CN114872338B - 一种双向形状记忆调谐超材料的制备及其谐振频率的调谐方法 - Google Patents

一种双向形状记忆调谐超材料的制备及其谐振频率的调谐方法 Download PDF

Info

Publication number
CN114872338B
CN114872338B CN202210481108.1A CN202210481108A CN114872338B CN 114872338 B CN114872338 B CN 114872338B CN 202210481108 A CN202210481108 A CN 202210481108A CN 114872338 B CN114872338 B CN 114872338B
Authority
CN
China
Prior art keywords
shape memory
metamaterial
tuning
way shape
memory polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210481108.1A
Other languages
English (en)
Other versions
CN114872338A (zh
Inventor
刘宇艳
谷浩宇
张东杰
成中军
谢志民
樊志敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN202210481108.1A priority Critical patent/CN114872338B/zh
Publication of CN114872338A publication Critical patent/CN114872338A/zh
Application granted granted Critical
Publication of CN114872338B publication Critical patent/CN114872338B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C69/00Combinations of shaping techniques not provided for in a single one of main groups B29C39/00 - B29C67/00, e.g. associations of moulding and joining techniques; Apparatus therefore
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/48Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/40General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
    • B29C66/41Joining substantially flat articles ; Making flat seams in tubular or hollow articles
    • B29C66/45Joining of substantially the whole surface of the articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/74Joining plastics material to non-plastics material
    • B29C66/742Joining plastics material to non-plastics material to metals or their alloys
    • B29C66/7428Transition metals or their alloys
    • B29C66/74281Copper or alloys of copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/0006Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices
    • H01Q15/0086Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices said selective devices having materials with a synthesized negative refractive index, e.g. metamaterials or left-handed materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

本发明公开了一种双向形状记忆调谐超材料的制备及其谐振频率的调谐方法,所述双向形状记忆调谐超材料的制备方法包括如下步骤:一、将双向形状记忆聚合物和交联剂均匀混合;二、将共混物进行高温交联,得到双向形状记忆聚合物薄膜;三、将交联后的双向形状记忆聚合物薄膜加热到赋形温度,拉伸赋形,冷却固定;四、先使用胶粘剂将金属谐振单元粘接在刚性薄膜上,再使用柔性胶带在粘接有金属谐振单元的刚性薄膜两侧对称固定若干片刚性薄膜,得到柔刚连接薄膜结构,最后将柔刚连接薄膜结构粘接在经拉伸赋形后的双向形状记忆聚合物薄膜上,得到双向形状记忆调谐超材料。本发明通过外界环境刺激,实现了超材料谐振频率的智能可逆调谐。

Description

一种双向形状记忆调谐超材料的制备及其谐振频率的调谐 方法
技术领域
本发明涉及一种形状记忆调谐超材料的制备方法,具体涉及一种基于双向形状记忆聚合物的调谐超材料的制备方法及其谐振频率的调谐方法。
背景技术
超材料由人工结构单元构成,能实现对电磁波的操纵。在传感探测、吸波隐身、超分辨率成像等方面已经得到了广泛的应用。超材料的性质依赖其人工单元的结构和排列,这些通常在制备完成后难以改变,使得超材料的性质也无法变化,这极大地限制了超材料的应用范围,所以柔性可调谐超材料得到了人们广泛的研究。
目前人们多使用弹性体作为柔性可调谐超材料的基底材料,它的变形依赖外力的作用,保持形状需要维持外力。形状记忆聚合物能够响应外界环境刺激发生形变,已经被广泛地应用于航空航天、生物医学等方面。单向形状记忆材料能在无外力下保持双稳态结构,但一次赋形只能回复一次,操作较麻烦。随着研究的深入,一种无需外力、允许结构反复转变、可以智能控制的调谐超材料是人们迫切需要的。
双向形状记忆聚合物在单向形状记忆聚合物基础上多引入了至少一种交联网络,它们区别于保持原始形状的交联网络,提供了额外的内应力,使其形状在一次赋形后可以多次可逆转变。例如,聚乙烯-醋酸乙烯共聚物(EVA)是半结晶聚合物,具有宽的熔融温度,其中:化学交联点提供形状加热回复的内应力;具有较低熔融温度的结晶区域作为致动域,充当双向形变过程中回复过程的开关;具有较高熔融温度的结晶区域作为临时骨架域,提供冷却形状复原的反向内应力。双向形状记忆聚合物在一次赋形后,允许材料在外界环境的刺激下反复转变,同时保持优异的循环稳定性,适合构建智能调谐超材料。
发明内容
本发明的目的是提供一种双向形状记忆调谐超材料的制备及其谐振频率的调谐方法,通过外界环境刺激,实现了超材料谐振频率的智能可逆调谐。
本发明的目的是通过以下技术方案实现的:
一种双向形状记忆调谐超材料的制备方法,包括如下步骤:
步骤一、将双向形状记忆聚合物和交联剂均匀混合,其中:所述双向形状记忆聚合物为EVA、PCO、PCL等中的一种,交联剂为DCP、BPO等中的一种,双向形状记忆聚合物和交联剂的质量比为100:2~4;均匀混合的温度为90~110℃,转速为80~120 rpm/min,时间为10~20min;
步骤二、将步骤一得到的共混物进行高温交联,得到双向形状记忆聚合物薄膜,其中:所述交联温度为130~170℃,交联压力为10~30 MPa,交联时间为30~60 min;
步骤三、将交联后的双向形状记忆聚合物薄膜加热到赋形温度,单轴或双轴拉伸赋形,冷却固定,其中:所述赋形温度为80~120℃;
步骤四、先使用胶粘剂将金属谐振单元粘接在刚性薄膜上,再使用柔性聚酰亚胺胶带在粘接有金属谐振单元的刚性薄膜两侧对称固定若干片刚性薄膜,得到柔刚连接薄膜结构,最后将柔刚连接薄膜结构粘接在经拉伸赋形后的双向形状记忆聚合物薄膜上,得到双向形状记忆调谐超材料,其中:所述胶粘剂在理论上能将金属谐振单元很好地粘接在刚性薄膜即可,如;室温固化硅橡胶等;金属谐振单元为高导电性材料,如铜谐振单元;刚性薄膜不局限于PET薄膜;刚性薄膜与刚性薄膜的接缝处可以弯曲。
一种上述方法制备的双向形状记忆调谐超材料谐振频率的调谐方法,使用环境温度刺激调谐超材料的谐振频率,具体包括如下步骤:
(1)双向形状记忆聚合物基底在60~80℃加热时收缩到临时形状(即:处于原始形状和赋形形状中间的状态),诱导表面柔刚连接薄膜结构屈曲形变,增大了金属谐振单元与双向形状记忆聚合物薄膜间距,从而导致谐振频率蓝移;
(2)双向形状记忆聚合物薄膜在0~25℃冷却时伸长,回复到赋形形状,表面柔刚连接薄膜结构回复,金属谐振单元与双向形状记忆聚合物薄膜间距消失,从而导致谐振频率红移,回复到初始状态;
(3)基于(1)和(2),即可通过环境温度刺激调谐超材料的谐振频率,实现升温谐振频率蓝移,降温谐振频率红移,反复转变。
相比于现有技术,本发明具有如下优点:
1、基于柔性介质的调谐超材料通常都是通过拉伸调谐,需要维持外力作用。本发明使用形状记忆材料可以避免外力作用,依靠刺激驱动。双向形状记忆材料解决了单向形状记忆材料一次赋形只能回复一次的问题,在一次赋形后可以反复转变,即可以反复刺激调谐。
2、本发明基于基底收缩产生表面三维重构的方式非常适用于构建表面微型三维结构,使用双向形状记忆材料作为基底增加其智能可逆可控调节的能力。
附图说明
图1为双向形状记忆调谐超材料制备过程;
图2为双向形状记忆过程;
图3为双向形状记忆调谐超材料样品,(a)为室温下原始形状,(b)为加热后临时形状;
图4为PEVA的双向形状记忆曲线;
图5为双向形状记忆调谐超材料对X波段电磁波的调谐结果。
具体实施方式
下面结合附图对本发明的技术方案作进一步的说明,但并不局限于此,凡是对本发明技术方案进行修改或者等同替换,而不脱离本发明技术方案的精神和范围,均应涵盖在本发明的保护范围中。
本发明提供了一种双向形状记忆调谐超材料的制备及其谐振频率的调谐方法,具体实验过程如下:
1、使用密炼机将双向形状记忆聚合物EVA和交联剂DCP按照100:3的质量比在均匀混合,控制混合温度为105℃,转速为100 rpm,时间为10 min。
2、使用平板硫化机进行高温交联,控制交联温度为170℃,交联压力为20 MPa,交联时间为60 min,得到双向形状记忆聚合物薄膜。
3、将交联后的双向形状记忆聚合物薄膜加热到赋形温度100℃,单轴拉伸赋形,冷却固定。
4、如图1所示,先使用胶粘剂将铜谐振单元粘接在刚性薄膜上,再使用柔性聚酰亚胺胶带在粘接有铜谐振单元的刚性薄膜两侧对称固定若干片PET薄膜,得到柔刚连接薄膜结构,最后将柔刚连接薄膜结构粘接在经拉伸赋形后的双向形状记忆聚合物薄膜上,得到双向形状记忆调谐超材料。
5、使用环境温度刺激调谐超材料的谐振频率。如图2所示,双向形状记忆聚合物基底在70℃加热时收缩到临时形状,诱导表面薄膜结构屈曲形变,增大了谐振单元与基底间距,从而导致谐振频率蓝移。双向形状记忆聚合物基底在冷却(室温)时伸长,回复到赋形形状,表面屈曲结构回复,谐振单元与基底间距消失,从而导致谐振频率红移,回复到初始状态。
实验结果:
(1)双向形状记忆调谐超材料样品展示
按照上述方法制备的双向形状记忆调谐超材料如图3所示,其中:图(a)为室温下原始形状;图(b)为加热后临时形状。
(2)PEVA的双向形状记忆曲线
使用Q800测试材料的双向形状记忆效应。材料升温到100℃,保温10min,然后负载0.2MPa应力。保持应力,降低温度到20℃,进行固定,然后去除应力。再次升温到70℃,材料部分收缩,再次降温到20℃,材料部分伸长。如图4所示,材料的双向形状记忆效应在3次循环过程中保持稳定。计算得到材料的平均双向可逆应变为19.98%,平均形状固定率为97.78%。
(3)矢量网络分析仪测试双向形状记忆调谐超材料对X波段电磁波的调谐结果
样品采用波导法进行测量,使用X波段标准波导,调谐结果如图5所示。图5中,左边是室温下原始形状,右边是加热70℃的临时形状,曲线最低点对应的x轴坐标为谐振频率。本发明使用双向形状记忆材料,通过热刺激实现非接触式地对谐振频率的控制,同时这种控制是可逆的、多次的。本发明制备的双向形状记忆调谐超材料作为滤波装置,能够起到通过外界环境刺激,可控可逆调谐谐振频率的效果。

Claims (3)

1.一种双向形状记忆调谐超材料的制备方法,其特征在于所述方法包括如下步骤:
步骤一、将双向形状记忆聚合物和交联剂均匀混合,所述双向形状记忆聚合物和交联剂的质量比为100:2~4,所述双向形状记忆聚合物为EVA、PCO、PCL中的一种,交联剂为DCP、BPO中的一种;
步骤二、将步骤一得到的共混物进行高温交联,得到双向形状记忆聚合物薄膜,所述交联温度为130~170℃,交联压力为10~30 MPa,交联时间为30~60 min;
步骤三、将交联后的双向形状记忆聚合物薄膜加热到赋形温度,拉伸赋形,冷却固定,所述赋形温度为80~120℃;
步骤四、先使用胶粘剂将金属谐振单元粘接在刚性薄膜上,再使用柔性胶带在粘接有金属谐振单元的刚性薄膜两侧对称固定若干片刚性薄膜,得到柔刚连接薄膜结构,最后将柔刚连接薄膜结构粘接在经拉伸赋形后的双向形状记忆聚合物薄膜上,得到双向形状记忆调谐超材料。
2.根据权利要求1所述的双向形状记忆调谐超材料的制备方法,其特征在于所述均匀混合的温度为90~110℃,转速为80~120 rpm/min,时间为10~20 min。
3.一种权利要求1-2任一项所述方法制备的双向形状记忆调谐超材料谐振频率的调谐方法,其特征在于所述方法使用环境温度刺激调谐超材料的谐振频率,具体包括如下步骤:
(1)双向形状记忆聚合物基底在60~80℃加热时收缩到临时形状,诱导表面柔刚连接薄膜结构屈曲形变,增大了金属谐振单元与双向形状记忆聚合物薄膜间距,从而导致谐振频率蓝移;
(2)双向形状记忆聚合物薄膜在0~25℃冷却时伸长,回复到赋形形状,表面柔刚连接薄膜结构回复,金属谐振单元与双向形状记忆聚合物薄膜间距消失,从而导致谐振频率红移,回复到初始状态;
(3)基于(1)和(2),即可通过环境温度刺激调谐超材料的谐振频率,实现升温谐振频率蓝移,降温谐振频率红移,反复转变。
CN202210481108.1A 2022-05-05 2022-05-05 一种双向形状记忆调谐超材料的制备及其谐振频率的调谐方法 Active CN114872338B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210481108.1A CN114872338B (zh) 2022-05-05 2022-05-05 一种双向形状记忆调谐超材料的制备及其谐振频率的调谐方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210481108.1A CN114872338B (zh) 2022-05-05 2022-05-05 一种双向形状记忆调谐超材料的制备及其谐振频率的调谐方法

Publications (2)

Publication Number Publication Date
CN114872338A CN114872338A (zh) 2022-08-09
CN114872338B true CN114872338B (zh) 2023-02-07

Family

ID=82674365

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210481108.1A Active CN114872338B (zh) 2022-05-05 2022-05-05 一种双向形状记忆调谐超材料的制备及其谐振频率的调谐方法

Country Status (1)

Country Link
CN (1) CN114872338B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101164770A (zh) * 2006-10-20 2008-04-23 香港理工大学 双向形状记忆聚合物复合材料及其制备方法
CN102480014A (zh) * 2011-05-11 2012-05-30 深圳光启高等理工研究院 形状记忆超材料及其制备方法
CN103992631A (zh) * 2014-05-29 2014-08-20 理大产学研基地(深圳)有限公司 具有双向形状记忆的聚合物材料及其制备方法
CN104086791A (zh) * 2014-06-18 2014-10-08 哈尔滨工业大学 一种光学特性可控形状记忆聚合物薄膜及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8608999B2 (en) * 2011-05-06 2013-12-17 GM Global Technology Operations LLC Method of fabricating shape memory polymer-based three-dimensional devices
US8883520B2 (en) * 2012-06-22 2014-11-11 Avalanche Technology, Inc. Redeposition control in MRAM fabrication process
US20220306914A1 (en) * 2019-02-01 2022-09-29 The Trustees Of The University Of Pennsylvania Intrinsically reversible superglues

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101164770A (zh) * 2006-10-20 2008-04-23 香港理工大学 双向形状记忆聚合物复合材料及其制备方法
CN102480014A (zh) * 2011-05-11 2012-05-30 深圳光启高等理工研究院 形状记忆超材料及其制备方法
CN103992631A (zh) * 2014-05-29 2014-08-20 理大产学研基地(深圳)有限公司 具有双向形状记忆的聚合物材料及其制备方法
CN104086791A (zh) * 2014-06-18 2014-10-08 哈尔滨工业大学 一种光学特性可控形状记忆聚合物薄膜及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
具有微纳结构形状记忆聚合物材料的研究进展;吕通等;《化学与粘合》;20170715(第04期);全文 *

Also Published As

Publication number Publication date
CN114872338A (zh) 2022-08-09

Similar Documents

Publication Publication Date Title
Kuang et al. Magnetic dynamic polymers for modular assembling and reconfigurable morphing architectures
Wu et al. Liquid crystal elastomer metamaterials with giant biaxial thermal shrinkage for enhancing skin regeneration
Wang et al. Reprogrammable, magnetically controlled polymeric nanocomposite actuators
Qi et al. Versatile magnetorheological plastomer with 3D printability, switchable mechanics, shape memory, and self-healing capacity
Dolog et al. Shape memory behavior of a polyethylene-based carboxylate ionomer
Fan et al. High performance and tunable artificial muscle based on two-way shape memory polymer
Yang et al. Body temperature-responsive two-way and moisture-responsive one-way shape memory behaviors of poly (ethylene glycol)-based networks
Wang et al. A liquid crystal elastomer‐based unprecedented two‐way shape‐memory aerogel
CN104804212B (zh) 一种形状记忆聚己内酯泡沫的制备方法及其驱动方法
US9044902B2 (en) Radio frequency magnetic field responsive polymer composites
Shen et al. Thermal-and light-responsive programmable shape-memory behavior of liquid crystalline polyurethanes with pendant photosensitive groups
Li et al. A broadband and tunable microwave absorption technology enabled by VGCFs/PDMS-EP shape memory composites
CN114872338B (zh) 一种双向形状记忆调谐超材料的制备及其谐振频率的调谐方法
Brannum et al. Deformation and elastic recovery of acrylate-based liquid crystalline elastomers
Yang et al. Properties and mechanism of two-way shape memory polyurethane composite under stress-free condition
CN111848990B (zh) 基于自成核效应构筑的双向形状记忆弹性体的制备方法
KR20160133522A (ko) 고분자 분산형 액정 탄성체
Hua et al. Cold-induced shape memory hydrogels for strong and programmable artificial muscles
Qiu et al. Programmable and sophisticated shape-memory behavior via tailoring spatial distribution of polymer crosslinks
Wang et al. A facile approach to fabricate two-way shape memory polyurethane with large reversible strain and high shape stability
US8608999B2 (en) Method of fabricating shape memory polymer-based three-dimensional devices
Zhang et al. Thermoresponsive bilayer hydrogel with switchable bending directions as soft actuator
Javed et al. Programmable shape change in semicrystalline liquid crystal elastomers
Wang et al. Liquid crystal elastomers for soft actuators
Rim et al. Shape-morphing thermoactuators: tetrathiafulvalene-based polymer networks with an effective phonon conduction pathway

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant