CN114864739B - 一种通过旋涂法提高单晶硅太阳能电池效率的方法 - Google Patents

一种通过旋涂法提高单晶硅太阳能电池效率的方法 Download PDF

Info

Publication number
CN114864739B
CN114864739B CN202210358080.2A CN202210358080A CN114864739B CN 114864739 B CN114864739 B CN 114864739B CN 202210358080 A CN202210358080 A CN 202210358080A CN 114864739 B CN114864739 B CN 114864739B
Authority
CN
China
Prior art keywords
silicon
solar cell
spin coating
solution
nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210358080.2A
Other languages
English (en)
Other versions
CN114864739A (zh
Inventor
吴志国
李昂
卓仁富
闫鹏勋
赵毅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lanzhou University
Original Assignee
Lanzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lanzhou University filed Critical Lanzhou University
Priority to CN202210358080.2A priority Critical patent/CN114864739B/zh
Publication of CN114864739A publication Critical patent/CN114864739A/zh
Application granted granted Critical
Publication of CN114864739B publication Critical patent/CN114864739B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/002Processes for applying liquids or other fluent materials the substrate being rotated
    • B05D1/005Spin coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0368Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including polycrystalline semiconductors
    • H01L31/03682Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including polycrystalline semiconductors including only elements of Group IV of the Periodic Table
    • H01L31/03685Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including polycrystalline semiconductors including only elements of Group IV of the Periodic Table including microcrystalline silicon, uc-Si
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Silicon Compounds (AREA)

Abstract

本发明的目的在于针对现有技术中存在的问题,提供一种通过旋涂法提高单晶硅太阳能电池效率的方法,通过旋涂硅溶液提高太阳能电池短路电流进而提高太阳能电池效率,步骤如下:对硅纳米粉的表面进行修饰或者不修饰;将硅纳米粉分散在溶剂中制得硅溶液;在太阳能电池表面通过旋涂覆盖一层硅溶液,旋涂过程中溶剂挥发后,在太阳能工作区表面覆盖纳米硅;有益效果为:由于硅纳米晶通常指尺寸在1~100纳米左右的硅晶体。硅纳米结构由于量子限域效应的作用而产生了多种不同于体硅材料的新特性,例如:荧光效应显著、光学带隙可调、光学吸收增强和高能光子作用下多激子效应明显等。通过在太阳能电池工作区表面旋涂硅溶液,太阳能电池的效率可以得到提高。

Description

一种通过旋涂法提高单晶硅太阳能电池效率的方法
技术领域
本发明涉及新能源和光电材料技术领域,特别涉及一种通过旋涂法提高单晶硅太阳能电池效率的方法。
背景技术
太阳光是一种永不消失的可再生能源,没有环境污染和噪音。它可以很容易地补偿从不可再生能源中获取的能量,如化石燃料和地球内部的石油矿藏。目前,太阳能电池产品是以半导体为主要材料的光吸收材料,在器件结构上则使用P型与N型半导体所形成的PN结产生的内电场,从而分离带负电荷的电子与带正电荷的空穴而产生电压。由于晶体硅材料与器件在技术的成熟度方面领先于其他半导体材料,最早期的太阳能电池为晶体硅制成,直到近几年晶体硅太阳能电池仍有大约90%的市场占有率。太阳能电池的制造从一代到另一代经历了大量的改进步骤,在每个环节改进都有可能提高太阳能电池效率。
影响太阳能电池效率的因素主要有以下几个方面:半导体材料,主要因素是半导体材料的选择,由于每种材料能带间隙的大小与其所吸收的光谱各有不同,所以每种材料有其一定的能量转换效率。每种材料只能吸收一定范围内的光谱能量。光学损失:1. 硅的带隙为1.12eV,对应波长大于1.1米的光透过;一个光子只产生一个电子,因此存在多余能量损失。2.电池面积的栅线及阴影遮挡,一般会造成5%~15%光学损失。如果采用一些特殊的电池制作工艺,可显著降低此部分能量的损失,从而达到增强光吸收,提高电池效率的目的。硅的表面反射率35%存在大量的太阳光被反射掉,极大地影响电池的光电转换效率。电学损失:1.P-N结非线性损失。2.载流子复合损失辐射、俄歇、表面复合等。3.电阻损失。因此提高太阳能电池效率必须从这几方面入手。
发明内容
本发明的目的在于针对现有技术中存在的问题,提供一种通过旋涂法提高单晶硅太阳能电池效率的方法,通过旋涂硅溶液提高太阳能电池短路电流进而提高太阳能电池效率,本发明得到了适用于旋涂于单晶硅太阳能工艺的各项参数,可进行商业化生产。
为了实现上述目的,本发明提供以下技术方案:
一种通过旋涂法提高单晶硅太阳能电池效率的方法,其特征在于,包括如下步骤:
步骤一:对硅纳米粉的表面进行修饰或者不修饰;
步骤二:将硅纳米粉分散在溶剂中制得硅溶液;
步骤三:在太阳能电池表面通过旋涂覆盖一层硅溶液,旋涂过程中溶剂挥发后,在太阳能工作区表面覆盖纳米硅。
优选地,在步骤一中,所述硅纳米粉颗粒的平均尺寸为5-40纳米,其形状为规则的球体。由于纳米硅颗粒体积非常小,内部基本无缺陷,因此可以直接使用未修饰的纳米硅粉。
优选地,在步骤一中,对硅纳米粉的表面进行修饰的方法包括:通过氢氟酸对纳米硅表面进行氢化修饰,通过不同表面改性剂对纳米硅表面进行氢化硅烷化改性。
优选地,通过氢氟酸对纳米硅表面进行氢化修饰,所述氢氟酸的浓度为10%-40%。
优选地,通过不同表面改性剂对纳米硅表面进行氢化硅烷化改性,包括如下步骤:
(1)在氮气保护下,在254纳米光照射下硅纳米粉与十八烯,苯乙烯进行氢化硅烷化反应;
(2)在氮气保护下把硅纳米粉置于十八烯、三甲苯溶液中加热到165℃-200℃,加热1-5小时;
(3)将步骤(1)和步骤(2)得到的硅溶液通过旋涂法,对太阳能电池工作区进行旋涂。
通过改性处理的硅溶液可具有亲水性或者亲油性,也会导致纳米硅粉在溶剂中的溶液度不同。
优选地,在步骤二中,如果需要进一步提高硅量子点的荧光量子效率,则需要对现有的硅纳米粉进行修饰处理。根据处理方式的不同,溶剂可选择异丙醇、苯乙烯、十八烯、三甲苯中的一种或多种。如需提高溶液粘度,可添加的增稠剂有:丙三醇、松油醇、乙基纤维素。
在配制硅溶液时,溶剂可以选用单一的有机溶剂,也可是几种有机溶剂的混合物。其中,选择有机溶剂时要考虑其稳定性、挥发性和溶解性,一方面所选用的溶剂不能与所述的硅纳米粉发生化学反应,要有一定的稳定性;另一方面所选用的溶剂的挥发性要好。优选的溶剂有:异丙醇、苯乙烯、十八烯、三甲苯中的一种或多种。其中由异丙醇作为溶剂,根据中华人民共和国国家环境保护标准,对环境友好,无毒无害。
优选地,如图1所示,在步骤二中,所述硅溶液中纳米硅的浓度为0.1毫克/毫升 -1.5毫克/毫升。
优选地,在步骤三中,所用的旋涂方法为对太阳能电池工作区旋涂硅溶液的层数为1-10层,对太阳能电池工作区旋涂硅溶液的转速为500转/分钟-2000转/分钟,对太阳能电池工作区旋涂硅溶液的时间为10秒-40秒。
通过上述旋涂工艺和所选择溶剂,在旋涂完成后,溶剂便会挥发完成,在太阳能电池表面留下分散或者连续的硅纳米颗粒。
本发明分具体工作过程如下:如图2所示,太阳光光照在太阳能电池表面工作区(栅状电极3和减反射膜5),通过减反射膜5的处理使得光反射大幅度减小,光利用率得到提高;通过旋涂法使硅纳米颗粒2附着在减反射膜5,一方面进一步大幅度减少光反射,增强光利用率,另一方面通过纳米硅的转换作用,将太阳光中的紫外区域的光转换为太阳能电池可以利用的可见光区,进一步提高光利用率。栅状电极3和背电极4 可看做整个电池的正负极,由此连出可对设备供电。
本发明具有以下有益效果:由于硅纳米晶通常指尺寸在1~100纳米左右的硅晶体。硅纳米结构由于量子限域效应的作用而产生了多种不同于体硅材料的新特性,例如:荧光效应显著、光学带隙可调、光学吸收增强和高能光子作用下多激子效应明显等。通过在太阳能电池工作区表面旋涂硅溶液,太阳能电池的效率可以得到提高。太阳能电池效率的提高源于多孔硅薄膜诱导的光吸收的增加。随着硅量子点将短波长光下移到红光的效率增加,太阳能电池的效率可能进一步提高。
附图说明
图1分别为不同浓度硅溶液的图像;(a是浓度为1毫克/毫升的硅溶液;b是浓度为0.5毫克/毫升的硅溶液;c是浓度为0.1毫克/毫升的硅溶液)
图2为所使用太阳能电池基本结构和硅纳米粉示意图。
图中所示:光电转换区1、硅纳米颗粒2、栅状电极3、背电极4、减反射膜5。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
实施例1
将由我们独立生产的硅纳米粉经过过筛处理,选取10毫克硅纳米粉,将选取的硅纳米粉分散在10毫升的异丙醇中,经过2小时的超声处理后,硅纳米粉均匀分散在溶剂中,溶液整体呈现土黄色。溶液底部可能存在部分颗粒属于正常现象。硅溶液中硅纳米粉在波长为325纳米的光的激发下,发出的荧光的峰值集中在波长为500纳米附近的区域。将2×2厘米的太阳能电池片置于旋涂机上,采用1000转/分钟的参数进行旋涂20秒,定义为旋涂一层。在旋涂过程中溶液即可挥发,采用相同的方式多次旋涂,随着层数的增加,硅纳米涂层在变化,由此对太阳能电池片产生不同的影响。
通过比较发现,在单晶硅太阳电池的工作区旋涂硅溶液对太阳能电池的影响在于:短路电流提升的相对比例为0.1%至0.5%,转换效率提升的绝对比例为0.1%至0.3%,填充因子提升的绝对比例为0%至1.0%。
实施例2
选取5毫克的纳米硅粉,通过氢氟酸对纳米硅表面进行氢化,通过离心后将改性后的硅粉在氮气保护下,在254纳米光照射下硅与十八烯,苯乙烯进行氢化硅烷化反应。在氮气保护下把硅纳米粉置于十八烯、三甲苯溶液中加热到165℃-200℃,加热1-5 小时。硅纳米粉均匀分散在混合溶剂中,溶液整体呈现土黄色。将2×2厘米的太阳能电池片置于旋涂机上,采用1500转/分钟的参数进行旋涂40秒,在旋涂过程中溶液即可挥发。
通过比较发现,在单晶硅太阳电池的工作区旋涂硅溶液对太阳能电池的影响在于:短路电流提升的相对比例为0.2%至1.0%,转换效率提升的绝对比例为0.03%至0.14%,填充因子提升的绝对比例为0.3%至0.55%。
实施例3
选取1毫克的纳米硅粉,将选取的硅纳米粉分散在10毫升的甲醇中,经过2小时的超声处理后,硅纳米粉均匀分散在溶剂中,硅纳米粉均匀分散在溶剂中,溶液整体呈现土黄色。溶液底部可能存在部分颗粒属于正常现象。将2×2厘米的太阳能电池片置于旋涂机上,采用1500转/分钟的参数进行旋涂40秒,定义为旋涂一层。在旋涂过程中溶液即可挥发,采用相同的方式多次旋涂,随着层数的增加,硅纳米涂层在变化,由此对太阳能电池片产生不同的影响。
通过比较发现,在单晶硅太阳电池的工作区旋涂硅溶液对太阳能电池的影响在于:短路电流提升的相对比例为0.30%至1.30%,转换效率提升的绝对比例为0.1%至0.3%,填充因子提升的绝对比例为0.1%至0.5%。
实施例4
选取2毫克的纳米硅粉,将选取的硅纳米粉分散在10毫升的异丙醇中。经过2小时的超声处理后,硅纳米粉均匀分散在溶剂中,硅纳米粉均匀分散在溶剂中。将2×2 厘米的太阳能电池片置于旋涂机上,采用1500转/分钟的参数进行旋涂40秒,定义为旋涂一层。通过该方式旋涂1至10层。
通过比较发现,在单晶硅太阳电池的工作区旋涂硅溶液对太阳能电池的影响在于:短路电流提升的相对比例为0.6%至1.2%,转换效率提升的绝对比例为0.3%至0.6%,填充因子提升的绝对比例为0.05%至0.3%。
实施例5
选取5毫克的纳米硅粉,把硅粉置于三甲苯和十八烯的混合液(三甲苯和十八烯的体积比为20:1)中,在250℃的温度下进行氢化硅烷化反应,直至混合液变得清澈。通过离心分离把硅粉从混合体中分离出来,再将其分散于异丙醇中。所得的硅溶液浓度是0.5毫克/毫升。将2×2厘米的太阳能电池片置于旋涂机上,采用1500转/分钟的参数进行旋涂40秒,定义为旋涂一层。通过该方式旋涂1至10层。
实施例6
选取5毫克的纳米硅粉,在254纳米紫外光照射下硅粉与十八烯进行氢化硅烷化反应,随着反应的进行,非极性的碳链基团连接到量子点表面,改善了量子点在有机溶剂中的分散性,反应体系随之逐步变澄清。通过过滤分离把硅粉从混合体中分离出来,再将其分散于异丙醇中浓度是0.5米毫克/毫升。将2×2厘米的太阳能电池片置于旋涂机上,采用1500转/分钟的参数进行旋涂40秒,定义为旋涂一层。通过该方式旋涂 1至10层。
实施例7
选取5毫克的硅纳米粉,分散在氢氟酸和甲醇的混合溶液中,通过5分钟,10000转/分钟的离心得到氢化的硅纳米粉。将选取的硅纳米粉分散在10毫升的异丙醇中。经过2小时的超声处理后,硅纳米粉均匀分散在溶剂中,硅纳米粉均匀分散在溶剂中。将2×2厘米的太阳能电池片置于旋涂机上,采用2000转/分钟的参数进行旋涂20秒,定义为旋涂一层。通过该方式旋涂1至8层。
以上仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (2)

1.一种通过旋涂法提高单晶硅太阳能电池效率的方法,其特征在于,包括如下步骤:
步骤一:对硅纳米粉的表面进行修饰;所述硅纳米粉颗粒的平均尺寸为5-40纳米,其形状为规则的球体;对硅纳米粉的表面进行修饰的方法为通过氢氟酸对纳米硅表面进行氢化修饰,所述氢氟酸的浓度为10%-40%;通过不同表面改性剂对纳米硅表面进行氢化硅烷化改性,包括如下步骤:
(1)在氮气保护下,在254纳米光照射下硅纳米粉与十八烯,苯乙烯进行氢化硅烷化反应;
(2)在氮气保护下把硅纳米粉置于十八烯、三甲苯溶液中加热到165 ℃-200 ℃,加热1-5小时;
步骤二:将硅纳米粉分散在溶剂中制得硅溶液;所述硅溶液中纳米硅的浓度为0.1毫克/毫升-1.5毫克/毫升;
步骤三:在太阳能电池表面通过旋涂覆盖一层硅溶液,旋涂过程中溶剂挥发后,在太阳能工作区表面覆盖纳米硅;所用的旋涂方法为对太阳能电池工作区旋涂硅溶液的层数为1-10层,对太阳能电池工作区旋涂硅溶液的转速为500转/分钟-2000转/分钟,对太阳能电池工作区旋涂硅溶液的时间为10秒-40秒。
2.权利要求1所述的通过旋涂法提高单晶硅太阳能电池效率的方法在提高单晶硅太阳能电池效率中的应用。
CN202210358080.2A 2022-04-07 2022-04-07 一种通过旋涂法提高单晶硅太阳能电池效率的方法 Active CN114864739B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210358080.2A CN114864739B (zh) 2022-04-07 2022-04-07 一种通过旋涂法提高单晶硅太阳能电池效率的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210358080.2A CN114864739B (zh) 2022-04-07 2022-04-07 一种通过旋涂法提高单晶硅太阳能电池效率的方法

Publications (2)

Publication Number Publication Date
CN114864739A CN114864739A (zh) 2022-08-05
CN114864739B true CN114864739B (zh) 2023-11-07

Family

ID=82628629

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210358080.2A Active CN114864739B (zh) 2022-04-07 2022-04-07 一种通过旋涂法提高单晶硅太阳能电池效率的方法

Country Status (1)

Country Link
CN (1) CN114864739B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101814555A (zh) * 2010-04-12 2010-08-25 浙江大学 一种提高太阳电池效率的方法
CN102544378A (zh) * 2011-11-30 2012-07-04 中国科学院等离子体物理研究所 一种基于ZnO同质核壳结构纳米棒阵列的有机/无机杂化太阳电池及其制备方法
CN102709399A (zh) * 2012-06-21 2012-10-03 上海理工大学 一种高效纳米天线太阳能电池的制作方法
CN104051580A (zh) * 2014-07-10 2014-09-17 苏州大学 硅太阳能电池及其制备方法
KR20210058397A (ko) * 2019-11-14 2021-05-24 주식회사 엠지아이티 태양광용 실리콘 슬러지로부터 나노실리콘을 회수하여 리튬이온배터리의 음극재용 첨가제인 실리콘/탄소 복합체를 제조하는 방법
WO2022033004A1 (zh) * 2020-08-13 2022-02-17 浙江正泰太阳能科技有限公司 一种单晶硅片的单面制绒工艺及太阳能电池片的制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090029494A (ko) * 2007-09-18 2009-03-23 엘지전자 주식회사 비정질 실리콘 및 나노 결정질 실리콘의 복합 박막을이용한 태양전지 및 그 제조방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101814555A (zh) * 2010-04-12 2010-08-25 浙江大学 一种提高太阳电池效率的方法
CN102544378A (zh) * 2011-11-30 2012-07-04 中国科学院等离子体物理研究所 一种基于ZnO同质核壳结构纳米棒阵列的有机/无机杂化太阳电池及其制备方法
CN102709399A (zh) * 2012-06-21 2012-10-03 上海理工大学 一种高效纳米天线太阳能电池的制作方法
CN104051580A (zh) * 2014-07-10 2014-09-17 苏州大学 硅太阳能电池及其制备方法
KR20210058397A (ko) * 2019-11-14 2021-05-24 주식회사 엠지아이티 태양광용 실리콘 슬러지로부터 나노실리콘을 회수하여 리튬이온배터리의 음극재용 첨가제인 실리콘/탄소 복합체를 제조하는 방법
WO2022033004A1 (zh) * 2020-08-13 2022-02-17 浙江正泰太阳能科技有限公司 一种单晶硅片的单面制绒工艺及太阳能电池片的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Spin-coating silicon-quantum-dot ink to improve solar cell efficiency;Xiaodong Pi;ELSEVIER;第95卷(第10期);2941-2945 *
硅纳米晶体在太阳电池中的应用;张莉;皮孝东;杨德仁;;材料导报;第26卷(第11期);128-134 *

Also Published As

Publication number Publication date
CN114864739A (zh) 2022-08-05

Similar Documents

Publication Publication Date Title
Ajayan et al. A review of photovoltaic performance of organic/inorganic solar cells for future renewable and sustainable energy technologies
US8835756B2 (en) Zinc oxide photoelectrodes and methods of fabrication
Shaner et al. Functional integration of Ni–Mo electrocatalysts with Si microwire array photocathodes to simultaneously achieve high fill factors and light-limited photocurrent densities for solar-driven hydrogen evolution
Yang et al. Photoelectric conversion beyond sunny days: all-weather carbon quantum dot solar cells
Chen et al. Enhancement of power conversion efficiency in GaAs solar cells with dual-layer quantum dots using flexible PDMS film
US9472694B2 (en) Composition and method for upconversion of light and devices incorporating same
Luo et al. High efficient and stable solid solar cell: based on FeS2 nanocrystals and P3HT: PCBM
TW201119049A (en) Quantum dot dye-sensitized solar cell
Dimova-Malinovska The state-of-the-art and future development of the photovoltaic technologies–the route from crystalline to nanostructured and new emerging materials
Du et al. Highly efficiency p-type dye sensitized solar cells based on polygonal star-morphology Cu2O material of photocathodes
Pushparaj et al. Employing novel Si-over-Si technology to optimize PV effect in solar array
Seo et al. Improvement of Si adhesion and reduction of electron recombination for Si quantum dot-sensitized solar cells
Shah et al. Determinantal study on the thickness of graphene oxide as ARC layer for silicon solar cells using: A simulation approach
Zhou et al. An investigation on a crystalline-silicon solar cell with black silicon layer at the rear
Yao et al. Significant efficiency enhancement of CdSe/CdS quantum-dot sensitized solar cells by black TiO2 engineered with ultrashort filamentating pulses
CN114864739B (zh) 一种通过旋涂法提高单晶硅太阳能电池效率的方法
Arifin et al. Characteristics of ZnO nanofiber in double Layer (TiO2/ZnO) DSSC results of direct deposition electrospinning manufacturing: Variation of tip to collector distance
CN105070777B (zh) 一种无稀土下转换太阳能电池及其制备方法
CN102148279A (zh) 基于ⅱ-ⅵ族化合物半导体/硅纳米孔柱阵列的太阳能电池及其制备方法
KR101257492B1 (ko) Sb 또는 InP 도핑을 이용한 실리콘 양자점 태양전지 및 그 제조방법
Bhargava et al. Use of natural dyes for the fabrication of dye-sensitized solar cell: a review
Tanaka et al. Plasmon effect in Si solar cells coated with a thin Polymer film containing silver or gold nanoparticles
Zhang et al. Advanced Interface Engineering in Gradient Core/Shell Quantum Dots Enables Efficient Photoelectrochemical Hydrogen Evolution
Arof et al. Plasmonic effect in photoelectrochemical cells
KR102634851B1 (ko) 광투과층의 두께가 조절된 투명태양전지 및 그 제조방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant