CN114874248B - 一种基于激发态质子转移红光材料及其制备方法与应用 - Google Patents

一种基于激发态质子转移红光材料及其制备方法与应用 Download PDF

Info

Publication number
CN114874248B
CN114874248B CN202210553701.2A CN202210553701A CN114874248B CN 114874248 B CN114874248 B CN 114874248B CN 202210553701 A CN202210553701 A CN 202210553701A CN 114874248 B CN114874248 B CN 114874248B
Authority
CN
China
Prior art keywords
temperature
hbt
proton transfer
red light
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210553701.2A
Other languages
English (en)
Other versions
CN114874248A (zh
Inventor
钱妍
侯伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Posts and Telecommunications
Original Assignee
Nanjing University of Posts and Telecommunications
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Posts and Telecommunications filed Critical Nanjing University of Posts and Telecommunications
Priority to CN202210553701.2A priority Critical patent/CN114874248B/zh
Publication of CN114874248A publication Critical patent/CN114874248A/zh
Application granted granted Critical
Publication of CN114874248B publication Critical patent/CN114874248B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/02Boron compounds
    • C07F5/022Boron compounds without C-boron linkages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N21/643Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" non-biological material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6447Fluorescence; Phosphorescence by visual observation
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • C09K2211/1037Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom with sulfur
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1096Heterocyclic compounds characterised by ligands containing other heteroatoms

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Composite Materials (AREA)
  • Optics & Photonics (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Luminescent Compositions (AREA)

Abstract

本申请公开了一种基于激发态质子转移红光材料及其制备方法与应用,制备合成一种含激发态分子内质子转移的有机二氟化硼配合物。研究该材料在有机溶剂二乙二醇二甲醚(MOE)中的温度传感性质,并进一步研究该材料在水溶液和磷酸盐(PBS)缓冲溶液中的单色温度传感性质。将所述材料与一种耐温型的二苯基(6‑(吡咯烷‑1‑基)芘‑1‑基)氧化膦掺杂制成非能量传递的比率型有机荧光温度计,具有优异的传感特性,并可借助肉眼观测的荧光颜色变化进行温度指示。本发明所述的材料制备简单,价格低廉,产率高。该材料制成的有机荧光温度传感探针在宽的温度范围内具有高的温度分辨率和灵敏度,有很高的应用价值。

Description

一种基于激发态质子转移红光材料及其制备方法与应用
技术领域
本发明属于有机荧光温度探针应用技术领域,具体涉及一种基于激发态质子转移红光材料及其制备方法与应用。
背景技术
温度是我们日常生活中最重要的物理参数之一。我们通过感受环境温度的细微变化来预测季节的变化。我们还通过体温升高来认识疾病。为了正确烹饪,平底锅或烤箱的温度应该被精确控制。在科学上,环境温度影响所有的化学和生物化学反应。温度存在广泛的生物活动中,细胞内温度在活细胞的细胞功能和生化活动中发挥着重要作用。从炎症到癌细胞生长的各种异常医学现象往往伴随着体温升高。然而,在微尺度或纳米尺度上对细胞内温度进行原位、非侵入性的精确测定和实时监测仍然是一个亟待解决的问题。在这种情况下,荧光温度计因其高空间分辨率和介质的功能独立性等固有优势而受到越来越多的关注。使用不同荧光技术(如荧光强度和寿命)和不同的荧光团(如小型有机染料、荧光蛋白、上转换纳米粒子、量子点、金属配合物和基于GFP)的温度传感探针已经开发出来。
有机荧光温度计具有卓越的时空分辨率和生物相容性,已成为在细胞和微流体等微环境中进行原位温度测量的有力工具之一。自从1973年AWHMau等人报道了第一个基于罗丹明B的在乙醇溶液中显示高度依赖温度的量子产率的有机荧光温度计以来,已经有许多用于微环境测温的有机荧光温度计被开发出来。但是,目前的小分子有机荧光传感探针通常存在较大的局限性,如水溶性差、结构稳定性差和难以进一步功能化等。
因此,我们合成了具有热敏性的基于激发态质子转移红光材料:2-(苯并[d]噻唑-2-基)-6-(2-(2,2-二氟-6-苯基-2(1H)-二恶硼烷-4-基)乙烯基)-4-甲基苯酚(HBT-BF2)。研究了其在有机溶剂二乙二醇二甲醚(MOE)中的温度传感性质,进一步研究了该材料制成纳米粒子在水溶液和磷酸盐(PBS)缓冲溶液中的单色温度传感性质。接着将所述材料与一种无能量传递的耐温型的二苯基(6-(吡咯烷-1-基)芘-1-基)氧化膦掺杂制成液体比率型有机荧光温度传感探针,随着液体温度的升高可以肉眼观测到混合溶液荧光颜色的变化,在宽的温度范围内具有很高的温度分辨率和灵敏度。
发明内容
解决的技术问题:为了克服现有技术中存在的不足,本申请提出一种基于激发态质子转移红光材料及其制备方法与应用,以解决现有技术中制作工艺复杂、成本高和稳定性差等问题。
技术方案:
一种基于激发态质子转移红光材料,基于激发态质子转移红光材料名称为2-(苯并[d]噻唑-2-基)-6-(2-(2,2-二氟-6-苯基-2(1H)-二恶硼烷-4-基)乙烯基)-4-甲基苯酚(HBT-BF2),基于激发态质子转移红光材料中包含典型的激发态质子转移基团2-(2’-羟基苯基)苯并噻唑(HBT),基于激发态质子转移红光材料的分子结构式如下:
一种基于激发态质子转移红光材料的制备方法,具体包括如下步骤:
第一步:取中间体3-(苯并[d]噻唑-2-基)-2-羟基-5-甲基-苯甲醛(HBT-CHO)(0.50g,1.86mmol)与中间体2,2-二氟-4-甲基-6-苯基-2(1H)-二恶硼烷(DMBF2)(0.47g,2.23mmol)混合加入100mL的三口圆底烧瓶中,使用双排管抽真空、鼓氮气三次,并插入氮气球;
第二步:氮气环境下使用注射器加入哌啶(0.16g,1.86mmol),紧接着用注射器加入40mL溶剂无水乙醇;鼓氮气30分钟,将反应装置放入油浴锅内,瓶内液面略高于油浴锅液面,加热回流反应12小时;
第三步:反应结束后冷却至室温,用旋转蒸发仪旋干除去溶剂乙醇,加入硅胶粉拌匀;
第四步:以二氯甲烷/石油醚(1:1,v/v)的混合溶剂作为淋洗剂,柱层析后旋干得到橙色固体,再用二氯甲烷和正己烷溶液重结晶,60℃真空干燥24小时后得到产物基于激发态质子转移红光材料530mg,产率为61.89%,反应式为:
本申请还公开了基于激发态质子转移红光材料在有机荧光温度传感探针中的应用,所述有机荧光温度传感探针通过荧光强度法和比率荧光法来检测温度的变化。
作为本申请的一种优选技术方案:将1mg有机发光材料HBT-BF2溶解在10mL有机溶剂二乙二醇二甲醚(MOE)中,得到单色温度传感荧光探针;在20-90℃宽的温度范围内,随着温度的升高,溶液的荧光颜色由明亮的红色渐渐变成暗红色,红色发光变淡,温度分辨率低于0.35℃,通过荧光颜色的变化可以肉眼观察到有机溶剂温度的变化,具有高温、宽范围温度检测的性质。
作为本申请的一种优选技术方案,所述有机溶剂二乙二醇二甲醚(MOE)的凝固点为-64℃,沸点为159.7℃;所述有机溶剂二乙二醇二甲醚(MOE)为光谱纯级别。
作为本申请的一种优选技术方案:所述有机发光材料HBT-BF2在水溶液中形成纳米粒子,得到单色有机荧光温度传感荧光探针,在20-90℃宽的温度范围内,随着温度的升高,溶液的荧光颜色由明亮的红色渐渐变成暗红色,红色发光变淡,通过荧光颜色的变化可以肉眼观察到水溶液温度的变化,实现高灵敏温度检测,温度分辨率低于1.71℃。
作为本申请的一种优选技术方案:所述有机发光材料HBT-BF2在磷酸缓冲盐(PBS)溶液中形成纳米粒子,得到单色有机荧光温度传感荧光探针;在20-90℃宽的温度范围内荧光颜色由亮红色渐渐变成淡红色,肉眼可观察到PBS溶液温度的变化,具有宽范围、高灵敏度的良好性能。
作为本申请的一种优选技术方案:所述基于激发态质子转移红光材料在水或PBS溶液中制成纳米粒子的单色有机荧光温度传感探针,包括如下步骤:
第一步:将1mg基于激发态质子转移红光材料HBT-BF2溶解在1mL四氢呋喃(THF)中,制成1mg/mL的溶液;
第二步:在1440W超声条件下,将1mL溶液注入10mL去离子水或PBS溶液中,通过鼓氮气去除混合溶液中的四氢呋喃;
第三步:将制备好的溶液在90℃的氮气气氛下加热浓缩,然后使用0.2μm过滤器过滤,即可制得HBT-BF2在水或PBS溶液中的纳米粒子。
作为本申请的一种优选技术方案:所述有机发光材料HBT-BF2与一种无能量传递的耐温型的二苯基(6-(吡咯烷-1-基)芘-1-基)氧化膦掺杂在PBS溶液中制成纳米粒子,得到比率型有机荧光温度传感探针,在20-90℃宽的温度范围内荧光颜色可以肉眼观测到从红色变为绿色;具有良好的可逆性并且可以进行7-9次重复利用。
作为本申请的一种优选技术方案:所述有机发光材料HBT-BF2与一种无能量传递的耐温型的二苯基(6-(吡咯烷-1-基)芘-1-基)氧化膦掺杂在PBS溶液中制成纳米粒子,得到比率型有机荧光温度传感探针,具体包括如下步骤:
第一步:称取基于激发态质子转移红光材料HBT-BF2和耐温型荧光材料二苯基(6-(吡咯烷-1-基)芘-1-基)氧化膦各1mg分别溶解在1mL THF中,都制成1mg/mL的溶液;
第二步:将制成的两种溶液按质量份数配比二苯基(6-(吡咯烷-1-基)芘-1-基)氧化膦:HBT-BF2=1:3的比例混合,用1440W超声混合;
第三步:在1440W超声条件下,将1mL混合溶液注入10mL去离子水或PBS溶液中,通过鼓氮气去除混合溶液中的四氢呋喃;
第四步:将制备好的溶液在90℃的氮气气氛下加热浓缩,然后使用0.2μm过滤器过滤,即可制得HBT-BF2与耐温型的二苯基(6-(吡咯烷-1-基)芘-1-基)氧化膦掺杂在PBS溶液中的纳米粒子。
原理解释:有机荧光温度计根据荧光强度和荧光比率这两种方式测温。基于激发态质子转移红光材料HBT-BF2是热敏型材料,其荧光强度随温度升高逐渐下降,通过荧光信号记录和作图,可以实现荧光强度与温度的一一对应,从而实现温度传感。为了避免单波长荧光强度测温易于受到温度计环境和检测器波动的影响开发了比率荧光温度计。耐温型荧光材料二苯基(6-(吡咯烷-1-基)芘-1-基)氧化膦在PBS缓冲液里具有随温度升高荧光强度增强的特性,基于激发态质子转移红光材料HBT-BF2在PBS缓冲液里具有随温度升高荧光强度均匀快速下降的性质,通过对温度有不同反应的这两种材料的结合制备比率型荧光温度计,该温度计对温度变化的感应极为灵敏,并且可借助肉眼观测PBS缓冲液荧光颜色的变化来指示温度。
有益效果:
1.本发明设计提出了一种基于激发态质子转移红光材料,本发明的基于激发态质子转移红光材料具有很高的热敏性,随温度变化材料的荧光发射变化明显,分解温度高,热稳定性良好,可以作为有机荧光温度探针使用。
2.本发明所述的有机发光材料HBT-BF2在有机溶剂二乙二醇二甲醚(MOE)中制成单色温度传感荧光探针,在宽的温度范围(20-90℃)内可以肉眼观察到温度依赖性的荧光颜色变化,具有高温、宽范围温度检测的性质,最大温度相对灵敏度可达18.29%℃-1,温度分辨率低于0.35℃。
3.本发明所述有机发光材料HBT-BF2在水溶液中具有宽的温度范围(20-90℃)内肉眼可观察的温度依赖性的荧光颜色变化能力,有很高的温度灵敏度,最大相对灵敏度为8.41%℃-1,温度分辨率整体低于1.71℃,温度分辨率低于1℃的范围包括20-30℃和53-90℃。
4.本发明所述有机发光材料HBT-BF2在PBS溶液中具有宽的温度范围(20-90℃)内肉眼可观察的温度依赖性的荧光颜色变化能力,具有宽范围高灵敏度的良好性能,最大相对灵敏度为6.78%℃-1,温度分辨率整体都低于0.9℃。
5.本发明所述有机发光材料HBT-BF2与一种无能量传递的耐温型的二苯基(6-(吡咯烷-1-基)芘-1-基)氧化膦掺杂在PBS溶液中制成纳米粒子,在宽的温度范围(20-90℃)内荧光颜色可以肉眼观测到从红色变为黄色再变为绿色,在20-90℃的宽温度范围内最大相对灵敏度为18.96%℃-1,温度分辨率低于1℃。具有良好的可逆性并且可以进行多次重复利用,在高温下具有良好的稳定性,可保证在较长时间内应用。
6.本发明所述有机发光材料HBT-BF2与一种无能量传递的耐温型的二苯基(6-(吡咯烷-1-基)芘-1-基)氧化膦掺杂制成的比率型荧光温度计克服了基于单波长荧光强度探测温度易于波动的缺点,以及基于物理接触的传统温度计小型化相关的固有复杂性问题。
附图说明
图1是本申请实施例3中2-(苯并[d]噻唑-2-基)-6-(2-(2,2-二氟-6-苯基-2(1H)-二恶硼烷-4-基)乙烯基)-4-甲基苯酚(HBT-BF2)在有机溶剂二乙二醇二甲醚(MOE)中的温度依赖性发光光谱图。
图2是本申请实施例4中2-(苯并[d]噻唑-2-基)-6-(2-(2,2-二氟-6-苯基-2(1H)-二恶硼烷-4-基)乙烯基)-4-甲基苯酚(HBT-BF2)在水溶液中的温度依赖性发光光谱图。
图3是本申请实施例5中2-(苯并[d]噻唑-2-基)-6-(2-(2,2-二氟-6-苯基-2(1H)-二恶硼烷-4-基)乙烯基)-4-甲基苯酚(HBT-BF2)在PBS溶液中的温度依赖性发光光谱图。
图4是本申请实施例6中2-(苯并[d]噻唑-2-基)-6-(2-(2,2-二氟-6-苯基-2(1H)-二恶硼烷-4-基)乙烯基)-4-甲基苯酚(HBT-BF2)与一种耐温型的二苯基(6-(吡咯烷-1-基)芘-1-基)氧化膦掺杂在PBS溶液中制成纳米粒子的温度依赖性发光光谱图。
图5是本申请实施例7中2-(苯并[d]噻唑-2-基)-6-(2-(2,2-二氟-6-苯基-2(1H)-二恶硼烷-4-基)乙烯基)-4-甲基苯酚(HBT-BF2)与一种耐温型的二苯基(6-(吡咯烷-1-基)芘-1-基)氧化膦掺杂在PBS溶液中制成纳米粒子的温度稳定性测试图。
图6是本申请实施例8中2-(苯并[d]噻唑-2-基)-6-(2-(2,2-二氟-6-苯基-2(1H)-二恶硼烷-4-基)乙烯基)-4-甲基苯酚(HBT-BF2)与一种耐温型的二苯基(6-(吡咯烷-1-基)芘-1-基)氧化膦掺杂在PBS溶液中制成纳米粒子的温度可逆循环测试图。
具体实施方式
为了进一步说明本发明的核心思想,给出下列系列具体实施例,但本发明并不受这些具体实施例的限制,任何了解该领域的技术人员对本发明的些许改动将可以达到类似的结果,这些改动也包含在本发明之中。
本申请公开了一种基于激发态质子转移红光材料,基于激发态质子转移红光材料名称为2-(苯并[d]噻唑-2-基)-6-(2-(2,2-二氟-6-苯基-2(1H)-二恶硼烷-4-基)乙烯基)-4-甲基苯酚(HBT-BF2),基于激发态质子转移红光材料中包含典型的激发态质子转移基团2-(2’-羟基苯基)苯并噻唑(HBT),基于激发态质子转移红光材料的分子结构式如下:
基于激发态质子转移红光材料的制备方法,包括如下步骤:
第一步:取中间体3-(苯并[d]噻唑-2-基)-2-羟基-5-甲基-苯甲醛(HBT-CHO)(0.50g,1.86mmol)与中间体2,2-二氟-4-甲基-6-苯基-2(1H)-二恶硼烷(DMBF2)(0.47g,2.23mmol)混合加入100mL的三口圆底烧瓶中,使用双排管抽真空、鼓氮气三次,并插入氮气球;
第二步:氮气环境下使用注射器加入哌啶(0.16g,1.86mmol),紧接着用注射器加入40mL溶剂无水乙醇;鼓氮气30分钟,将反应装置放入油浴锅内,瓶内液面略高于油浴锅液面,加热回流反应12小时;
第三步:反应结束后冷却至室温,用旋转蒸发仪旋干除去溶剂乙醇,加入硅胶粉拌匀;
第四步:以二氯甲烷/石油醚(1:1,v/v)的混合溶剂作为淋洗剂,柱层析后旋干得到橙色固体,再用二氯甲烷和正己烷溶液重结晶,60℃真空干燥24小时后得到产物基于激发态质子转移红光材料530mg,产率为61.89%,反应式为:
通过核磁共振氢谱确认产物:1HNMR(400MHz,CDCl3,ppm):δ8.02(d,J=10.8Hz,1H),8.00-7.94(m,3H),7.91(d,J=7.9Hz,1H),7.58-7.52(m,2H),7.51-7.46(m,3H),7.43(t,J=7.2Hz,2H),7.01(d,J=16.0Hz,1H),6.40(s,1H),2.38(s,3H).HRMS:m/z:[M+H]+calcd forC25H20O3NS,414.1163;found,414.1158.
实施例1:
一种基于激发态质子转移红光材料在水溶液或PBS溶液中制成纳米粒子的制备方法,具体包括如下步骤:
第一步:将1mg基于激发态质子转移红光材料HBT-BF2溶解在1mL THF中,制成1mg/mL的溶液;
第二步:1440W超声条件下,将1mL溶液注入10mL去离子水或PBS溶液中,通过鼓氮气去除混合溶液中的四氢呋喃;
第三步:将制备好的溶液在90℃的氮气气氛下加热浓缩,然后使用0.2μm过滤器过滤;即可制得HBT-BF2在水或PBS溶液中的纳米粒子。
实施例2
一种基于激发态质子转移红光材料与一种无能量传递的耐温型的二苯基(6-(吡咯烷-1-基)芘-1-基)氧化膦掺杂在PBS溶液中制成纳米粒子的制备方法,具体包括如下步骤:
第一步:称取基于激发态质子转移红光材料HBT-BF2和耐温型荧光材料二苯基(6-(吡咯烷-1-基)芘-1-基)氧化膦各1mg分别溶解在1mL THF中,都制成1mg/mL的溶液;
第二步:将制成的两种溶液按质量份数配比二苯基(6-(吡咯烷-1-基)芘-1-基)氧化膦:HBT-BF2=1:3的比例混合,用1440W超声混合;
第三步:在1440W超声条件下,将1mL混合溶液注入10mL去离子水或PBS溶液中,通过鼓氮气去除混合溶液中的四氢呋喃;
第四步:将制备好的溶液在90℃的氮气气氛下加热浓缩,然后使用0.2μm过滤器过滤;即可制得HBT-BF2与耐温型的二苯基(6-(吡咯烷-1-基)芘-1-基)氧化膦掺杂在PBS溶液中的纳米粒子。
实施例3:
1mg有机发光材料HBT-BF2溶解在10mL有机溶剂二乙二醇二甲醚(MOE)中,得到单色温度传感荧光探针,在20-90℃宽的温度范围内通过荧光颜色变化肉眼可观察到有机溶剂温度的变化,具有高温、宽范围温度检测的性质。
图1为HBT-BF2在有机溶剂二乙二醇二甲醚(MOE)中的浓度为1.0×10-5M的混合溶液进行温度依赖性发光性能测试。
HBT-BF2分子在MOE中呈现单发射峰(630nm左右)。非辐射跃迁增加,其荧光强度表现出随温度升高均匀且快速的下降趋势。在50℃时发射峰强度大约为20℃的80%,在70℃时发射峰强度大约为20℃的60%,在80℃时发射峰强度大约为20℃的50%。同时,随着温度的升高,逐渐蓝移。在20℃时最大发射峰所对应的波长为632nm,在50℃时最大发射峰所对应的波长为630nm,相较于20℃时蓝移了2nm。在90℃时最大发射峰所对应的波长为629nm,相较于20℃时蓝移了3nm。
实施例4:
对实施例1制得的有机发光材料HBT-BF2在水溶液中形成纳米粒子性能测试。
图2为HBT-BF2在水溶液中制成纳米粒子进行温度依赖性发光性能测试。
随着温度的升高,HBT-BF2分子在水中呈现单发射峰,非辐射跃迁增加,其荧光强度表现出随温度升高均匀且快速的下降趋势。随着温度的升高,逐渐蓝移。在20℃时,最大发射峰所对应的波长为635nm。在50℃时,最大发射峰所对应的波长为633nm,相较于20℃时,蓝移了2nm。在90℃时,最大发射峰所对应的波长为630nm,相较于20℃时,蓝移了5nm。
实施例5:
对实施例1制得的有机发光材料HBT-BF2在磷酸缓冲盐(PBS)溶液中形成纳米粒子性能测试。
图3为HBT-BF2在PBS溶液中制成纳米粒子进行温度依赖性发光性能测试。
HBT-BF2分子在PBS溶液(pH=7.4)中,呈现单发射峰(636nm处),随着温度的升高,其荧光强度表现出随温度升高均匀且快速的下降趋势,在50℃时大约下降为20℃时光强度的56%,在90℃时大约下降为20℃时光强度的17%。整体呈温度依赖性比率变化。
实施例6:
对实施例2制得的有机发光材料HBT-BF2与一种无能量传递的耐温型的二苯基(6-(吡咯烷-1-基)芘-1-基)氧化膦掺杂在PBS溶液中制成纳米粒子性能测试。
图4为HBT-BF2与一种耐温型的二苯基(6-(吡咯烷-1-基)芘-1-基)氧化膦掺杂在PBS溶液中制成纳米粒子的温度依赖性发光性能测试。
HBT-BF2分子在PBS溶液(pH=7.4)中,呈现双发射峰(500nm和630nm处)。随着温度的升高,短波段荧光强度逐渐升高,长波段其荧光强度表现出随温度升高均匀且快速的下降趋势,变温光谱中两个发射峰随温度一升一降的动态行为表明了HBT-BF2化合物具有作为比率型温度传感器的优秀特质。
实施例7:
对实施例2制得的有机发光材料HBT-BF2与一种无能量传递的耐温型的二苯基(6-(吡咯烷-1-基)芘-1-基)氧化膦掺杂在PBS溶液中制成纳米粒子性能测试。
图5为HBT-BF2与一种耐温型的二苯基(6-(吡咯烷-1-基)芘-1-基)氧化膦掺杂在PBS溶液中制成纳米粒子的温度稳定性测试。
对HBT-BF2与一种耐温型的二苯基(6-(吡咯烷-1-基)芘-1-基)氧化膦掺杂在PBS溶液中制成纳米粒子,当将混合溶液加热到90℃时,可以在掺杂溶液的光谱中发现绿光峰的存在,并且在连续加热4小时的过程中,混合溶液的光谱基本保持不变。
实施例8:
对实施例2制得的有机发光材料HBT-BF2与一种无能量传递的耐温型的二苯基(6-(吡咯烷-1-基)芘-1-基)氧化膦掺杂在PBS溶液中制成纳米粒子性能测试。
图6为HBT-BF2与一种耐温型的二苯基(6-(吡咯烷-1-基)芘-1-基)氧化膦掺杂在PBS溶液中制成纳米粒子的温度可逆循环测试。
对HBT-BF2与一种耐温型的二苯基(6-(吡咯烷-1-基)芘-1-基)氧化膦掺杂在PBS溶液中制成纳米粒子,在20至90℃之间的9次循环中,比例强度几乎没有变化,这表明掺杂纳米粒子的温度探针在高温下的可行性。
此外,应当理解,虽然本说明书按照实施方式加以描述,但并非每个实施方式仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施例中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。

Claims (1)

1.一种基于激发态质子转移的红光材料,其特征在于,分子结构式如下:
CN202210553701.2A 2022-05-19 2022-05-19 一种基于激发态质子转移红光材料及其制备方法与应用 Active CN114874248B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210553701.2A CN114874248B (zh) 2022-05-19 2022-05-19 一种基于激发态质子转移红光材料及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210553701.2A CN114874248B (zh) 2022-05-19 2022-05-19 一种基于激发态质子转移红光材料及其制备方法与应用

Publications (2)

Publication Number Publication Date
CN114874248A CN114874248A (zh) 2022-08-09
CN114874248B true CN114874248B (zh) 2024-01-02

Family

ID=82678395

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210553701.2A Active CN114874248B (zh) 2022-05-19 2022-05-19 一种基于激发态质子转移红光材料及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN114874248B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115433219B (zh) * 2022-09-23 2024-03-12 徐州医科大学 一种具有光动力学性质的极性荧光探针及其制备方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105176514A (zh) * 2015-10-09 2015-12-23 宋明 一种具有温敏响应的双波段荧光共晶材料及其制备方法
CN106810511A (zh) * 2017-01-18 2017-06-09 河南工业大学 基于2‑(2’‑羟基苯基)苯并噻唑衍生物的pH荧光探针及其制备方法和应用
CN110172337A (zh) * 2019-05-30 2019-08-27 南京师范大学 一种苯并噻唑衍生物荧光探针及其制备方法和应用
CN111621111A (zh) * 2020-05-19 2020-09-04 南京邮电大学 一种温控型可逆有机荧光双重防伪标识薄膜及其制备方法
CN113480493A (zh) * 2021-05-20 2021-10-08 南京邮电大学 一种有机黄色荧光激发态质子转移材料及其oled器件
CN113563325A (zh) * 2021-05-24 2021-10-29 南京邮电大学 具有高激子利用率的esipt发光材料及其制备方法与应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105176514A (zh) * 2015-10-09 2015-12-23 宋明 一种具有温敏响应的双波段荧光共晶材料及其制备方法
CN106810511A (zh) * 2017-01-18 2017-06-09 河南工业大学 基于2‑(2’‑羟基苯基)苯并噻唑衍生物的pH荧光探针及其制备方法和应用
CN110172337A (zh) * 2019-05-30 2019-08-27 南京师范大学 一种苯并噻唑衍生物荧光探针及其制备方法和应用
CN111621111A (zh) * 2020-05-19 2020-09-04 南京邮电大学 一种温控型可逆有机荧光双重防伪标识薄膜及其制备方法
CN113480493A (zh) * 2021-05-20 2021-10-08 南京邮电大学 一种有机黄色荧光激发态质子转移材料及其oled器件
CN113563325A (zh) * 2021-05-24 2021-10-29 南京邮电大学 具有高激子利用率的esipt发光材料及其制备方法与应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Aggregation-Induced Emission Enhancement of 2-(2¢-Hydroxyphenyl)benzothiazole-Based Excited-State Intramolecular Proton-Transfer Compounds;Yan Qian等;J. Phys. Chem. B;第111卷(第21期);5861-5868 *

Also Published As

Publication number Publication date
CN114874248A (zh) 2022-08-09

Similar Documents

Publication Publication Date Title
Yuan et al. Multicolor fluorescent graphene quantum dots colorimetrically responsive to all-pH and a wide temperature range
Zhao et al. A tetraphenylethene-substituted pyridinium salt with multiple functionalities: synthesis, stimuli-responsive emission, optical waveguide and specific mitochondrion imaging
Tan et al. Preparation and time-resolved fluorometric application of luminescent europium nanoparticles
Peng et al. Ratiometric fluorescent nanoparticles for sensing temperature
Xu et al. An easily synthesized AIE luminogen for lipid droplet-specific super-resolution imaging and two-photon imaging
Ding et al. D–A–D type chromophores with aggregation-induced emission and two-photon absorption: synthesis, optical characteristics and cell imaging
CN114874248B (zh) 一种基于激发态质子转移红光材料及其制备方法与应用
CN111372922B (zh) 超低浓度的用于在活细胞和深层组织中脂滴特异性成像的双光子荧光化合物
Kumbhakar et al. Reversible temperature-dependent photoluminescence in semiconductor quantum dots for the development of a smartphone-based optical thermometer
Yang et al. Multifunctional N-doped graphene quantum dots towards tetracycline detection, temperature sensing and high-performance WLEDs
CN106478458B (zh) 基于四苯基乙烯和马来腈的希夫碱化合物及其制备方法和应用
Wang et al. “Light on” fluorescence carbon dots with intramolecular hydrogen bond-regulated co-planarization for cell imaging and temperature sensing
Khopkar et al. Viscosity sensitive semisquaraines based on 1, 1, 2-trimethyl-1H-benzo [e] indole: Photophysical properties, intramolecular charge transfer, solvatochromism, electrochemical and DFT study
Yan et al. Quantitative and rapid detection of explosives using an efficient luminogen with aggregation-induced emission characteristics
Jiang et al. Stable Fluorescence of Green‐Emitting Carbon Nanodots as a Potential Nanothermometer in Biological Media
Liu et al. Ratiometric dual fluorescence tridurylboron thermometers with tunable measurement ranges and colors
Tian et al. Efficient red luminogen with aggregation-induced emission for in vivo three-photon brain vascular imaging
Chen et al. Red emissive carbon dots obtained from direct calcination of 1, 2, 4-triaminobenzene for dual-mode pH sensing in living cells
Crucho et al. Silica nanoparticles with thermally activated delayed fluorescence for live cell imaging
Li et al. Nitrogen and boron co-doped carbon dots as a novel fluorescent probe for fluorogenic sensing of Ce4+ and ratiometric detection of Al3+
Chen et al. Multifunctional behavior of a novel tetraphenylethylene derivative: Mechanochromic luminescence, detection of fluoride ions and trace water in aprotic solvents
Cui et al. Highly sensitive sensing of polarity, temperature, and acid gases by a smart fluorescent molecule
Sun et al. Preparation and Applications of Carbon‐Based Fluorescent Nanothermometers
Huang et al. Tetraphenylethylene-based Eu 3+-metallopolymers with aggregation-enhanced white emission for self-calibrating temperature sensing and white light-emitting diodes (WLEDs)
Jia et al. An electrostatic self-assembly route to prepare C-dots/gold nanoclusters for dual-emission ratiometric optical thermometry in living cells

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant