CN114870036B - 负载治疗药物的真黑素样纳米造影剂及其合成方法 - Google Patents

负载治疗药物的真黑素样纳米造影剂及其合成方法 Download PDF

Info

Publication number
CN114870036B
CN114870036B CN202210343322.0A CN202210343322A CN114870036B CN 114870036 B CN114870036 B CN 114870036B CN 202210343322 A CN202210343322 A CN 202210343322A CN 114870036 B CN114870036 B CN 114870036B
Authority
CN
China
Prior art keywords
eumelanin
nano
manganese
amec
contrast agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210343322.0A
Other languages
English (en)
Other versions
CN114870036A (zh
Inventor
陈晓
刘凯军
刘恒
方靖琴
孙多
王毅
刘玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chinese Peoples Liberation Army Army Specialized Medical Center
Original Assignee
Chinese Peoples Liberation Army Army Specialized Medical Center
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chinese Peoples Liberation Army Army Specialized Medical Center filed Critical Chinese Peoples Liberation Army Army Specialized Medical Center
Priority to CN202210343322.0A priority Critical patent/CN114870036B/zh
Publication of CN114870036A publication Critical patent/CN114870036A/zh
Application granted granted Critical
Publication of CN114870036B publication Critical patent/CN114870036B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/0002General or multifunctional contrast agents, e.g. chelated agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/12Ketones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/74Synthetic polymeric materials
    • A61K31/785Polymers containing nitrogen
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/62Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
    • A61K47/64Drug-peptide, drug-protein or drug-polyamino acid conjugates, i.e. the modifying agent being a peptide, protein or polyamino acid which is covalently bonded or complexed to a therapeutically active agent
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/08Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by the carrier
    • A61K49/10Organic compounds
    • A61K49/12Macromolecular compounds
    • A61K49/126Linear polymers, e.g. dextran, inulin, PEG
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/18Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes
    • A61K49/1818Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles
    • A61K49/1821Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles
    • A61K49/1824Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles
    • A61K49/1827Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle
    • A61K49/1851Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle having a (super)(para)magnetic core coated or functionalised with an organic macromolecular compound, i.e. oligomeric, polymeric, dendrimeric organic molecule
    • A61K49/1857Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle having a (super)(para)magnetic core coated or functionalised with an organic macromolecular compound, i.e. oligomeric, polymeric, dendrimeric organic molecule the organic macromolecular compound being obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. PLGA
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/22Echographic preparations; Ultrasound imaging preparations ; Optoacoustic imaging preparations
    • A61K49/221Echographic preparations; Ultrasound imaging preparations ; Optoacoustic imaging preparations characterised by the targeting agent or modifying agent linked to the acoustically-active agent
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/22Echographic preparations; Ultrasound imaging preparations ; Optoacoustic imaging preparations
    • A61K49/222Echographic preparations; Ultrasound imaging preparations ; Optoacoustic imaging preparations characterised by a special physical form, e.g. emulsions, liposomes
    • A61K49/225Microparticles, microcapsules
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P39/00General protective or antinoxious agents
    • A61P39/06Free radical scavengers or antioxidants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y15/00Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Epidemiology (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Acoustics & Sound (AREA)
  • Biochemistry (AREA)
  • Neurosurgery (AREA)
  • Immunology (AREA)
  • Pain & Pain Management (AREA)
  • Rheumatology (AREA)
  • Biomedical Technology (AREA)
  • Toxicology (AREA)
  • Biophysics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Neurology (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

本发明公开了一种负载治疗药物的真黑素样纳米造影剂的合成方法,首先其由金属盐离子作为锰源,盐酸多巴胺作为前驱体分子聚合成锰‑真黑素纳米颗粒,随后在锰‑真黑素纳米颗粒上负载靶向药物,得真黑素样纳米造影剂。本发明还公开了该负载治疗药物的真黑素样纳米造影剂的应用。本发明所提供的真黑素样纳米造影剂,具有高载金属量和几何限制效应,表现出优异的T1‑T2双模式MRI对比增强能力;同时通过将神经保护剂姜黄素负载到angiopep‑2功能化和锰掺杂的真黑素纳米粒子上来制备靶向诊疗创伤性脑损伤的抗氧化和抗神经炎症、在创伤部位积累的AMEC,实现了对继发性脑损伤的长期治疗效果;该AMEC很好的将药物载体与医学影像学结合,拥有很好的临床应用潜力。

Description

负载治疗药物的真黑素样纳米造影剂及其合成方法
技术领域
本发明属于医用制剂技术领域,具体涉及一种负载治疗药物的真黑素样纳米造影剂及其合成方法。
背景技术
创伤性脑损伤(TBI)已成为一个世界上重要的公共卫生问题,具有很高的致残率和死亡率。它是一个由原发性和继发性脑损伤组成的复杂过程。原发性脑损伤与外部冲击有关,继发性脑损伤由过量产生的活性氧(ROS)引起并导致多种TBI相关脑损伤。在脑损伤的微环境中,过量的ROS可以通过激发细胞因子的表达来激活炎症和免疫反应,引起炎症的进一步损害,最终导致神经功能缺损。此外,大量活化的星形胶质细胞和小胶质细胞募集到受伤区域,抑制神经元再生,并抑制轴突生长。这意味着ROS是神经元保护的关键治疗靶点,因此,迫切需要一种治疗剂来清除ROS缓解神经炎症,加速神经元再生。
为了抑制TBI后过量产生的ROS引起的继发性损伤,人们研究了多种限制ROS毒性的神经元保护药物,其中对姜黄素(Cur)的研究较为广泛。Cur是一种植物多酚类化合物,具有抗氧化、抗炎、抗凋亡等多种药理活性。然而,Cur水溶性差、代谢快、血液半衰期短、不能有效穿透血脑屏障(BBB)且生物利用度低,限制了其在临床上的应用。随着纳米技术(如纳米药物递送系统)的出现,可提高神经元保护性药物递送到受损大脑部位的富集效率。然而,由于成本高、生物相容性和生物降解性低以及负载效率差,许多纳米药物递送系统向临床应用的转化受到了阻碍。
由天然抗氧化成分组成的生物相容性和可生物降解的纳米颗粒最近受到了广泛的关注。黑色素是一种天然聚合物,广泛存在于生物体的各种组织中。黑色素样纳米颗粒(MelNPs)对各种含有芳香结构的小分子药物表现出强大的负载能力,由于其表面具有丰富的π共轭结构,MelNPs对多种活性氧和氮物种具有强大而广泛的清除能力。MelNPs独特的自由基清除能力使其在氧化应激和炎症相关疾病中的应用具有较大的前景。除了这些优良的特性外,MelNPs还表现出优异的金属离子螯合能力,对各种顺磁性金属离子(如铁、锰和钆)作为MRI造影剂具有高亲和力。我们可以动态监测纳米颗粒在病变中的体内分布和靶向能力。此外,靶向分子(例如angiopep-2)通过与MelNPs表面丰富的功能基团结合,随后与BBB中过度表达的低密度脂蛋白受体相关蛋白-1(LRP-1)结合,增加基于angiopep-2靶向穿过BBB增加药物在脑损伤中的积累。
发明内容
本发明旨在至少在一定程度上解决相关技术中的技术问题之一。为此,本发明的主要目的在于提供一种自聚合真黑素样纳米造影剂的合成方法,以四水合氯化锰作为锰源,盐酸多巴胺作为前驱体分子,通过聚合内掺杂合成和负载策略得到AMEC,其具有高载金属量、高弛豫率和穿透血脑屏障靶向创伤部位有效治疗继发性脑损伤;且能够很好的将药物载体与医学影像学结合,拥有很好的临床应用潜力。
本发明的目的是通过以下技术方案实现的:
一种负载治疗药物的真黑素样纳米造影剂的合成方法,首先其由金属盐离子作为锰源,盐酸多巴胺作为前驱体分子聚合成锰-真黑素纳米颗粒,随后在所述锰-真黑素纳米颗粒上负载靶向药物,得真黑素样纳米造影剂。
优选地,其中所述金属盐离子为四水合氯化锰。
优选地,其中所述靶向药物包括靶向剂和治疗药,所述靶向剂为靶向肽,所述治疗药为姜黄素。
优选地,其中负载治疗药物的真黑素样纳米造影剂的合成方法具体包括如下步骤:
1)将盐酸多巴胺溶解于去离子水中,之后置于温度为30-40℃的水浴中搅拌均匀,得盐酸多巴胺溶液;
2)在剧烈搅拌的条件下,将经过超声分散的四水合氯化锰加入至上述盐酸多巴胺溶液中,之后于温度为30-40℃的水浴中继续搅拌0.5-1.5小时,得盐酸多巴胺与金属盐离子的混合悬浮液;
3)将Tris水溶液加入至步骤2)所得的混合悬浮液中,之后于温度为30-40℃的水浴中维持反应2-4小时,反应完成后,对所得反应物进行高速离心重悬数次,将分离后的沉淀物超声分散于去离子水中,真空下冷冻干燥,得锰-真黑素纳米颗粒;
4)将步骤3)所得的锰-真黑素纳米颗粒用pH调节剂调至碱性后滴加靶向肽,维持反应2-4小时,然后再加入姜黄素维持反应8-12小时,即得真黑素样纳米造影剂。
优选地,其中所述MnCl2·4H2O的质量浓度为10mg/mL。
优选地,其中所述Tris水溶液的摩尔浓度为100mmol/L,所述盐酸多巴胺的质量浓度为0.5mg/mL,所述盐酸多巴胺与金属盐离子的质量比为10:(0.5-1.5)。
优选地,其中所述锰-真黑素纳米颗粒与靶向肽的质量比为1:(0.03-0.1),所述锰-真黑素纳米颗粒与姜黄素的质量比为1:(0.5-1.5)。
优选地,其中所述步骤1中的高速离心重悬为4-6次,离心速度为10000-12000r/min,离心时间为20-30min。
根据上述的负载治疗药物的真黑素样纳米造影剂在脑创伤部位修复神经损伤的应用。
与现有技术相比,本发明至少具有以下优点:
1)本发明所述的AMEC,以四水合氯化锰作为锰源,盐酸多巴胺作为前驱体分子,通过聚合内掺杂和负载策略得到;其是一种高载金属量、高弛豫率和穿透血脑屏障靶向创伤部位可有效治疗继发性脑损伤材料,该AMEC具有高载金属量和几何限制效应,表现出优异的T1-T2双模式MRI对比增强能力,该AMEC很好的将药物载体与医学影像学结合,拥有很好的临床应用潜力。
2)本申请所述的合成方法简便,重复性高所用原材料温和、绿色环保,重复性高,该AMEC由于锰离子是生物体生命过程所必需的一种微量元素,生物体可调控其稳态。黑色素也在生物体各组织细胞内广泛存在,可被有效代谢;因此,本材料完全由生物体的天然组分构成,避免了传统纳米材料的安全性问题,具有极大的临床转化价值。
3)通过本申请的合成方法制备得到的真黑素纳米造影剂,通过将神经保护剂姜黄素负载到angiopep-2功能化和锰掺杂的真黑素纳米粒子上来制备靶向TBI治疗学的抗氧化和抗神经炎症;在创伤部位积累的AMEC实现了对继发性脑损伤的长期治疗效果。该AMEC弥补了常规药物的空白,并获得以下显着优势:(1)AMEC可以通过angiopep-2-LRP1相互作用通过BBB进入TBI病灶,增加药物积累;(2)AMEC可以实现高性能的T1-T2双模态磁共振成像(MRI)和光声(PA)成像,可以在体内追踪药物进入病灶的过程;(3)姜黄素和真黑素协同促进AMEC在创伤性病变中的功效,通过减轻氧化应激、M1转化为M2巨噬细胞的重编程抑制神经炎症和促进神经元再生。因此,这种纳米治疗诊断系统有效地缓解了氧化应激,减少了神经炎症和损伤的二次扩散,且可实现高性能T1-T2双模态MRI和PA成像。
附图说明
为了更清楚地说明本发明具体实施方式,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍。
图1为本发明所述AMEC的合成工艺示意图。
图2为本发明所述AMEC的形貌表征:其中,图2a为透射电镜图;图2b为高角度环形暗场扫描透射电子显微镜X射线能谱分析。
图3为AMEC的物理化学性能表征:图3a为紫外吸收光谱;图3b为电子自旋共振谱图;图3c为拉曼光谱;图3d为Mn2p1/2和Mn2p3/2的X射线光电子能谱分析。
图4为本发明所述姜黄素标准曲线。
图5为本发明所述AMEC的r1弛豫率(图5a)和r2弛豫率(图5b),插图为T1加权和T2加权图像;图5c为AMEC的光声成像信号值,插图为材料光声成像图。
图6为本发明所述AMEC的降解实验,不同过氧化氢浓度下孵育24小时后的紫外-可见光吸收光谱。
图7为本发明所述AMEC的细胞摄取实验,其中,图7a为AMEC穿透细胞膜进入细胞内部的细胞光学成像图,图7b为bEnd.3与AMEC共培养后的T1弛豫时间;图7c为bEnd.3与AMEC共培养后的T2弛豫时间。
图8为本发明所述AMEC用于脑创伤小鼠MRI与PA成像:其中图8a为经尾静脉注射AMEC后不同时间点的T1加权图像(上)和T2加权图像(下);图8b为注射AMEC后不同时间点的T1、T2弛豫时间变化;图8c为经尾静脉注射AMEC后不同时间点的光声成像图片;图8d为注射AMEC后不同时间点的光声信号值强度变化。
图9为本发明所述AMEC用于脑创伤治疗效果:其中9a为治疗1天后的代表性T2WI和脑水肿定量分析;9b为小鼠在水迷宫试验测试阶段的游泳轨迹;9c为治疗后4周脑组织的H&E染色。
图10为AMEC在体外清除ROS的能力。
图11为小鼠经尾静脉注射AMEC 3天后不同分组中脑创伤区域巨噬细胞极化检测。
图12为本发明所述AMEC在不同浓度时,与内皮细胞(bEnd.3)共孵育后细胞存活率。
图13为本发明所述AMEC在不同浓度时的溶血性分析。
图14为小鼠经尾静脉注射本发明所述AMEC 14天后的血清生化检测结果。
图15为小鼠经尾静脉注射本发明所述AMEC 14天后主要脏器(脑、心、肝、脾、肺、肾)的苏木精-伊红染色图。
具体实施方式
下面结合附图和实施例对本发明作进一步详述,以下实施例只是描述性的,不是限定性的,不能以此限定本发明的保护范围。
当以范围、优选范围、或者优选的数值上限以及下限的形式表述某个量、浓度或其它值或参数的时候,应当理解相当于具体揭示了通过将任意一对范围上限或优选数值与任意范围下限或优选数值结合起来的任何范围,而不考虑该范围是否具体揭示。除非另外指出,本文所列出的数值范围值在包括范围的端点,和该范围之内的所有整数和分数。
除非另外说明,本文中所有的百分比、份数、比值等均是按重量计。
本文的材料、方法和实施例均是示例性的,并且除非特别说明,不应理解为限制性的。
下述实施例和试验例中采用的原料包括四水合氯化锰、盐酸多巴胺、购自国药基团化学试剂有限公司,Tris购自碧云天,姜黄素购自sigma,靶向肽angiopep-2购自上海强耀生物科技有限公司;
去离子水通过密理博超纯化水系统获得。
【实施例】AMEC的合成方法
实施例1:
一种负载治疗药物的真黑素样纳米造影剂的合成方法,包括如下步骤:
1)将20mg盐酸多巴胺(质量浓度为0.5mg/mL)溶解于40mL去离子水中,之后置于温度为30℃的水浴中搅拌均匀,得盐酸多巴胺溶液;
2)在剧烈搅拌(搅拌速度为1200rpm)的条件下,快速(1min内)将经过超声分散的100μL四水合氯化锰(质量浓度为10mg/mL)加入至上述盐酸多巴胺溶液中,之后于温度为30℃的水浴中继续搅拌1.5小时,得盐酸多巴胺与金属盐离子的混合悬浮液;
3)快速(1min内)将10mL Tris水溶液(摩尔浓度为100mmol/L)加入至步骤2)所得的混合悬浮液中,之后于温度为30℃的水浴中维持反应4小时,反应完成后,对所得反应物离心重悬4次,每次离心重悬中离心速度为10000r/min,离心时间为30min,将分离后的沉淀物超声分散于去离子水中,真空下冷冻干燥,定量,得锰-真黑素纳米颗粒(其中锰-真黑素纳米颗粒为MnEMNPs,简称ME);
4)将步骤3)所得的锰-真黑素纳米颗粒用pH调节剂调至pH=10后滴加靶向肽(angiopep-2),其中ME与靶向肽的质量比为1:0.03,维持反应2小时,然后再加入姜黄素(ME与姜黄素的质量比为1:0.5)维持反应8小时,即得真黑素样纳米造影剂(其中真黑素样纳米造影剂为ANG-MnEMNPs-Cur,简称AMEC)。
实施例2:
一种负载治疗药物的真黑素样纳米造影剂的合成方法,包括如下步骤:
1)将20mg盐酸多巴胺(质量浓度为0.5mg/mL)溶解于40mL去离子水中,之后置于温度为37℃的水浴中搅拌均匀,得盐酸多巴胺溶液;
2)在剧烈搅拌(搅拌速度为1200rpm)的条件下,快速(1min内)将经过超声分散的179μL四水合氯化锰(质量浓度为10mg/mL)加入至上述盐酸多巴胺溶液中,之后于温度为37℃的水浴中继续搅拌1.0小时,得盐酸多巴胺与金属盐离子的混合悬浮液;
3)快速(1min内)将10mL Tris水溶液(摩尔浓度为100mmol/L)加入至步骤2)所得的混合悬浮液中,之后于温度为37℃的水浴中维持反应3小时,反应完成后,对所得反应物离心重悬5次,每次离心重悬中离心速度为11000r/min,离心时间为25min,将分离后的沉淀物超声分散于去离子水中,真空下冷冻干燥,定量,得锰-真黑素纳米颗粒;
4)将步骤3)所得的锰-真黑素纳米颗粒用pH调节剂调至pH=10后滴加靶向肽(angiopep-2),其中ME与靶向肽的质量比为1:0.05,维持反应3小时,然后再加入姜黄素(ME与姜黄素的质量比为1:1)维持反应10小时,即得真黑素样纳米造影剂(AMEC)。
实施例3:
一种负载治疗药物的真黑素样纳米造影剂的合成方法,包括如下步骤:
1)将20mg盐酸多巴胺(质量浓度为0.5mg/mL)溶解于40mL去离子水中,之后置于温度为40℃的水浴中搅拌均匀,得盐酸多巴胺溶液;
2)在剧烈搅拌(搅拌速度为1200rpm)的条件下,快速(1min内)将经过超声分散的300μL四水合氯化锰(质量浓度为10mg/mL)加入至上述盐酸多巴胺溶液中,之后于温度为40℃的水浴中继续搅拌0.5小时,得盐酸多巴胺与金属盐离子的混合悬浮液;
3)快速(1min内)将10mL Tris水溶液(摩尔浓度为100mmol/L)加入至步骤2)所得的混合悬浮液中,之后于温度为40℃的水浴中维持反应2小时,反应完成后,对所得反应物离心重悬6次,每次离心重悬中离心速度为12000r/min,离心时间为20min,将分离后的沉淀物超声分散于去离子水中,真空下冷冻干燥,定量,得锰-真黑素纳米颗粒;
4)将步骤3)所得的锰-真黑素纳米颗粒用pH调节剂调至pH=10后滴加靶向肽(angiopep-2),其中ME与靶向肽的质量比为1:0.1,维持反应4小时,然后再加入姜黄素(ME与姜黄素的质量比为1:1.5)维持反应12小时,即得真黑素样纳米造影剂(AMEC)。
【试验例】负载治疗药物的真黑素纳米造影剂的检测
本实验例以实施例2所述的合成方法得到的负载治疗药物的真黑素样纳米造影剂为例,进行详细说明。
1)AMEC的物理化学表征:
取50μL合成的AMEC稀释10倍,测量其紫外-可见光吸收光谱;透射电镜观察AMEC的尺寸和形貌,同时采用透射电镜的X射线能谱分析对AMEC的元素构成进行分析;电子自旋共振仪检测AMEC的电子自旋共振信号;拉曼光谱仪检测AMEC的拉曼光谱信号;X射线光电子能谱仪分析AMEC中锰的价态;配置不同浓度(0、0.025、0.05、0.1、0.2μg/mL)的姜黄素绘制标准曲线,计算姜黄素负载率。
参见图2、图3、图4,锰-真黑素纳米颗粒(ME)是通过一锅内聚合掺杂(IPD)策略合成的,随后用靶向肽(angiopep-2)和姜黄素(Cur)修饰ME后,TEM(透射电子显微镜)中AMEC的形态均匀且分散较好,尺寸大约为200nm左右,高角度环形暗场扫描透射电子显微镜X射线能谱(HAADF-STEM EDX)显示AMEC中存在氧、碳和锰元素。此外紫外-可见-近红外吸收光谱显示了AMEC在近红外(NIR)区域的吸收,拉曼光谱中位于1413cm-1和1573cm-1附近的两个特征波段信号与天然真黑素相似。ESR谱表现为单线宽ESR谱,与文献报道的真黑素样纳米颗粒一致。x射线光电子能谱(XPS)显示,Mn 2p3/2和Mn 2p1/2的特征峰分别位于641.6和653.47eV,表明ME中Mn(II)和Mn(III)物种的存在,这也证实了Mn在ME中的成功加载。此外,通过ICP-MS对ME中Mn的含量进行了定量分析,结果表明Mn的负载效率达到3.2%wt/wt。根据游离姜黄素的标准曲线,测定合成后上清液中姜黄素的浓度,测得姜黄素负载效率约为90.9%wt/wt。以上结果说明AMEC的合成是成功的。
2)AMEC的成像性能表征:
核磁共振成像(MRI):为了测量AMEC的纵向弛豫率(r1)和横向弛豫率(r2),将AMEC溶液按照浓度梯度倍比稀释,根据ICP-MS对ME中锰含量的定量分析,监测弛豫率随锰浓度的变化规律。在室温条件下采用7.0T小动物磁共振成像仪对溶液进行图像采集,扫描参数如下:(1)T1RARE序列:TR/TE:1500/8ms;回波间隔:8ms;平均:4;切片厚度:1mm;矩阵:256×256;视场:2.5×2.5cm;(2)T1-map序列:TR范围从447ms到5,500ms;TE:8.5ms;回波间隔:8.5ms;回波图像:10;切片厚度:1mm;矩阵:256×256;视场:2.5×2.5cm;(3)TurboRARE-T2序列:TR/TE:2,500/35ms;回波间隔:11.5ms;平均:4;切片厚度:1mm,矩阵:256×256;视场:2.5×2.5cm;(4)T2-map MSME序列:TR:4,500ms;TE范围从9.5ms到237.5ms;回波间隔:9.5ms;回声图像:25;切片厚度:1mm;矩阵:256×256;视场:2.5×2.5cm。
光声成像(PAI):将梯度浓度为0-400μg/mL(0μg/mL,100μg/mL,200μg/mL,300μg/mL和400μg/mL)的AMEC(200μL)注入EP管,在808nm激光激发下通过PA成像系统检测产生的信号。
参见图5,不同浓度的AMEC展示出良好的正性和负性对比增强效果。细胞的T1弛豫时间和T2弛豫时间显著降低,并呈浓度依赖性。不同浓度的AMEC同时展现出良好的光声信号,并呈浓度依赖性,这为其生物体内成像奠定了良好的基础。
3)AMEC的降解实验
在过氧化氢环境下可有效降解,促进代谢配置不同浓度(0mM,2.5mM,5mM,10mM)的过氧化氢溶液,取10μL合成的AMEC分别加入其中,测量其紫外-可见光吸收光谱,24h后再次测量其紫外-可见光吸收光谱。参见图6,随着过氧化氢浓度升高,24小时后AMEC颜色逐渐变淡,紫外吸收明显下降说明经过过氧化氢溶液孵育后AMEC可降解;生理环境中含有过氧化氢,AMEC可经过一段时间在体内降解排出体外。
4)细胞对AMEC的摄取能力
将内皮细胞bEnd.3细胞接种于12孔细胞培养板,待细胞融合至85%左右时,将浓度为0mg/mL,25mg/mL,50mg/mL和75mg/mL的AMEC分别与细胞孵育6h,洗涤细胞,胰酶消化,悬于1%低熔点琼脂糖(200μL)中。体外细胞MR图像分别使用7.0T MRI扫描仪;
参见图7,与浓度为0mg/mL,25mg/mL,50mg/mL和75mg/mL的AMEC分别孵育6小时后,光学显微镜图像显示bEnd.3细胞内可见大量的棕黑色颗粒,且细胞外背景非常干净。表明AMEC可被bEnd.3细胞有效摄取,并显示出浓度依赖性。与浓度为0mg/mL,25mg/mL,50mg/mL和75mg/mL的AMEC孵育后,bEnd.3细胞同时展示出良好的正性和负性对比增强效果;细胞的T1弛豫时间和T2弛豫时间显著降低,并呈浓度依赖性,提示被摄取的AMEC可提高细胞可视化程度。
5)脑创伤小鼠MRI
将AMEC以50mg/kg小鼠体重剂量经尾静脉注入脑创伤小鼠后,分别在注射前、注射AMEC后10min,2h,6h和24h对小鼠肿瘤部位行磁共振成像;具体成像参数同AMEC的成像性能表征中所述的扫描参数,然后比较创伤部位在10min,2h,6h和24h信号及弛豫时间变化情况。
注射AMEC(静脉注射,200μL,0.2mg/body)、10min、2h、6h、24h对TBI小鼠进行扫描PA成像。
参见图8,经尾静脉注射AMEC后,脑创伤小鼠在T1加权图像和T2加权图像上分别表现出正性和负性对比增强效果,在注射后2小时达到峰值。为了消除不同脑创伤小鼠之间的差异,将肿瘤部位的T1弛豫时间和T2弛豫时间进行量化分析,将注射之前的肿瘤部位弛豫时间定义为100%。结果显示,肿瘤部位的T1弛豫时间和T2弛豫时间显著降低,在注射后2小时达到峰值。此后,肿瘤部位信号及弛豫时间逐渐恢复,在注射后24小时,肿瘤部位的T1弛豫时间和T2弛豫时间分别为注射AMEC之前的96.7%和97.5%。体内MRI结果表明AMEC可通过靶向肽在创伤部位有效富集,有效提高创伤部位对比度。
此外,体内PA图像显示最大PA信号强度在注射药物2h后产生,这与核磁共振结果一致。随后,PA信号强度逐渐降低,在24h后信号强度下降明显,这也表明了AMEC的进一步代谢。综上所述,TBI损伤中,AMEC具有较好的成像效果以及代谢能力。
6)AMEC治疗脑创伤效果
脑水肿:每组随机抽取5只小鼠,分别设置为假手术组、TBI组以及治疗组,1天后处死小鼠,立即取脑组织。整个大脑被放置在一个微天平上以获得湿重。在80℃鼓风烘箱中烘干72h后,获得脑干重。脑含水量公式为:(湿重干重)/(湿重)*100%。
水迷宫:每组随机抽取5只小鼠,分别设置为假手术组、TBI组以及治疗组,采用Morris水迷宫对认知功能进行评估。水迷宫包括4个象限,其中一个象限有一个可移动的平台,距离水面1厘米;水迷宫试验分为两个阶段;水迷宫第一阶段每天进行4次训练试验,持续5天;将老鼠随机放置在水中,同时面对池壁;当小鼠在90秒内自行找到平台后,可以停留10秒,而未找到平台的小鼠则由测试者引导至平台并停留10秒;水迷宫第二阶段,没有平台,让老鼠在游泳池里游泳60秒;记录各组的目标象限运动轨迹。
脑组织切片:每组随机抽取5只小鼠,分别设置为假手术组、TBI组以及治疗组,治疗28天后采集小鼠脑组织进行石蜡包埋,切片进行H&E染色。
参见图9在治疗后1天评估脑水肿。与TBI组相比,AMEC处理组脑含水量显著降低。T2加权图像也显示,与TBI组相比,AMEC组的高强度区域更小;表明AMEC对脑损伤后血脑屏障有保护作用,可减轻脑水肿。
采用Morris水迷宫研究AMEC对TBI小鼠学习记忆的影响。在5天的训练中,所有小鼠的逃逸潜伏期逐渐降低;与TBI组相比,AMEC处理的小鼠在60s内进入平台量更高,提示AMEC可以有效提高TBI小鼠的学习能力。
注射AMEC 28天后,采用苏木精-伊红(H&E)染色法观察小鼠脑形态;脑损伤部位的形态照片显示,与TBI小鼠相比,使用AMEC治疗后的脑组织恢复正常。
7)AMEC的治疗机制
活性氧清除:分别使用DPPH、羟基自由基和超氧阴离子检测试剂盒(Solarbio,北京,中国)检测AMEC清除DPPH、·OH和·O2 -的能力。
细胞内ROS清除:小鼠脑组织微血管内皮细胞bEnd.3细胞,购自中国科学院(上海)细胞库,用含有胎牛血清(20%)和青霉素-链霉素(1%)的DMEM培养基培养,置于37℃,5%CO2的恒温培养箱中培养;将细胞接种于6孔板,培育12h后,添加LPS(1μg/mL)共孵育24h;然后,添加AMEC的(50μg/mL)共孵育6h;随后,用PBS清洗细胞三次,再用完全培养DMEM与DCFH-DA(10μM)共孵育30分钟,用荧光显微镜细胞成像仪观察荧光强度。
M1型巨噬细胞极化为M2型巨噬细胞:每组随机抽取5只小鼠,分别设置为假手术组、TBI组以及治疗组,经过治疗三天后,取小鼠脑组织创伤区域;利用流式抗体F4/80、CD11b、CD197和CD206标记收集的所有细胞,用流式细胞仪检测标记的细胞。
为了评估AMEC对活性氧(ROS)的清除能力,我们考察了AMEC对DPPH、·O2 -和·OH的清除能力。参见图10,当浓度为100μg/mL时,AMEC可去除约94.2%的DPPH;100μg/mL的AMEC可清除约91.7%的·O2 -和13.17%的·OH。此外,为了研究其对细胞内ROS的清除能力,使用了2,7-二氯荧光素二醋酸酯(DCFH-DA)试剂检测试剂盒。结果表明,LPS诱导bEnd.3细胞中的ROS量显著增加,经与AMEC孵育后显著减低与对照组无明显差别。
参见图11我们利用F4/80和CD11b标记损伤部位的巨噬细胞来研究AMEC的抗炎作用;M1/M2比值在AMEC治疗后显著降低(F4/80+与CD11b+双阳细胞群中,CD197,M1巨噬细胞标志物;CD206,M2巨噬细胞标志物),提示AMEC可诱导M1巨噬细胞向M2巨噬细胞极化,达到抗炎目的。
8)生物相容性检测
细胞毒性:采用CCK-8试剂盒(中国上海碧云天),根据说明书检测AMEC的细胞毒性。将细胞置于96孔板中培养24h,每孔加入梯度浓度0~100μg/mL(0μg/mL,12.5μg/mL,25μg/mL,50μg/mL和100μg/mL)的AMEC共培养6h,然后加入含10%CCK-8的DMEM 100μL。孵育2小时后,使用酶标检测在450nm波长下检测吸光度。
溶血实验:从健康C57BL/6小鼠经眼眶取得新鲜血液,置于抗凝管中,室温静置30min。3000r/min,离心10分钟,小心吸取下层红细胞,用磷酸盐缓冲液稀释至0.25%体积浓度;将稀释液与浓度为0μg/mL,25μg/mL,50μg/mL,75μg/mL、100μg/mL、150μg/mL、200μg/mL的AMEC在37℃条件下共孵育3小时。去离子水或磷酸盐缓冲液分别作为阳性对照和阴性对照。随后,15000r/min,离心5min,小心吸取200μL上层液体,采用全波长酶标仪检测541nm处吸光度值。
血清生化检测:将AMEC以50mg/kg小鼠体重剂量经尾静脉注入健康小鼠,未注射AMEC组小鼠作为对照。在注射后14天后,采用血清生化检测仪对血清生化指标进行定量检测。检测指标包括白蛋白、谷丙转氨酶、谷草转氨酶、碱性磷酸酶、总蛋白、血肌酐、尿酸、尿素等。
组织切片苏木精-伊红染色:将AMEC以50mg/kg小鼠体重剂量经尾静脉注入健康小鼠,未注射AMEC组小鼠作为对照;在注射后第14天,10%
水合氯醛麻醉小鼠;先用50mL生理盐水经心脏冲洗血液后,再用50mL 4%
多聚甲醛灌注;迅速分离并获取心、肝、脾、肺、肾等主要脏器,浸泡于10%福尔马林中;24小时后进行石蜡包埋。进行切片,脱蜡;组织切片浸入苏木精染液中10分钟,伊红染色5分钟,倒置显微镜观察、拍照。
参见图12,细胞与AMEC共孵育后存活率无明显变化。
参见图13,实验组与阳性对照有明显差别,与阴性对照无明显差别。
参见图14,实验组和对照组的各检测指标无明显差异,提示AMEC无明显肝肾毒性。
参见图15,结果显示,实验组和对照组的各脏器细胞形态学未见明显差异,提示AMEC无明显体内毒性。
综上所述,提示AMEC具有良好的生物相容性。
本发明申请通过新型的聚合内掺杂和负载策略成功合成具有良好水分散性的AMEC。由于具有高载锰量(>3%)和几何限制效应,获得的AMEC具出良好的T1-T2双模式MRI对比增强能力,经尾静脉注入脑创伤小鼠后,AMEC展示出优异的肿瘤T1-T2双模式MRI效果,在提高成像对比度方面具有广阔的发展前景。本发明所用原材料简单易得,且安全环保,同时其合成方法简便、反应条件温和、对设备要求低,操作简单、副反应少,绿色环保,可以用于工业化生产,适宜大范围推广,锰离子和黑色素均在生物体内天然存在,可被生物体有效代谢,具有极大的临床转化价值。
以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围,其均应涵盖在本发明的权利要求和说明书的范围当中。

Claims (7)

1.一种负载治疗药物的真黑素样纳米造影剂的合成方法,其特征在于,首先其由金属盐离子作为锰源,盐酸多巴胺作为前驱体分子聚合成锰-真黑素纳米颗粒,随后在所述锰-真黑素纳米颗粒上负载靶向剂和治疗药,得真黑素样纳米造影剂;所述金属盐离子为四水合氯化锰;所述靶向剂为靶向肽angiopep-2,所述治疗药为姜黄素。
2.根据权利要求1所述的负载治疗药物的真黑素样纳米造影剂的合成方法,其特征在于:具体包括如下步骤:
1)将盐酸多巴胺溶解于去离子水中,之后置于温度为30-40℃的水浴中搅拌均匀,得盐酸多巴胺溶液;
2)在剧烈搅拌的条件下,将经过超声分散的四水合氯化锰加入至上述盐酸多巴胺溶液中,之后于温度为30-40 ℃的水浴中继续搅拌0.5-1.5小时,得盐酸多巴胺与金属盐离子的混合悬浮液;
3)将Tris水溶液加入至步骤2)所得的混合悬浮液中,之后于温度为30-40 ℃的水浴中维持反应2-4小时,反应完成后,对所得反应物进行高速离心重悬数次,将分离后的沉淀物超声分散于去离子水中,真空下冷冻干燥,得锰-真黑素纳米颗粒;
4)将步骤3)所得的锰-真黑素纳米颗粒用pH调节剂调至碱性后滴加靶向肽,维持反应2-4小时,然后再加入姜黄素维持反应8-12小时,即得真黑素样纳米造影剂。
3.根据权利要求2所述的负载治疗药物的真黑素样纳米造影剂的合成方法,其特征在于,所述四水合氯化锰的质量浓度为10 mg/ml。
4.根据权利要求2所述的负载治疗药物的真黑素样纳米造影剂的合成方法,其特征在于,所述Tris水溶液的摩尔浓度为100 mmol/L,所述盐酸多巴胺的质量浓度为0.5 mg/ml,所述盐酸多巴胺与金属盐离子的质量比为10:(0.5-1.5)。
5.根据权利要求2所述的负载治疗药物的真黑素样纳米造影剂的合成方法,其特征在于,所述锰-真黑素纳米颗粒与靶向肽的质量比为1:(0.03-0.1),所述锰-真黑素纳米颗粒与姜黄素的质量比为1:(0.5-1.5)。
6.根据权利要求2所述的负载治疗药物的真黑素样纳米造影剂的合成方法,其特征在于,所述步骤3)中的高速离心重悬为4-6次,离心速度为10000-12000 r/min,离心时间为20-30 min。
7.根据权利要求1-6中任一项所述的负载治疗药物的真黑素样纳米造影剂在制备脑创伤部位修复神经损伤的药物中的应用。
CN202210343322.0A 2022-03-31 2022-03-31 负载治疗药物的真黑素样纳米造影剂及其合成方法 Active CN114870036B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210343322.0A CN114870036B (zh) 2022-03-31 2022-03-31 负载治疗药物的真黑素样纳米造影剂及其合成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210343322.0A CN114870036B (zh) 2022-03-31 2022-03-31 负载治疗药物的真黑素样纳米造影剂及其合成方法

Publications (2)

Publication Number Publication Date
CN114870036A CN114870036A (zh) 2022-08-09
CN114870036B true CN114870036B (zh) 2023-08-22

Family

ID=82670561

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210343322.0A Active CN114870036B (zh) 2022-03-31 2022-03-31 负载治疗药物的真黑素样纳米造影剂及其合成方法

Country Status (1)

Country Link
CN (1) CN114870036B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015188142A1 (en) * 2014-06-05 2015-12-10 Cedars-Sinai Medical Center Diagnosis and monitoring of traumatic brain injury by imaging retinal abnormalities
CN107496940A (zh) * 2017-08-15 2017-12-22 中国人民解放军第三军医大学第三附属医院 高载锰量和高弛豫率的黑色素样纳米材料及制备方法和应用
CN107899011A (zh) * 2017-10-26 2018-04-13 浙江大学 一种基于锰和多巴胺的肿瘤诊疗纳米材料及其制备方法和应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015188142A1 (en) * 2014-06-05 2015-12-10 Cedars-Sinai Medical Center Diagnosis and monitoring of traumatic brain injury by imaging retinal abnormalities
CN107496940A (zh) * 2017-08-15 2017-12-22 中国人民解放军第三军医大学第三附属医院 高载锰量和高弛豫率的黑色素样纳米材料及制备方法和应用
CN107899011A (zh) * 2017-10-26 2018-04-13 浙江大学 一种基于锰和多巴胺的肿瘤诊疗纳米材料及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
扎斯勒等.《脑外伤医学 原理与实践》.人民军医出版社,2013,(第1版),第804-805页. *

Also Published As

Publication number Publication date
CN114870036A (zh) 2022-08-09

Similar Documents

Publication Publication Date Title
Ouyang et al. A Trojan horse biomimetic delivery strategy using mesenchymal stem cells for PDT/PTT therapy against lung melanoma metastasis
Wang et al. A theranostic nanoplatform: magneto-gold@ fluorescence polymer nanoparticles for tumor targeting T 1 & T 2-MRI/CT/NIR fluorescence imaging and induction of genuine autophagy mediated chemotherapy
KR102081666B1 (ko) 암 치료용 약학 조성물
CN112023060B (zh) 一种靶向软骨具光热响应特征的双药负载纳米微球及其制备方法和应用
CN110215438B (zh) 双载蒽环类药物及光敏剂介孔硅纳米粒的制备方法与应用
CN110591075B (zh) 一种PEG-Peptide线性-树状给药系统及其制备方法和用途
CN114377149B (zh) 一种Mn基可降解MOF纳米反应器及其制备方法和应用
Lin et al. Carboxymethyl chitosan-assisted MnOx nanoparticles: Synthesis, characterization, detection and cartilage repair in early osteoarthritis
Zhang et al. Heat-induced manganese-doped magnetic nanocarriers combined with Yap-siRNA for MRI/NIR-guided mild photothermal and gene therapy of hepatocellular carcinoma
KR101533036B1 (ko) 그래핀 유도체-기반 약물 전달체 및 이의 제조 방법
CN115607523A (zh) 用于缓解和/或治疗阿尔兹海默症的组合物及其制备方法、应用
CN113633625A (zh) 一种杂膜负载氧化磷酸化抑制剂的纳米药物及其制备方法
Guo et al. Engineering microglia as intraoperative optical imaging agent vehicles potentially for fluorescence-guided surgery in gliomas
Dai et al. Targeted therapy of atherosclerosis vulnerable plaque by ROS-scavenging nanoparticles and mr/fluorescence dual-modality imaging tracing
CN112007171A (zh) 纳米材料Fe3O4@MSN-g-C3N4-BTA在制备阿尔兹海默病药物方面的应用
Zhou et al. Novel manganese and polyester dendrimer-based theranostic nanoparticles for MRI and breast cancer therapy
Li et al. Switchable ROS Scavenger/Generator for MRI‐Guided Anti‐Inflammation and Anti‐Tumor Therapy with Enhanced Therapeutic Efficacy and Reduced Side Effects
Liu et al. Near-infrared-IIb fluorescent nanozymes for imaging-guided treatment of traumatic brain injury
CN114870036B (zh) 负载治疗药物的真黑素样纳米造影剂及其合成方法
CN113230418A (zh) 一种超小核壳结构铁纳米颗粒的制备方法及应用
LU504660B1 (en) Rapeseed peptide and use thereof in preparation of nanocarrier for drug
Chen et al. Theranostic nanosystem mediating cascade catalytic reactions for effective immunotherapy of highly immunosuppressive and poorly penetrable pancreatic tumor
Li et al. ROS-responsive EPO nanoparticles ameliorate ionizing radiation-induced hematopoietic injury
CN115192544A (zh) 一种诱导铁死亡的铁螯合物纳米颗粒及其制备和应用
CN115089734A (zh) 载促吞噬肽的碳化MOFs纳米粒和制备方法和在视网膜母细胞瘤的成像和治疗中的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant