CN114858930B - 一种基于gc-ms代谢组学区别猕猴桃成熟度的方法 - Google Patents

一种基于gc-ms代谢组学区别猕猴桃成熟度的方法 Download PDF

Info

Publication number
CN114858930B
CN114858930B CN202111596460.1A CN202111596460A CN114858930B CN 114858930 B CN114858930 B CN 114858930B CN 202111596460 A CN202111596460 A CN 202111596460A CN 114858930 B CN114858930 B CN 114858930B
Authority
CN
China
Prior art keywords
inositol
gluconic acid
ratio
metabonomics
kiwi
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111596460.1A
Other languages
English (en)
Other versions
CN114858930A (zh
Inventor
赵燕妮
张坤
许牡丹
张森虎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shaanxi University of Science and Technology
Original Assignee
Shaanxi University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shaanxi University of Science and Technology filed Critical Shaanxi University of Science and Technology
Priority to CN202111596460.1A priority Critical patent/CN114858930B/zh
Publication of CN114858930A publication Critical patent/CN114858930A/zh
Application granted granted Critical
Publication of CN114858930B publication Critical patent/CN114858930B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • G01N30/14Preparation by elimination of some components
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • G01N30/28Control of physical parameters of the fluid carrier
    • G01N30/30Control of physical parameters of the fluid carrier of temperature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • G01N30/28Control of physical parameters of the fluid carrier
    • G01N30/32Control of physical parameters of the fluid carrier of pressure or speed
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N30/72Mass spectrometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • G01N30/28Control of physical parameters of the fluid carrier
    • G01N30/32Control of physical parameters of the fluid carrier of pressure or speed
    • G01N2030/324Control of physical parameters of the fluid carrier of pressure or speed speed, flow rate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

本发明公开了一种基于GC‑MS代谢组学区别猕猴桃成熟度的方法。本发明的技术方案为:猕猴桃经1‑MCP处理后放置于0℃贮藏,对未知样本利用猕猴桃中D‑葡萄糖酸和肌醇的比值对代谢组学研究中的猕猴桃样本进行判别,待测样本中D‑葡萄糖酸和肌醇比值在0.1~0.2的为七成熟,D‑葡萄糖酸和肌醇比值在0.2~0.4的为八成熟,D‑葡萄糖酸和肌醇比值在0.4~1.3的为九成熟,D‑葡萄糖酸和肌醇比值在1.3以上的为十成熟。本发明操作简单、检测结果可靠,可为猕猴桃代谢特征分析及相关猕猴桃代谢组学研究提供借鉴。

Description

一种基于GC-MS代谢组学区别猕猴桃成熟度的方法
技术领域
本发明属于水果成熟度检测技术领域,是一种基于GC-MS代谢组学区别猕猴桃成熟度的方法。
背景技术
代谢组学作为系统生物学的重要组成部分,可以同时检测多种内源性代谢物。代谢组学在猕猴桃相关研究中的运用越来越多,主要对于猕猴桃种类,产地,加工等方面进行化学分析。本发明确定的D-葡萄糖酸和肌醇是猕猴桃中重要代谢物,具有重要的生物学功能。D-葡萄糖酸在植物中是一种具有杀菌作用和螯合性质的氧化型羧酸。肌醇被称之为维生素B8,是一种类似维生素的化学物质,通常存在于植物中,有利于猕猴桃中氨基酸的存储,也是磷酸肌醇代谢的重要组成部分。但目前为止,未曾有人提出将猕猴桃果实中的D-葡萄糖酸和肌醇含量用于代谢组学猕猴桃成熟度的判别。
猕猴桃是一种多年生落叶木质藤本植物,其果实含有丰富的维生素、氨基酸、酚类等物质,具有极高的营养价值,被誉为“21世纪水果之王”,深受消费者喜爱,在亚洲具有较大的消费市场,但猕猴桃具有典型的浆果特性,皮薄汁多,货架期较短,采后极易腐烂,极大地限制了市场流通,造成经济损失。
目前园艺产品贮藏保鲜常用低温贮藏保鲜、气调贮藏保鲜盒化学药剂贮藏保鲜。低温贮藏果实虽然是一种高效的猕猴桃保鲜方法,但在贮藏期间极易发生冷害;气调贮藏成本高;部分化学保鲜剂存在药物存留问题而在应用的上受到限制。1-MCP是一种乙烯抑制剂,具有无毒、高效的特点。可以优先与受体离子结合,抑制乙烯生成,在果蔬贮藏保鲜上有极好的应用前景。大量研究发现,1-MCP处理能抑制果实呼吸,延缓可溶性固形物、酸及VC含量下降,有效延长保质期(Sooyeon et al. 2016;Kwanhong et al. 2017)。然而,1-MCP的处理效应与处理浓度密切相关,1.3μL/L的1-MCP处理杨梅果实可提高SOD、CAT、POD等抗氧化酶活性及GSH和VC含量以及有效清除活性氧自由基,从而延缓杨梅果实采后衰老,延长其保鲜时间(黄钰萍,2021);300 μL/L的1-MCP处理能有效减缓柠檬转黄,抑制可溶性固形物含量降低和可滴定酸含量上升(杜欣欣,2021)。可见1-MCP处理的有效浓度对园艺产品的种类有着重大影响。同时任何保鲜剂都会受到温度的影响,1-MCP也不例外,研究中也没有给出1-MCP的适宜温度范围。猕猴桃果实贮藏条件不一样,对其品质的影响有着较大的差异。
发明内容
本发明的目的是要提供一种基于代谢组学,区别经1-MCP处理的猕猴桃生理成熟与食用成熟的成熟度判断方法,采用D-葡萄糖酸和肌醇的含量来区别生理成熟猕猴桃与食用成熟猕猴桃,为代谢组学研究的样本判别提供依据。
为了达到上述目的,本发明提供的技术方案如下:
一种基于GC-MS代谢组学区别猕猴桃成熟度的方法,通过GC-MS代谢组学,检测经1-MCP处理及低温贮藏的猕猴桃样品中D-葡萄糖酸和肌醇含量,通过D-葡萄糖酸和肌醇比值,得到猕猴桃样品成熟度。
首先制备猕猴桃样品提取液,然后采用气相色谱-质谱联用仪(GC-MS)的代谢组学分析方法对猕猴桃样品中的D-葡萄糖酸和肌醇进行相对定量分析,计算D-葡萄糖酸和肌醇含量的比值。
通过猕猴桃中D-葡萄糖酸和肌醇的比值对代谢组学研究中的猕猴桃成熟度进行判别,猕猴桃样本中,D-葡萄糖酸和肌醇比值在0.1~0.2的为七成熟,D-葡萄糖酸和肌醇比值在0.2~0.4的为八成熟,D-葡萄糖酸和肌醇比值在0.4~1.3的为九成熟,D-葡萄糖酸和肌醇比值在1.3以上的为十成熟。
所述猕猴桃样品提取液的制备方法为:将猕猴桃打浆,置于冷冻干燥机干燥,冷冻干燥成粉;称取样品50 mg于离心管中,加入1.5 mL 浓度为80%的甲醇水,涡旋5 min,在4℃下,以14000 r·min-1转速离心10 min,取上清液500 μL,放入冷冻离心浓缩仪中冻干,于-80℃保存。
所述气相色谱的检测条件为:DB-5 MS(30 m×250μm×0.25μm,J&W Scientific,Folsom,CA)载气为氦气,采用恒流模式,线速:40.2 cm/s,分流比:20.0。程序升温条件:70℃保持3 min,以5℃/min速度升至310℃,保持5 min。进样口和传输线温度分别为300℃和250℃。
所述质谱的检测条件为:溶剂切割时间:3.5 min,离子源温度为230℃,EI能量为70 eV,全扫质量扫描范围:33-600(m/z)。扫描周期(Even time):0.2 s。
与现有技术相比,本发明的有益效果是:
本发明利用猕猴桃样本中D-葡萄糖酸和肌醇含量的比值和样本经1-MCP处理+低温贮藏的相关性,对代谢组学猕猴桃样本成熟度进行判别。本发明具有以下特点:实现高灵敏、高效检测,且具有检测成本低,重复性好的特点。本方法可为猕猴桃代谢特征分析及相关猕猴桃代谢组学研究提供借鉴。
具体实施方式
下面将结合具体实施例对本发明作进一步详细的描述,但本发明的实施方式包括但不限于以下实施例表示的范围。
一种基于代谢组学区别猕猴桃经1-MCP处理+低温贮藏成熟度方法,其利用D-葡萄糖酸和肌醇含量的比值对代谢组学研究中的猕猴桃样本进行判别,待测样本中D-葡萄糖酸和肌醇比值在0.1~0.2的为七成熟,D-葡萄糖酸和肌醇比值在0.2~0.4的为八成熟,D-葡萄糖酸和肌醇比值在0.4~1.3的为九成熟,D-葡萄糖酸和肌醇比值在1.3以上的为十成熟。
具体方法为:
据所需的1-MCP浓度,称取一定质量的1-MCP粉剂(鲜博士TM)于50 mL的烧杯中,将处理果实与药品一同放入密封箱内,在20℃条件下熏蒸处理24 h,同时以清水处理为对照。处理结束后,将猕猴桃果实按每筐40多个装筐,并在外面套上0.04 mm厚度的PE薄膜袋,袋口自然合拢,置于0℃下贮藏。之后每15 d从对照和1-MCP处理果实中随机选取多个猕猴桃果实去皮(约0.4 cm)、去除果实两端的果肉,选取中轴与果皮之间的果肉,黑籽剔除,将果肉切成颗粒块状并立即用液氮固定,处理时间保持在3 min之内,后放入-80℃冰箱中保存。
制备猕猴桃样品提取液,然后采用GC-MS的代谢组学分析方法对猕猴桃样品中的D-葡萄糖酸和肌醇进行相对定量分析,计算D-葡萄糖酸和肌醇的比值。
所述猕猴桃样品提取液的制备方法为:将猕猴桃果实打浆,置于冷冻干燥机干燥,冷冻干燥成粉;称取样品50 mg于离心管中,加入1.5 mL浓度为80%的甲醇水,涡旋5 min,在4℃下,以14000 r·min-1转速离心10 min,取上清液500 μL,放入冷冻离心浓缩仪中冻干,于-80℃保存。
所述气相色谱的检测条件为:DB-5 MS(30 m×250μm×0.25μm,J&W Scientific,Folsom,CA)载气为氦气,采用恒流模式,线速:40.2 cm/s,分流比:20.0。程序升温条件:70℃保持3 min,以5℃/min速度升至310℃,保持5 min。进样口和传输线温度分别为300℃和250℃。
所述质谱的检测条件为:溶剂切割时间:3.5 min,离子源温度为230℃,EI能量为70 eV,全扫质量扫描范围:33-600(m/z)。扫描周期(Even time):0.2 s。
对照例
选择大小均匀、成熟度一致、无机械损伤的果实,放置于密封容器内,采用浓度为1.3μL/L的1-MCP处理猕猴桃果实,处理时间为24 h,处理温度为20℃,处理后的猕猴桃果实按每筐40多个装筐,并在外面套上0.04mm厚度的PE薄膜袋,袋口自然合拢,置于0℃下贮藏。定期利用阿贝折射仪测定上清液的可溶性固形物(SSC)。
该分析条件下获得了上述猕猴桃中SSC见表1,猕猴桃SSC值为4.5~6.5为七成熟,6.5~9.5为八成熟,9.5~12.5为九成熟,≥12.5为十成熟。
表1 实施例1猕猴桃样品信息
实施例1
采用气相色谱-质谱联用仪(GC-MS)方法测定猕猴桃样本中的D-葡萄糖酸和肌醇含量。
样本分析步骤如下所述:
1.猕猴桃样本采集:
以陕西周至县陕西佰瑞猕猴桃研究院的徐香、华优、瑞玉、海沃德为材料,将不同贮藏阶段的猕猴桃打浆冷冻干燥成粉,于-80℃冰箱储存。
2.D-葡萄糖酸和肌醇测定方法:
将猕猴桃干粉于-80 ℃冰箱取出,称取50 mg于离心管中,加入1.5 mL 浓度为80%的甲醇水,涡旋5 min,在4 ℃下,以14000 r·min-1转速离心10 min,取上清液500 μL,放入冷冻离心浓缩仪中冻干,于-80℃保存。
气相色谱检测条件:DB-5 MS(30 m×250μm×0.25μm,J&W Scientific,Folsom,CA)载气为氦气,采用恒流模式,线速:40.2 cm/s,分流比:20.0。程序升温条件:70℃保持3min,以5℃/min速度升至310℃,保持5min。进样口和传输线温度分别为300℃和250℃。
质谱检测条件:溶剂切割时间:3.5 min,离子源温度为230℃,EI能量为70 eV,全扫质量扫描范围:33-600(m/z)。扫描周期(Even time):0.2 s。
该分析条件下获得了上述猕猴桃中D-葡萄糖酸和肌醇的含量,发现D-葡萄糖酸和肌醇含量的比值变化显著,见表2。
表2实施例所用的实验材料信息及D-葡萄糖酸和肌醇含量的比值
本发明将D-葡萄糖酸和肌醇含量的比值作为区分猕猴桃经1-MCP处理代谢组学猕猴桃生理成熟度标准。即待测样本中D-葡萄糖酸和肌醇比值在0.1~0.2为七成熟,D-葡萄糖酸和肌醇比值在0.2~0.4的为八成熟,D-葡萄糖酸和肌醇比值在0.4~1.3的为九成熟,D-葡萄糖酸和肌醇比值在1.3以上的为十成熟。

Claims (4)

1.一种基于GC-MS代谢组学区别猕猴桃成熟度的方法,其特征在于:
通过GC-MS代谢组学,检测经1-MCP处理及低温贮藏的猕猴桃样品中D-葡萄糖酸和肌醇含量,通过D-葡萄糖酸和肌醇比值,得到猕猴桃样品成熟度;
首先制备猕猴桃样品提取液,然后采用气相色谱-质谱联用仪(GC-MS)的代谢组学分析方法对猕猴桃样品中的D-葡萄糖酸和肌醇进行相对定量分析,计算D-葡萄糖酸和肌醇含量的比值;
具体为:
通过猕猴桃中D-葡萄糖酸和肌醇的比值对代谢组学研究中的猕猴桃成熟度进行判别,猕猴桃样本中,D-葡萄糖酸和肌醇比值在0.1~0.2的为七成熟,D-葡萄糖酸和肌醇比值在0.2~0.4的为八成熟,D-葡萄糖酸和肌醇比值在0.4~1.3的为九成熟,D-葡萄糖酸和肌醇比值在1.3以上的为十成熟。
2.根据权利要求1所述的一种基于GC-MS代谢组学区别猕猴桃成熟度的方法,其特征在于:
所述猕猴桃样品提取液的制备方法为:将猕猴桃打浆,置于冷冻干燥机干燥,冷冻干燥成粉;称取样品50 mg于离心管中,加入1.5 mL 浓度为80%的甲醇水,涡旋5 min,在4℃下,以14000 r·min-1转速离心10 min,取上清液500 μL,放入冷冻离心浓缩仪中冻干,于-80℃保存。
3.根据权利要求2所述的一种基于GC-MS代谢组学区别猕猴桃成熟度的方法,其特征在于:
所述气相色谱的检测条件为:DB-5 MS(30 m×250 μm×0.25 μm,J&W Scientific,Folsom,CA)载气为氦气,采用恒流模式,线速:40.2 cm/s,分流比:20.0;程序升温条件:70℃保持3 min,以5℃/min速度升至310℃,保持5 min;进样口和传输线温度分别为300℃和250℃。
4.根据权利要求3所述的一种基于GC-MS代谢组学区别猕猴桃成熟度的方法,其特征在于:
所述质谱的检测条件为:溶剂切割时间:3.5 min,离子源温度为230℃,EI能量为70eV,全扫质量扫描范围:33-600m/z;扫描周期Even time:0.2 s。
CN202111596460.1A 2021-12-24 2021-12-24 一种基于gc-ms代谢组学区别猕猴桃成熟度的方法 Active CN114858930B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111596460.1A CN114858930B (zh) 2021-12-24 2021-12-24 一种基于gc-ms代谢组学区别猕猴桃成熟度的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111596460.1A CN114858930B (zh) 2021-12-24 2021-12-24 一种基于gc-ms代谢组学区别猕猴桃成熟度的方法

Publications (2)

Publication Number Publication Date
CN114858930A CN114858930A (zh) 2022-08-05
CN114858930B true CN114858930B (zh) 2023-09-05

Family

ID=82627658

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111596460.1A Active CN114858930B (zh) 2021-12-24 2021-12-24 一种基于gc-ms代谢组学区别猕猴桃成熟度的方法

Country Status (1)

Country Link
CN (1) CN114858930B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140099400A (ko) * 2013-02-01 2014-08-12 중앙대학교 산학협력단 인삼 연근 판별용 바이오마커 조성물
CN113341034A (zh) * 2021-07-28 2021-09-03 黑龙江八一农垦大学 一种黑龙江燕麦的产地鉴定方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140099400A (ko) * 2013-02-01 2014-08-12 중앙대학교 산학협력단 인삼 연근 판별용 바이오마커 조성물
CN113341034A (zh) * 2021-07-28 2021-09-03 黑龙江八一农垦大学 一种黑龙江燕麦的产地鉴定方法

Also Published As

Publication number Publication date
CN114858930A (zh) 2022-08-05

Similar Documents

Publication Publication Date Title
Barboni et al. Effect of cold storage and ozone treatment on physicochemical parameters, soluble sugars and organic acids in Actinidia deliciosa
Kliewer Influence of environment on metabolism of organic acids and carbohydrates in Vitis vinifera. I. Temperature
Quenzer et al. Effects of microwave, steam and water blanching on freeze‐dried spinach
Njoroge et al. Effects of blanching time/temperature combination coupled with solar-drying on the nutritional and microbial quality of indigenous leafy vegetables in Kenya
Ma et al. Postharvest storage at near-freezing temperature maintained the quality and antioxidant properties of Prunus domestica L. cv. Ximei fruit
Negi et al. Changes in β-carotene and ascorbic acid content of fresh amaranth and fenugreek leaves during storage by low cost technique
Arzani et al. Postharvest fruit physicochemical changes and properties of Asian (Pyrus serotina Rehd.) and European (Pyrus communis L.) pear cultivars
Ali et al. Influence of CaCl^ sub^ on Biochemical Composition, Antioxidant and Enzymatic 2 Activity of Apricot at Ambient Storage
Saquet et al. Impaired aroma production of CA-stored ‘Jonagold ‘apples as affected by adenine and pyridine nucleotide levels and fatty acid concentrations
Aggarwal et al. Effect of treatment and drying method (Solar and convective) on physico-chemical quality of dried Moringa leaves.
CN114858930B (zh) 一种基于gc-ms代谢组学区别猕猴桃成熟度的方法
CN104472676A (zh) 一种涂膜保鲜液及其制备方法
CN102907270B (zh) 一种提高梨果实中香气和钙含量的方法
Bakshi et al. Standardization of drying method and organoleptic evaluation of wild pomegranate (anardana) seeds
Chen et al. Comparison of different drying methods for Asparagus [Asparagus cochinchinensis (Lour.) Merr.] root volatile compounds as revealed using gas chromatography ion mobility spectrometry
CN103461471A (zh) 真姬菇凝集素和脱蛋白多糖在枇杷保鲜中的应用
Akhtar et al. Preserving quality of loquat fruit during storage by modified atmosphere packaging
CN114624354B (zh) 一种基于代谢组学区别猕猴桃经低温贮藏生理成熟与食用成熟的方法
Negi et al. Retention of quality characteristics of dehydrated green leaves during storage
CN107212077A (zh) 延缓水蜜桃硬度降低的贮藏方法
Savo et al. Specificities of fruit freeze drying and product prices
Srilaong et al. Oxygen action on respiratory processes in cucumber fruit (Cucumis sativus) stored at low temperature
CN114176120A (zh) 一种姬松茸保鲜的保藏方式
CN110393212A (zh) 一种鲜切双孢蘑菇的保鲜方法
CN114847342B (zh) 一种抑菌保鲜组合物及应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant