,MOS管MP7的电流Imp7,MOS管MP2的电流为Imp2。In this embodiment, the MOS transistors MP5 to MP11 and the MOS transistor MP24 are all PMOS transistors, and the MOS transistors MN1 to MN10 are all NMOS transistors. The size ratio of the MOS tube MP5 and the MOS tube MP2 is K1, and the ratio of the current through the MOS tube MP5 to the current of the MOS tube MP2 is K1, that is, Imp5=K1*Imp2; the size ratio of the MOS tube MP7 and the MOS tube MP2 is K1, The ratio of the current passing through the MOS transistor MP7 to the current of the MOS transistor MP2 is K2, that is, Imp7=K2*Imp2, wherein the current Imp7 of the MOS transistor MP7 and the current of the MOS transistor MP2 are Imp2.

应用了上述温度系数调节模块对一次调节电流的温度系数进行调节的步骤包括:B1、通过第二开关控制单元控制,使第一电流支路导通;The step of applying the above-mentioned temperature coefficient adjustment module to adjust the temperature coefficient of the primary adjustment current includes: B1, controlling the second switch control unit to make the first current branch conduct;

B2、通过第一电流镜对第一正温度系数电流按比例K1、K2进行复制;B2. Copy the first positive temperature coefficient current in proportion to K1 and K2 through the first current mirror;

B3、通过控制字TC1<m:1>及控制电压VBN1、VBN2对第三开关控制单元中的开关进行控制,实现温度系数调节后的电流大小的补偿;B3. Control the switch in the third switch control unit through the control word TC1<m:1> and the control voltages VBN1 and VBN2, so as to realize the compensation of the current size after the temperature coefficient adjustment;

B4、通过第四电流镜对补偿后的电流进行复制,在电流输出端输出第二温度系数电流。B4. Copy the compensated current through the fourth current mirror, and output the second temperature coefficient current at the current output terminal.

经上述步骤B1~B4产生具有一定温度系数的电流的具体方式:通过第一电流镜中的MOS管MP5、MP7对流经MOS管MP2的电流分别按比例K1、K2进行复制;流过第一电流镜中MOS管MP2的电流为电压转电流模块转换获得的一次调节电流,一次调节电流的温度系数为TC1,即Imp2=TC1*T,其中,T表示温度。因此MOS管MN1所在支路上流过的电流为:The specific method of generating a current with a certain temperature coefficient through the above steps B1 to B4: the current flowing through the MOS transistor MP2 is copied in proportion to K1 and K2 through the MOS transistors MP5 and MP7 in the first current mirror; The current of the MOS transistor MP2 in the mirror is the primary regulated current converted by the voltage-to-current module, and the temperature coefficient of the primary regulated current is TC1, that is, Imp2=TC1*T, where T represents the temperature. Therefore, the current flowing through the branch where the MOS transistor MN1 is located is:

Imn1=Imp5+mtc*Imp6~7=K1*Imp2+mtc*K2*Imp2,Imn1=Imp5+mtc*Imp6~7=K1*Imp2+mtc*K2*Imp2,

其中Imp5表示流过MOS管MP5的电流,Imp6~7表示流过MOS管MP6与MOS管MP7的电流,Imp2表示流过MOS管MP2的电流,mtc代表与MOS管MN1导通连接的MOS管MP7或MOS管MP6的晶体管个数,即在控制字TC1<n:1>控制作用下,相应位的MOS管MP6闭合导通的个数),m≥mtc≥0;因此,流过MOS管MN5、MN6的电流温度系数为K1+mtc*K2;Imp5 represents the current flowing through the MOS transistor MP5, Imp6-7 represent the current flowing through the MOS transistor MP6 and the MOS transistor MP7, Imp2 represents the current flowing through the MOS transistor MP2, and mtc represents the MOS transistor MP7 connected to the MOS transistor MN1. Or the number of transistors of the MOS tube MP6, that is, under the control of the control word TC1<n:1>, the number of the MOS tube MP6 of the corresponding bit is closed and turned on), m≥mtc≥0; therefore, the flow through the MOS tube MN5 , The current temperature coefficient of MN6 is K1+mtc*K2;

步骤B3中,MOS管MN5、MN6通过其栅极的控制电压VBN1、VBN2进行控制,控制电压VBN1、VBN2为零温度系数电压。通过控制字TC1<m:1>对相应的MOS管MP24进行控制,实现流过MOS管MN5、MN6的电流大小的调节,满足电流补偿要求。即当某一位m=0,TC1=0时,相对应位的MOS管MP6闭合,相对应的MOS管MP7电流通过MOS管MP6接入MOS管MN1支路电流,起到与MOS管MP5电流相加作用,当某一位m=1,TC1=1时,相对应位的MOS管MP6闭合,相对应的MOS管MP7电流通过MOS管MP6关断,使得mtc位的TC1置0,即可得到一个相应K1+mtc*K2温度系数的电流,从而实现电流温度系数的调节,扩大了电流温度系数的调节范围。In step B3, the MOS transistors MN5 and MN6 are controlled by the control voltages VBN1 and VBN2 on their gates, and the control voltages VBN1 and VBN2 are zero temperature coefficient voltages. The corresponding MOS transistor MP24 is controlled by the control word TC1<m:1>, so as to realize the adjustment of the current flowing through the MOS transistors MN5 and MN6 to meet the current compensation requirements. That is, when a certain bit m=0 and TC1=0, the MOS tube MP6 of the corresponding bit is closed, and the current of the corresponding MOS tube MP7 is connected to the branch current of the MOS tube MN1 through the MOS tube MP6, which acts as the current of the MOS tube MP5. Additive action, when a certain bit m=1, TC1=1, the MOS tube MP6 of the corresponding bit is closed, and the corresponding MOS tube MP7 current is turned off through the MOS tube MP6, so that the TC1 of the mtc bit is set to 0, then you can A current corresponding to the temperature coefficient of K1+mtc*K2 is obtained, thereby realizing the adjustment of the current temperature coefficient and expanding the adjustment range of the current temperature coefficient.

但是由上式也可以得到流过MOS管MN5、MN6的电流大小也随之变化,因此经过MOS管MN1~MN4以及MOS管MP8~MP11的等尺寸比例的第二电流镜、第三电流镜等比例复制通过MOS管MN1及MN2的电流Imn1~2。对于电路分析可得:However, it can also be obtained from the above formula that the magnitude of the current flowing through the MOS transistors MN5 and MN6 also changes accordingly. Therefore, the second current mirror and the third current mirror of equal size and proportion pass through the MOS transistors MN1 to MN4 and the MOS transistors MP8 to MP11. The proportions replicate the currents Imn1-2 passing through the MOS transistors MN1 and MN2. For circuit analysis we get:

mtc*Imp24 or Imn5~6+Imn7~8=Imn10~11=Imp8~9=Imn3~4=Imn1~2;mtc*Imp24 or Imn5~6+Imn7~8=Imn10~11=Imp8~9=Imn3~4=Imn1~2;

其中,Imp24表示流过MOS管MP24的电流,Imn5~6表示流过MOS管MN5、MN6的电流,Imn7~8表示流过MOS管MN7、MN8的电流,Imn10~11表示流过MOS管MN10、MN11的电流,Imp8~9表示流过MOS管MP8、MP9的电流,Imn3~4表示流过MOS管MN3、MN4的电流,Imn1~2表示流过MOS管MN1、MN2的电流。由于控制MOS管MP24的控制字与控制MOS管MP6温度系数调节的控制字相等,所以:Among them, Imp24 represents the current flowing through the MOS transistor MP24, Imn5-6 represents the current flowing through the MOS transistors MN5 and MN6, Imn7-8 represents the current flowing through the MOS transistor MN7 and MN8, and Imn10-11 represents the current flowing through the MOS transistors MN10 and MN8. For the current of MN11, Imp8-9 represent the current flowing through the MOS transistors MP8 and MP9, Imn3-4 represent the current flowing through the MOS transistor MN3 and MN4, and Imn1-2 represent the current flowing through the MOS transistor MN1 and MN2. Since the control word that controls the MOS transistor MP24 is equal to the control word that controls the temperature coefficient adjustment of the MOS transistor MP6, so:

Imn7~8=Imn1~2-mtc*Imp24 or Imn5~6=Imp5+mtc*Imp6~7-mtc*Imp24 orImn5~6;Imn7~8=Imn1~2-mtc*Imp24 or Imn5~6=Imp5+mtc*Imp6~7-mtc*Imp24 or Imn5~6;

而流过MOS管MN5、MN6的电流通过其栅极电压VBN1和VBN2控制,该电压为一个零温度系数电压,所以流过MOS管MP24或MOS管MN5、MN6电流的温度系数不变,但是大小仍为基础的电流Imp5,但温度系数仍为K1+mtc*K2,从而在实现电流温度系数调节的同时,实现了电流大小补偿,避免了因电路中温度变化或电流温度系数变化而导致的电流大小降低的问题出现。因此该温度系数调节模块可以输出一个温度系数为K1+mtc*K2的正温度系数电流,其常温工作情况下,无论如何调节电流温度系数大小,其输出的第二温度系数电流的电流大小即流过MOS管MN7~MN8的电流大小均为设定的Imp5值,因此,该电流温度系数补偿模块中第三开关的设置提高了电流产生电路输出电流的精度,以便于为后续其它电路模块提供电流大小稳定的第二温度系数电流。The current flowing through the MOS transistors MN5 and MN6 is controlled by their gate voltages VBN1 and VBN2, which is a zero temperature coefficient voltage, so the temperature coefficient of the current flowing through the MOS transistor MP24 or the MOS transistor MN5 and MN6 remains unchanged, but the magnitude The current Imp5 is still the basis, but the temperature coefficient is still K1+mtc*K2, so that while the current temperature coefficient adjustment is realized, the current size compensation is realized, and the current caused by the temperature change or current temperature coefficient change in the circuit is avoided. The problem of size reduction occurs. Therefore, the temperature coefficient adjustment module can output a positive temperature coefficient current with a temperature coefficient of K1+mtc*K2. In the case of normal temperature operation, no matter how the current temperature coefficient is adjusted, the current size of the output second temperature coefficient current is the flow rate. The magnitudes of the currents passing through the MOS transistors MN7-MN8 are all the set Imp5 value. Therefore, the setting of the third switch in the current temperature coefficient compensation module improves the accuracy of the output current of the current generation circuit, so as to provide current for other subsequent circuit modules. A stable second temperature coefficient current.

综上,本申请电流产生电路针对电路中PVT变化,通过电压转电流模块预先对电流温度系数进行补偿,即产生一个第一温度系数电流,该第一温度系数电流为正温度系数电流,并对第一温度系数电流的电流大小进行一次调节,再通过电流温度系数调节模块对一次调节电流的电流温度系数进行二次补偿,获得较大的电流温度系数,以满足更高温度电路要求,并对电流温度系数调节后的电流大小进行二次调节(补偿),提供一个更大的电流以避免在工作温度范围内电路增益或线性度带来的电流大小偏差。To sum up, the current generation circuit of the present application compensates the current temperature coefficient in advance through the voltage-to-current module for the PVT change in the circuit, that is, generates a first temperature coefficient current, and the first temperature coefficient current is a positive temperature coefficient current, and The current size of the first temperature coefficient current is adjusted once, and then the current temperature coefficient of the primary adjustment current is compensated twice through the current temperature coefficient adjustment module to obtain a larger current temperature coefficient to meet the requirements of higher temperature circuits, and The current size after the current temperature coefficient adjustment is adjusted (compensated) twice to provide a larger current to avoid the current size deviation caused by the circuit gain or linearity within the operating temperature range.

图4表示该电流产生电路仿真出来的电流温度系数调节功能。图4中横轴表示电路的温度,纵轴表示电流大小,控制mta一致,可以得到在相同电流下,输出电流温度系数的变化,即电路工作温度范围temp在-40℃~125℃范围内,每调节mtc,可以得到电流温度系数大小从337nA/℃到640nA/℃变化,并且在标识V2处,即芯片正常工作温度下,可明显看出每条电流线在该处保持电流大小一致,因为竖轴为电流,横轴为温度,因此每调节mtc,并不影响输出电流大小,即可保证电流大小不变,电流温度系数变化,因此在满足芯片宽温度范围要求的同时,确保了电流大小的稳定。Figure 4 shows the current temperature coefficient adjustment function simulated by the current generation circuit. In Figure 4, the horizontal axis represents the temperature of the circuit, the vertical axis represents the current size, and the control mta is consistent, the change of the temperature coefficient of the output current under the same current can be obtained, that is, the circuit operating temperature range temp is in the range of -40℃~125℃, Each time mtc is adjusted, the current temperature coefficient can be changed from 337nA/°C to 640nA/°C, and at the mark V2, that is, under the normal operating temperature of the chip, it can be clearly seen that each current line maintains the same current size there, because The vertical axis is the current, and the horizontal axis is the temperature. Therefore, every time mtc is adjusted, the output current will not be affected, the current will remain unchanged, and the current temperature coefficient will change. of stability.

以上的仅是本申请的优选实施方式,本发明不限于以上实施例。可以理解,本领域技术人员在不脱离发明的精神和构思的前提下直接导出或联想到的其他改进和变化,均应认为包含在发明的保护范围之内。The above are only preferred embodiments of the present application, and the present invention is not limited to the above embodiments. It can be understood that other improvements and changes directly derived or thought of by those skilled in the art without departing from the spirit and concept of the invention should be considered to be included in the protection scope of the invention.

Claims (10)

1.一种温度系数可调的电流产生电路,其包括电压转电流模块、温度系数调节模块,所述电压转电流模块一端连接带隙基准电压源,所述电压转电流模块另一端连接所述温度系数调节模块一端,所述温度系数调节模块另一端为电流输出端;1. A current generation circuit with an adjustable temperature coefficient, comprising a voltage-to-current module and a temperature-coefficient adjustment module, one end of the voltage-to-current module is connected to a bandgap reference voltage source, and the other end of the voltage-to-current module is connected to the One end of the temperature coefficient adjustment module, and the other end of the temperature coefficient adjustment module is the current output end; 所述电压转电流模块用于将所述带隙基准电压源的电压转换为第一温度系数电流,并对所述第一温度系数电流的大小进行一次调节,获得一次调节电流;The voltage-to-current module is configured to convert the voltage of the bandgap reference voltage source into a first temperature coefficient current, and adjust the magnitude of the first temperature coefficient current once to obtain a primary adjustment current; 所述温度系数调节模块用于对所述一次调节电流的温度系数进行调节,并对所述一次调节电流的大小进行补偿;The temperature coefficient adjustment module is used to adjust the temperature coefficient of the primary adjustment current, and to compensate the size of the primary adjustment current; 所述温度系数调节模块另一端输出温度系数调节后的以及电流大小补偿后的第二温度系数电流。The other end of the temperature coefficient adjustment module outputs the second temperature coefficient current after the temperature coefficient adjustment and current magnitude compensation. 2.根据权利要求1所述的温度系数可调的电流产生电路,其特征在于,所述电压转电流模块包括运算放大器、第一开关控制单元、电流温度系数调节单元,所述运算放大器的正向输入端连接所述带隙基准电压源,所述带隙基准电压源的电压为零温度系数电压,所述运算放大器的反向输入端分别连接所述第一开关控制单元一端、电流温度系数调节单元一端,所述第一开关控制单元另一端、电流温度系数调节单元另一端均连接所述温度系数调节模块一端,所述运算放大器、电流温度系数调节单元用于产生与温度系数相关的第一温度系数电流,所述第一开关控制单元用于对所述第一温度系数电流的电流大小进行一次调节,所述第一开关控制单元包括若干开关,所述开关分别通过控制电压VBP、控制字TA<n:1>控制。2 . The current generation circuit with adjustable temperature coefficient according to claim 1 , wherein the voltage-to-current module comprises an operational amplifier, a first switch control unit, and a current temperature coefficient adjustment unit, and a positive voltage of the operational amplifier. The bandgap reference voltage source is connected to the input end, the voltage of the bandgap reference voltage source is zero temperature coefficient voltage, and the reverse input end of the operational amplifier is respectively connected to one end of the first switch control unit, the current temperature coefficient One end of the adjustment unit, the other end of the first switch control unit, and the other end of the current temperature coefficient adjustment unit are all connected to one end of the temperature coefficient adjustment module, and the operational amplifier and the current temperature coefficient adjustment unit are used to generate the first temperature coefficient related A temperature coefficient current, the first switch control unit is used to adjust the current size of the first temperature coefficient current once, the first switch control unit includes a plurality of switches, the switches are respectively controlled by the control voltage VBP, Word TA<n:1> controls. 3.根据权利要求2所述的温度系数可调的电流产生电路,其特征在于,所述第一开关控制单元包括N个MOS管MP3和N个MOS管MP4,其中,N为正整数,所述电流温度系数调节单元包括MOS管MP1、电阻R1,所述运算放大器的输出端分别连接所述电阻R1一端、MOS管MP1栅极,所述MOS管MP1漏极连接所述温度系数调节模块中的MOS管MP2漏极、栅极,所述MOS管MP2源极分别连接N个所述MOS管MP3源极、温度系数调节模块中的MOS管MP5栅极,N个所述MOS管MP4的栅极均通过控制电压VBP控制,N个所述MOS管MP4漏极与N个MOS管MP3漏极一一对应连接,所述MOS管MP3的栅极通过所述控制字TA<n:1>控制,所述MOS管MP4源极连接MOS管MP5、温度系数调节模块中的MOS管MP7、MP9、MP11源极。3. The current generating circuit with adjustable temperature coefficient according to claim 2, wherein the first switch control unit comprises N MOS transistors MP3 and N MOS transistors MP4, wherein N is a positive integer, so The current temperature coefficient adjustment unit includes a MOS transistor MP1 and a resistor R1. The output end of the operational amplifier is respectively connected to one end of the resistor R1 and the gate of the MOS transistor MP1. The drain of the MOS transistor MP1 is connected to the temperature coefficient adjustment module. The drain and gate of the MOS transistor MP2, the source of the MOS transistor MP2 are respectively connected to the source of the N MOS transistors MP3, the gate of the MOS transistor MP5 in the temperature coefficient adjustment module, and the gates of the N MOS transistors MP4. The poles are all controlled by the control voltage VBP, the drains of the N MOS transistors MP4 are connected to the drains of the N MOS transistors MP3 in one-to-one correspondence, and the gates of the MOS transistors MP3 are controlled by the control word TA<n:1> The source of the MOS transistor MP4 is connected to the source of the MOS transistor MP5 and the MOS transistors MP7, MP9 and MP11 in the temperature coefficient adjustment module. 4.根据权利要求3所述的温度系数可调的电流产生电路,其特征在于,应用所述电压转电流模块将带隙基准电压源的零温度系数电压转换为电流的步骤包括:A1、零温度系数电压经运算放大器放大,获得放大电流;4. The current generating circuit with adjustable temperature coefficient according to claim 3, wherein the step of applying the voltage-to-current module to convert the zero temperature coefficient voltage of the bandgap reference voltage source into current comprises: A1, zero The temperature coefficient voltage is amplified by the operational amplifier to obtain the amplified current; A2、放大电流经电流温度系数调节单元转换,获得第一温度系数电流;A2. The amplified current is converted by the current temperature coefficient adjustment unit to obtain the first temperature coefficient current; A3、通过控制电压VBP、控制字TA<n:1>对第一开关控制单元中的开关进行控制,实现第一温度系数电流的电流大小的一次调节,获得一次调节电流。A3. Control the switches in the first switch control unit through the control voltage VBP and the control word TA<n:1>, so as to realize the primary adjustment of the current size of the first temperature coefficient current, and obtain the primary adjustment current. 5.根据权利要求4所述的温度系数可调的电流产生电路,其特征在于,步骤A2中,放大电流经电流温度系数调节单元中的MOS管MP1、电阻R1补偿,产生与电阻R1温度系数相关的第一温度系数电流。5 . The current generating circuit with adjustable temperature coefficient according to claim 4 , wherein in step A2 , the amplified current is compensated by the MOS transistor MP1 and the resistor R1 in the current temperature coefficient adjusting unit to generate a temperature coefficient equal to that of the resistor R1 . the associated first temperature coefficient current. 6.根据权利要求5所述的温度系数可调的电流产生电路,其特征在于,步骤A3中,通过控制电压VBP、控制字TA<n:1>分别对第一开关控制单元中的N个MOS管MP4、N个MOS管MP3进行控制,通过所述第一开关控制单元调节第一温度系数电流的具体步骤包括:第一温度系数电流流经所述MOS管MP4时,通过控制电压VBP对N个MOS管MP4的栅极进行控制,同时通过控制字TA<n:1>控制N个MOS管MP3的栅极,对第一温度系数电流的电流大小进行一次调节,具体步骤包括:A321、当n=0,TA<n:1>=0时,相对应位的MOS管MP3闭合,相对应位的MOS管MP4的电流通过MOS管MP3进入MOS管MP1支路,实现MOS管MP1电流与MOS管MP2电流的相加;A322、当n=1,TA<n:1>=1时,MOS管MP3关断,MOS管MP4到MOS管MP1支路的电流通过MOS管MP3关断,输出正温度系数电流。6 . The current generating circuit with adjustable temperature coefficient according to claim 5 , wherein, in step A3 , the control voltage VBP and the control word TA<n:1> are used to control the N switches in the first switch control unit respectively. 7 . The MOS transistor MP4 and the N MOS transistors MP3 are controlled, and the specific steps of adjusting the first temperature coefficient current through the first switch control unit include: when the first temperature coefficient current flows through the MOS transistor MP4, the control voltage VBP is used to control the current. The gates of the N MOS transistors MP4 are controlled, and at the same time, the gates of the N MOS transistors MP3 are controlled by the control word TA<n:1>, and the current size of the first temperature coefficient current is adjusted once. The specific steps include: A321, When n=0, TA<n:1>=0, the MOS tube MP3 of the corresponding bit is closed, and the current of the MOS tube MP4 of the corresponding bit enters the branch of the MOS tube MP1 through the MOS tube MP3, so that the current of the MOS tube MP1 and the current of the MOS tube MP1 are realized. The addition of the current of the MOS tube MP2; A322, when n=1, TA<n:1>=1, the MOS tube MP3 is turned off, the current from the MOS tube MP4 to the MOS tube MP1 branch is turned off through the MOS tube MP3, and the output Positive temperature coefficient current. 7.根据权利要求1或6所述的温度系数可调的电流产生电路,其特征在于,所述温度系数调节模块包括第一电流镜~第四电流镜、第二开关控制单元、第三开关控制单元,所述第一电流镜用于将所述电源转电流模块输出的所述第一温度系数电流按比例K1、K2进行复制,第二电流镜、第三电流镜用于对经过所述第一电流镜的电流按比例K5进行复制,所述第一电流镜、第二开关控制单元、第二电流镜一端顺次连接构成第一电流支路,第三电流镜一端、第三开关控制单元、第四电流镜一端顺次连接构成第二电流支路,所述第二电流镜另一端与所述第三电流镜另一端连接,通过所述第二开关控制单元对所述第一电流支路的导通或关闭进行控制,通过所述第三开关控制单元对所述第二电流支路的导通或关闭进行控制,所述第四电流镜另一端为所述电流输出端,用于输出温度系数调节后的以及电流大小补偿后的所述第二温度系数电流,所述第二开关控制单元中的若干开关通过控制字TC1<n:1>控制,所述第三开关单元中的若干开关分别通过控制字TC1<n:1>、控制电压VBN1、VBN2控制,通过控制字TC1<n:1>对第二开关控制单元中开关的控制,实现一次调节电流的温度系数调节,通过所述控制字TC1<n:1>、控制电压VBN1、VBN2对第三开关单元中的开关的控制,实现一次调节电流的电流大小补偿。7 . The current generation circuit with adjustable temperature coefficient according to claim 1 , wherein the temperature coefficient adjustment module comprises a first current mirror to a fourth current mirror, a second switch control unit, and a third switch. 8 . A control unit, the first current mirror is used to copy the first temperature coefficient current output by the power-to-current module in proportion to K1 and K2, and the second current mirror and the third current mirror are used to The current of the first current mirror is replicated in proportion to K5. One end of the first current mirror, the second switch control unit, and the second current mirror are connected in sequence to form a first current branch, and one end of the third current mirror and the third switch control One end of the unit and the fourth current mirror are connected in sequence to form a second current branch, the other end of the second current mirror is connected to the other end of the third current mirror, and the first current is controlled by the second switch control unit. The turn-on or turn-off of the branch is controlled, and the turn-on or turn-off of the second current branch is controlled by the third switch control unit, and the other end of the fourth current mirror is the current output terminal, which is used After outputting the second temperature coefficient current after the temperature coefficient adjustment and current magnitude compensation, several switches in the second switch control unit are controlled by the control word TC1<n:1>, and the third switch unit in the A number of switches are controlled by the control word TC1<n:1>, the control voltages VBN1, VBN2, respectively, and the temperature coefficient adjustment of the primary current is realized through the control of the switch in the second switch control unit by the control word TC1<n:1>. Through the control of the switches in the third switch unit by the control word TC1<n:1>, the control voltages VBN1 and VBN2, the current size compensation of the primary adjustment current is realized. 8.根据权利要求7所述的温度系数可调的电流产生电路,其特征在于,所述第一电流镜包括MOS管MP2、MOS管MP5、MP7,所述第二电流镜支路包括MOS管MN1~MN4,所述第三电流镜支路包括MOS管MP8~MP11,所述第四电流镜支路包括MOS管MN7~MN10,所述第二开关控制单元包括m个MOS管MP6,所述第三开关控制单元包括M个MOS管MP24、M个MOS管MN5、M个MOS管MN6,其中,M为正整数,所述MOS管MP5漏极分别连接所述MOS管MN1漏极、栅极以及MOS管MN3栅极,所述MOS管MN1源极分别连接所述MOS管MN2栅极、源极以及MOS管MN4栅极,所述MOS管MP9漏极分别连接所述MOS管MP9栅极、MOS管MP11栅极、MOS管MP8漏极,所述MOS管MP8栅极分别连接MOS管MP8源极、MOS管MP10栅极、MOS管MN3源极,所述MOS管MN3漏极连接所述MOS管MN4漏极,所述MOS管MN2源极分别连接所述MOS管MN4源极、MOS管MN6、MN8、MN10源极,所述MOS管MP11漏极连接所述MOS管MP10漏极,所述MOS管MP10源极连接M个MOS管MP24源极、MOS管MN7源极、栅极以及MOS管MN9栅极,所述MOS管MP24漏极依次串联所述MOS管MN5、MN6,M个所述MOS管MP6栅极通过控制字TC1<n:1>控制,所述MOS管MP24栅极通过控制字TC1<n:1>控制,M个所述MOS管MN5通过控制电压VBN1控制,M个所述MOS管MN6通过控制电源VBN2控制,所述MOS管MN7漏极分别连接MOS管MN8漏极、栅极以及MOS管MN10栅极,所述MOS管MN10漏极连接所述MOS管MN9漏极,所述MOS管MN9源极为所述电流输出端。8 . The current generating circuit with adjustable temperature coefficient according to claim 7 , wherein the first current mirror comprises MOS transistors MP2 , MOS transistors MP5 and MP7 , and the second current mirror branch comprises MOS transistors 8 . MN1 to MN4, the third current mirror branch includes MOS transistors MP8 to MP11, the fourth current mirror branch includes MOS transistors MN7 to MN10, the second switch control unit includes m MOS transistors MP6, and the The third switch control unit includes M MOS transistors MP24, M MOS transistors MN5, and M MOS transistors MN6, wherein M is a positive integer, and the drain of the MOS transistor MP5 is connected to the drain and gate of the MOS transistor MN1, respectively. and the gate of the MOS transistor MN3, the source of the MOS transistor MN1 is respectively connected to the gate of the MOS transistor MN2, the source and the gate of the MOS transistor MN4, the drain of the MOS transistor MP9 is respectively connected to the gate of the MOS transistor MP9, The gate of the MOS transistor MP11 and the drain of the MOS transistor MP8, the gate of the MOS transistor MP8 is respectively connected to the source of the MOS transistor MP8, the gate of the MOS transistor MP10, and the source of the MOS transistor MN3, and the drain of the MOS transistor MN3 is connected to the MOS transistor The drain of the MOS transistor MN4, the source of the MOS transistor MN2 is respectively connected to the source of the MOS transistor MN4, the source of the MOS transistors MN6, MN8 and MN10, the drain of the MOS transistor MP11 is connected to the drain of the MOS transistor MP10, and the The source of the MOS transistor MP10 is connected to the source of the M MOS transistors MP24, the source and gate of the MOS transistor MN7, and the gate of the MOS transistor MN9. The drain of the MOS transistor MP24 is connected in series with the MOS transistors MN5 and MN6 in sequence. The gate of the MOS transistor MP6 is controlled by the control word TC1<n:1>, the gate of the MOS transistor MP24 is controlled by the control word TC1<n:1>, the M MOS transistors MN5 are controlled by the control voltage VBN1, and the M MOS transistors MN5 are controlled by the control voltage VBN1. The MOS transistor MN6 is controlled by the control power supply VBN2, the drain of the MOS transistor MN7 is respectively connected to the drain and gate of the MOS transistor MN8 and the gate of the MOS transistor MN10, the drain of the MOS transistor MN10 is connected to the drain of the MOS transistor MN9, The source of the MOS transistor MN9 is the current output terminal. 9.根据权利要求8所述的温度系数可调的电流产生电路,其特征在于,应用所述温度系数调节模块对电流的温度系数进行调节的步骤包括:B1、通过第二开关控制单元控制,使第一电流支路导通;9 . The current generating circuit with adjustable temperature coefficient according to claim 8 , wherein the step of adjusting the temperature coefficient of the current by using the temperature coefficient adjusting module comprises: B1 , controlling by a second switch control unit, turning on the first current branch; B2、通过第一电流镜对第一正温度系数电流按比例K1、K2进行复制;B2. Copy the first positive temperature coefficient current in proportion to K1 and K2 through the first current mirror; B3、通过控制字TC1<m:1>及控制电压VBN1、VBN2对第三开关控制单元中的开关进行控制,实现温度系数调节后的电流大小的补偿;B3. Control the switch in the third switch control unit through the control word TC1<m:1> and the control voltages VBN1 and VBN2, so as to realize the compensation of the current size after the temperature coefficient adjustment; B4、通过第四电流镜对补偿后的电流进行复制,在所述电流输出端输出第二温度系数电流。B4. Copy the compensated current through the fourth current mirror, and output the second temperature coefficient current at the current output terminal. 10.根据权利要求8所述的温度系数可调的电流产生电路,其特征在于,MOS管MP5与MOS管MP2的尺寸比为K1,经过所述MOS管MP5的电流与所述MOS管MP2的电流之比为K1,即Imp5=K1*Imp2;MOS管MP7与MOS管MP2的尺寸比为K1,经过所述MOS管MP7的电流与MOS管MP2的电流之比为K2,即Imp7=K2*Imp2;步骤B2中,通过所述第一电流镜中的MOS管MP5、MP7对流经MOS管MP2的电流分别按比例K1、K2进行复制。10. The current generating circuit with adjustable temperature coefficient according to claim 8, wherein the size ratio of the MOS transistor MP5 and the MOS transistor MP2 is K1, and the current passing through the MOS transistor MP5 and the MOS transistor MP2 have a size ratio of K1. The ratio of the current is K1, that is, Imp5=K1*Imp2; the size ratio of the MOS tube MP7 and the MOS tube MP2 is K1, and the ratio of the current passing through the MOS tube MP7 to the current of the MOS tube MP2 is K2, that is, Imp7=K2* Imp2; in step B2, the current flowing through the MOS transistor MP2 is copied according to the proportions K1 and K2 through the MOS transistors MP5 and MP7 in the first current mirror, respectively.
CN202210619911.7A 2022-06-02 2022-06-02 Current generation circuit with adjustable temperature coefficient Pending CN114879801A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210619911.7A CN114879801A (en) 2022-06-02 2022-06-02 Current generation circuit with adjustable temperature coefficient

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210619911.7A CN114879801A (en) 2022-06-02 2022-06-02 Current generation circuit with adjustable temperature coefficient

Publications (1)

Publication Number Publication Date
CN114879801A true CN114879801A (en) 2022-08-09

Family

ID=82680091

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210619911.7A Pending CN114879801A (en) 2022-06-02 2022-06-02 Current generation circuit with adjustable temperature coefficient

Country Status (1)

Country Link
CN (1) CN114879801A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118192748A (en) * 2024-04-11 2024-06-14 成都士模微电子有限责任公司 Broken line temperature drift calibration circuit and voltage generating device, electronic equipment

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103345291A (en) * 2013-07-10 2013-10-09 广州金升阳科技有限公司 Constant current source capable of adjusting positive and negative temperature coefficients and adjustment method thereof
CN103365332A (en) * 2012-03-29 2013-10-23 株式会社东芝 Overcurrent protection circuit and power supply device
CN103631306A (en) * 2013-12-01 2014-03-12 西安电子科技大学 Low-temperature coefficient current source reference circuit
CN106527556A (en) * 2016-09-20 2017-03-22 天津大学 Reference voltage structure with calibration function of output voltage
US10510386B1 (en) * 2018-08-29 2019-12-17 National Tsing Hua University Dynamic bit-line clamping circuit for computing-in-memory applications and clamping method thereof
CN110750125A (en) * 2019-11-29 2020-02-04 上海艾为电子技术股份有限公司 Linear voltage stabilizing circuit, power supply module and portable electronic product
CN112039444A (en) * 2020-11-04 2020-12-04 成都铱通科技有限公司 Gain amplifier for improving variation range of positive temperature coefficient

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103365332A (en) * 2012-03-29 2013-10-23 株式会社东芝 Overcurrent protection circuit and power supply device
CN103345291A (en) * 2013-07-10 2013-10-09 广州金升阳科技有限公司 Constant current source capable of adjusting positive and negative temperature coefficients and adjustment method thereof
CN103631306A (en) * 2013-12-01 2014-03-12 西安电子科技大学 Low-temperature coefficient current source reference circuit
CN106527556A (en) * 2016-09-20 2017-03-22 天津大学 Reference voltage structure with calibration function of output voltage
US10510386B1 (en) * 2018-08-29 2019-12-17 National Tsing Hua University Dynamic bit-line clamping circuit for computing-in-memory applications and clamping method thereof
CN110750125A (en) * 2019-11-29 2020-02-04 上海艾为电子技术股份有限公司 Linear voltage stabilizing circuit, power supply module and portable electronic product
CN112039444A (en) * 2020-11-04 2020-12-04 成都铱通科技有限公司 Gain amplifier for improving variation range of positive temperature coefficient

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118192748A (en) * 2024-04-11 2024-06-14 成都士模微电子有限责任公司 Broken line temperature drift calibration circuit and voltage generating device, electronic equipment

Similar Documents

Publication Publication Date Title
JP4463112B2 (en) A band-gap voltage reference circuit having a high power supply voltage rejection ratio (PSRR) and a curve correction
KR100400304B1 (en) Current mirror type bandgap reference voltage generator
CN106708150B (en) A kind of high-accuracy voltage and current reference circuit of the multistage compensation of segmentation
KR101739290B1 (en) Differential amplifier circuit and series regulator
WO2021035707A1 (en) Low-dropout regulator
CN106774614A (en) A kind of low pressure difference linear voltage regulator with super transconductance structure
US5917378A (en) Rail-to-rail type of operational amplifier with a low offset voltage achieved by mixed compensation
CN107390767A (en) A kind of full MOS voltage-references of wide temperature with temperature-compensating
CN113703510B (en) Band gap reference circuit with low power consumption
CN108445956A (en) A kind of high PSRR Low Drift Temperature bandgap voltage reference
CN108536210B (en) A Smooth Temperature Compensated Bandgap Reference Source Circuit
CN114661086A (en) Band-gap reference voltage source circuit
CN205942498U (en) Output voltage adjustable band gap reference voltage source
CN114253341B (en) Output circuit and voltage buffer
CN114924610A (en) A positive temperature coefficient current generating circuit
CN113377152A (en) Quick response does not have external electric capacity type linear voltage regulator
CN114879801A (en) Current generation circuit with adjustable temperature coefficient
CN113721696B (en) High-precision BANDGAP design method
CN102890526B (en) CMOS band-gap reference voltage source
TW201447534A (en) Current mirror
CN118363420B (en) Turnover type voltage follower control type LDO
CN115459718B (en) Gain amplifying circuit and amplifier
CN113419590B (en) Bias circuit structure applied to various voltages
CN215867617U (en) High-precision band-gap reference circuit
CN115016583B (en) Low-voltage band-gap reference circuit

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20220809

RJ01 Rejection of invention patent application after publication