CN114853792A - 烯胺酮硼配合物荧光材料及其制备方法与应用 - Google Patents

烯胺酮硼配合物荧光材料及其制备方法与应用 Download PDF

Info

Publication number
CN114853792A
CN114853792A CN202110149566.0A CN202110149566A CN114853792A CN 114853792 A CN114853792 A CN 114853792A CN 202110149566 A CN202110149566 A CN 202110149566A CN 114853792 A CN114853792 A CN 114853792A
Authority
CN
China
Prior art keywords
boron complex
fluorescent material
enaminone
enamine ketone
boron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110149566.0A
Other languages
English (en)
Other versions
CN114853792B (zh
Inventor
王利祥
童辉
吴晓甫
栗华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changchun Institute of Applied Chemistry of CAS
Original Assignee
Changchun Institute of Applied Chemistry of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changchun Institute of Applied Chemistry of CAS filed Critical Changchun Institute of Applied Chemistry of CAS
Priority to CN202110149566.0A priority Critical patent/CN114853792B/zh
Publication of CN114853792A publication Critical patent/CN114853792A/zh
Application granted granted Critical
Publication of CN114853792B publication Critical patent/CN114853792B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/02Boron compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • C09K2211/104Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom with other heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1096Heterocyclic compounds characterised by ligands containing other heteroatoms
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本发明涉及一种烯胺酮硼配合物荧光材料及其制备方法与应用,属于有机发光材料技术领域。烯胺酮硼配合物荧光材料结构如式1,其由烯胺酮硼配合物硼原子上的配体,烯胺酮硼配合物氮原子上连接的芳基、杂芳基或稠杂环基团,以及与烯胺酮硼配合物氧原子相邻碳原子上连接的芳基、杂芳基或稠杂环基团构成。利用烯胺酮硼配合物作为受体,与电子给体单元结合,形成给‑受体结构,并通过在烯胺酮氮原子一侧引入拉电子结构单元,有效调控LUMO能级,使该类材料具有红光发射及热活化延迟荧光特性。本发明的烯胺酮硼配合物荧光材料用于构建有机电致发光器件的发光层,可实现具有较高外量子效率的红光发射,可以在有机电致发光显示中得到应用。
Figure DDA0002932180310000011

Description

烯胺酮硼配合物荧光材料及其制备方法与应用
技术领域
本发明涉及有机发光材料的技术领域,具体涉及一种烯胺酮硼配合物荧光材料及其制备方法与应用。
背景技术
有机发光二极管(OLED)相比于传统的显示技术,具有自发光、对比度高、能耗低、质量轻、响应速度快、可制备柔性大面积器件等优势,在下一代全彩显示及固态照明等领域具有广阔的应用前景。OLED发光器件通常是由电极材料膜层,以及夹在两个电极膜层之间的有机功能层组成,包括空穴注入层、空穴传输层、发光层、空穴阻挡层、电子传输层、电子注入层。OLED发光器件的作用机理为两个电极之间施加电压,在电场作用下,从阴极注入的电子和从阳极注入的空穴在发光层中复合形成激发态,激发态辐射回到基态,实现器件发光。由于发光层是OLED器件最重要的组成部分,因此,发展具有高发光效率的有机发光材料,对获得优异的OLED器件性能起决定作用。按发光机制,发光材料分为荧光材料、金属配合物磷光材料和热活化延迟荧光(TADF)材料。传统的荧光材料在电致发光过程中仅能利用25%的单线态激子,而75%的三线态激子则以非辐射跃迁的形式损失,使OLED器件内量子效率(IQE)的理论极限值仅为25%。金属配合物磷光材料利用重金属原子的旋轨耦合作用可以将三线态激子转化为光子,可以实现100%的内量子效率。但贵金属的使用,使金属配合物磷光材料面临成本高、价格昂贵的问题。TADF材料是继传统荧光材料、金属配合物磷光材料后的第三代有机电致发光材料。TADF材料可以通过吸收环境热量,使三重态激子向单重态反系间窜越,从而可以同时利用三线态激子与单线态激子,获得高效的荧光发射,实现100%的激子利用率。与传统荧光材料和金属配合物磷光材料相比,TADF材料不仅能够获得高发光效率,而且不需要贵重金属作为原料,具有成本低和环保等优势。目前,TADF材料最常用的设计策略是构建扭曲的给体(D)-受体(A)结构,使最高占据轨道(HOMO)和最低空轨道(LUMO) 能在空间上有效分离,进而使单线态和三线态能级差较小(ΔEST<0.3eV),实现三线态向单线态有效的反系间窜越。因此,选择与设计合适的给体单元与受体单元对实现材料的TADF发射至关重要。
近年来,含硼原子的π共轭体系受到广泛的关注。由于硼原子具有空的p轨道,使硼配合物表现出缺电子特性,LUMO能级较低,可作为电子受体单元构建D-A结构的TADF材料。根据配位数不同,硼配合物主要有三配位硼配合物和四配位硼配合物两类。三配位硼配合物,如三芳基硼,作为受体单元制备的TADF 材料具有发光效率高,发射光谱窄以及分子水平取向度高等特点,用于OLED器件中表现出优异电致发光性能。然而,由于三芳基硼等三配位硼配合物的拉电子能力有限,使得基于三配位硼配合物的TADF材料的发光多局限于蓝光与绿光。与之相比,含N,N-、O,O-或N,O-配体的四配位硼配合物的结构更易于修饰,能够更有效调控LUMO能级,进而更利于拓展光谱范围,获得红光TADF材料。同时,四配位硼配合物的稳定性更高,有利于增强器件的稳定性。因此,发展基于四配位硼配合物的TADF材料是改进材料性能,获得高效红光TADF的有效手段。烯胺酮硼配合物是一类含N,O-配体的四配位硼配合物。烯胺酮硼配合物具有刚性平面的结构、较低的LUMO能级和高摩尔消光系数,是构建TADF 材料理想的受体单元,因而受到研究者的关注。
发明内容
本发明的目的是提供一种具有高效的纯红光发射的热活化延迟荧光材料烯胺酮硼配合物荧光材料及其制备方法与应用。
为了实现上述目的,本发明的技术方案具体如下:
本发明提供一种烯胺酮硼配合物荧光材料,其结构通式如式1:
Figure RE-GDA0003003536230000031
其中,
配体R为氟、氯、溴、氰基、苯基、对氟苯基、对三氟甲基苯基或者五氟苯基;
Ar为与烯胺酮硼配合物上的氮原子相连的取代或未取代的芳基、杂芳基或稠杂环基团;
D为与烯胺酮硼配合物上的氧原子相邻碳原子相连的芳基、杂芳基或稠杂环基团。
在上述技术方案中,优选的是:Ar选自下列结构中的一种:
Figure RE-GDA0003003536230000032
其中:L1~L8独立地选自氢、氟、氰基、硝基或者三氟甲基;m选自1~4的整数;n选自1~3的整数;p选自1~5的整数。
在上述技术方案中,优选的是:D选自下列结构中的一种:
Figure RE-GDA0003003536230000041
本发明还提供一种烯胺酮硼配合物荧光材料的制备方法,包括以下步骤:
惰性气氛下,在无水甲苯中,加入烯胺酮中间体1与硼化合物B(R)3,在 90~130℃下反应6~36h,经柱分离获得烯胺酮硼配合物荧光材料;
反应式如下:
Figure RE-GDA0003003536230000051
所述的烯胺酮中间体1的结构为
Figure RE-GDA0003003536230000052
其中,Ar为取代或未取代的芳基、杂芳基或稠杂环基团;D为芳基、杂芳基或稠杂环基团;
所述的硼化合物的结构为B(R)3,其中,R为氟、氯、溴、氰基、苯基、对氟苯基、对三氟甲基苯基或者五氟苯基。
在上述技术方案中,优选的是:Ar选自下列结构中的一种:
Figure RE-GDA0003003536230000053
其中:L1~L8独立地选自氢、氟、氰基、硝基或者三氟甲基;m选自1~4的整数;n选自1~3的整数;p选自1~5的整数。
在上述技术方案中,优选的是:D选自下列结构中的一种:
Figure RE-GDA0003003536230000061
本发明还提供一种所述烯胺酮硼配合物荧光材料在制备OLED器件中的应用。
在上述技术方案中,优选的是:所述OLED器件:包括阳极、阴极以及位于所述阳极和所述阴极之间的有机薄膜层;所述有机薄膜层包括烯胺酮硼配合物荧光材料。
在上述技术方案中,优选的是:所述有机薄膜层包括发光层;所述发光层包括烯胺酮硼配合物荧光材料。
本发明的有益效果是:
本发明的烯胺酮硼配合物荧光材料以烯胺酮硼配合物作为受体,与电子给体单元结合,形成D-A结构,使HOMO和LUMO有效分离,获得较小的单线态与三线态能级差,可以实现热活化延迟荧光发射;通过在烯胺酮一侧引入拉电子结构单元,使烯胺酮硼配合受体的拉电子能力增强,有效调控LUMO能级,获得红光发射。该类材料用于有机电致发光器件中,可实现具有较高外量子效率的红光发射,展示出较好的应用前景。
附图说明
下面结合附图和具体实施方式对本发明作进一步详细说明。
图1为烯胺酮硼配合物热活化延迟荧光材料C1与C2在聚苯乙烯掺杂膜中的发射光谱。
图2为烯胺酮硼配合物热活化延迟荧光材料C1与C2的电致发光光谱。
图3为烯胺酮硼配合物热活化延迟荧光材料C1与C2的电流密度-EQE曲线。
具体实施方式
下面结合具体实施例对本发明做进一步说明,但本发明不仅仅限于以下实施例所述的结构。
实施例一:一种结构为C1的烯胺酮硼配合物热活化延迟荧光材料,合成路线如下:
Figure RE-GDA0003003536230000081
(1)结构为1的中间体合成:在惰性氛围中,将Z-1-(4-溴苯基)-3-(苯胺基) 丙烯酮(3.0mmol,0.90g),9,10-二氢-9,9-二甲基吖啶(4.5mmol,0.94g),三(二亚苄基丙酮)二钯(Pd2(dba)3,0.15mmol,137mg),三叔丁基膦四氟硼酸盐((t-Bu)3 PH-BF4,1.2mmol,348mg)与叔丁醇钠(9.0mmol,0.86g)加入250mL两口烧瓶中,然后对反应体系抽换气三次。之后,将80mL无水甲苯溶剂导入反应体系,最后将反应体系加热到95℃并在此温度下反应12h。通过TLC板检测原料消失后停止反应,将反应体系冷却至室温后,向反应液中加入100mL去离子水,然后用乙酸乙酯萃取三次,饱和食盐水洗三次,无水硫酸钠干燥,过滤,抽干,硅胶柱分离,得到产物0.68g,产率为75%。MALDI-TOF MS计算值:804.2[M]+, 测量值:804.2[M]+
(2)C1的合成:将原料中间体1(1.3mmol,0.55g)与三(五氟苯基)硼 (2mmol,1.02g)加入250mL圆底烧瓶中,真空置换入氩气,然后导入无水甲苯80mL,反应体在110℃下反应过夜。反应结束后,将溶剂旋干,硅胶柱分离得到固体50.67g,产率为67%。MALDI-TOFMS计算值:799.2[M]+,测量值: 799.2[M]+
实施例二:一种结构为C2的烯胺酮硼配合物热活化延迟荧光材料,合成路线如下:
Figure RE-GDA0003003536230000091
(1)结构为2的中间体合成:在惰性氛围中,将Z-1-(4-溴苯基)-3-(4-氰基苯胺基)丙烯酮(3.0mmol,0.98g),9,10-二氢-9,9-二甲基吖啶(4.5mmol,0.94g),三(二亚苄基丙酮)二钯(Pd2(dba)3,0.15mmol,137mg),三叔丁基膦四氟硼酸盐 ((t-Bu)3PH-BF4,1.2mmol,348mg)与叔丁醇钠(9.0mmol,0.86g)加入250mL 两口烧瓶中,然后对反应体系抽换气三次。之后,将80mL无水甲苯溶剂导入反应体系,最后将反应体系加热到95℃并在此温度下反应12h。通过TLC板检测原料消失后停止反应,将反应体系冷却至室温后,向反应液中加入100mL去离子水,然后用乙酸乙酯萃取三次,饱和食盐水洗三次,无水硫酸钠干燥,过滤,抽干,硅胶柱分离,得到产物1.01g,产率74%。MALDI-TOF MS:计算值:326.0 [M]+,测量值:326.1[M]+
(2)C2的合成:将原料中间体2(1mmol,0.46g)与三(五氟苯基)硼(1.5 mmol,0.79g)加入250mL圆底烧瓶中,真空置换入氩气,然后导入无水甲苯60 mL,反应体在110℃下反应过夜。反应结束后,将溶剂旋干,硅胶柱分离得到固体0.63g,产率79%。MALDI-TOFMS:计算值:804.2[M]+,测量值:804.2[M]+
实施例三:一种结构为C3的烯胺酮硼配合物荧光材料,合成路线如下:
中间体2按实施例二中步骤(1)合成。
C3的合成:将原料中间体2(1mmol,0.46g)与三(4-氟苯基)硼(1.5mmol, 0.44g)加入250mL圆底烧瓶中,真空置换入氩气,然后导入无水甲苯60mL,反应体在110℃下反应过夜。反应结束后,将溶剂旋干,硅胶柱分离得到固体0.47 g,产率70%。MALDI-TOF MS:计算值:655.3[M]+,测量值:655.2[M]+
Figure RE-GDA0003003536230000101
实施例四:一种结构为C4的烯胺酮硼配合物荧光材料,合成路线如下:
Figure RE-GDA0003003536230000102
(1)结构为3的中间体合成:将Z-1-(4-溴苯基)-3-(4-氰基苯胺基)丙烯酮(2.0mmol,0.65g),螺吖啶原料a,三(二亚苄基丙酮)二钯(Pd2(dba)3,0.1mmol, 92mg),三叔丁基膦四氟硼酸盐((t-Bu)3PH-BF4,0.8mmol,232mg)与叔丁醇钠(6.0mmol,0.57g)加入100mL两口烧瓶中,然后对反应体系抽换气三次。之后,将50mL无水甲苯溶剂导入反应体系,最后将反应体系加热到95℃并在此温度下反应12h。通过TLC板检测原料消失后停止反应,将反应体系冷却至室温后,向反应液中加入80mL去离子水,然后用乙酸乙酯萃取三次,饱和食盐水洗三次,无水硫酸钠干燥,过滤,抽干,硅胶柱分离,得到产物0.69g,产率60%。MALDI-TOF MS:计算值:577.2[M]+,测量值:577.2[M]+
(2)C4的合成:将原料中间体3(1mmol,0.58g)与三(五氟苯基)硼(1.5 mmol,0.79g)加入100mL圆底烧瓶中,真空置换入氩气,然后导入无水甲苯60 mL,反应体在110℃下反应过夜。反应结束后,将溶剂旋干,硅胶柱分离得到固体0.64g,产率70%。MALDI-TOFMS:计算值:804.2[M]+,测量值:804.2[M]+
实施例五:一种结构为C5的烯胺酮硼配合物荧光材料,合成路线如下:
Figure RE-GDA0003003536230000111
(1)结构为4的原料合成:将1-(4-溴苯基)-2-丙炔酮(0.42g,2.0mmol)加入100mL反应瓶中,向反应瓶中加入30mL甲醇,通过超声与搅拌将原料溶解后,将4-胺基吡啶(0.21g,2.2mmol)加入反应体系中,在室温静置20min,沉淀物过滤,并且用甲醇溶剂洗三次后,得到产物0.58g,产率96%。MALDI-TOF MS:计算值:302.0[M]+,测量值:302.1[M]+
(2)结构为5的中间体合成:将原料4(1.5mmol,0.45g),螺吖啶原料b,三(二亚苄基丙酮)二钯(Pd2(dba)3,0.075mmol,69mg),三叔丁基膦四氟硼酸盐 ((t-Bu)3PH-BF4,0.6mmol,174mg)与叔丁醇钠(4.5mmol,0.29g)加入100mL 两口烧瓶中,然后对反应体系抽换气三次。之后,将40mL无水甲苯溶剂导入反应体系,最后将反应体系加热到95℃并在此温度下反应12h。通过TLC板检测原料消失后停止反应,将反应体系冷却至室温后,向反应液中加入60mL去离子水,然后用乙酸乙酯萃取三次,饱和食盐水洗三次,无水硫酸钠干燥,过滤,抽干,硅胶柱分离,得到产物0.42g,产率65%。MALDI-TOF MS:计算值:431.2[M]+, 测量值:431.3[M]+
(3)C5的合成:将原料中间体5(0.5mmol,0.3g)与三(五氟苯基)硼(0.75mmol,0.39g)加入50mL圆底烧瓶中,真空置换入氩气,然后导入无水甲苯40mL,反应体在110℃下反应过夜。反应结束后,将溶剂旋干,硅胶柱分离得到固体0.32g,产率68%。MALDI-TOF MS:计算值:939.2[M]+,测量值:939.3 [M]+
光物理性质测试:
实施例一和二的相关数据如表1所示。C1与C2在甲苯溶液中,分别具有红光发射,荧光量子效率较高。ΔEST小于0.3eV,延迟荧光寿命较短,具有TADF效应。
表1 C1与C2的基本光物理数据
Figure RE-GDA0003003536230000131
λem为化合物(6wt%)掺杂在聚苯乙烯膜中的荧光光谱峰位;ΔEST是单线态和三线态能级差;τp是瞬态荧光寿命;τd是延迟荧光寿命;ΦPF是瞬态荧光量子效率;ΦDF延迟荧光量子效率。
OLED器件的制备及性能测试:
氧化铟锡(ITO)玻璃依次用清洗剂,水、去离子水冲洗,然后放入120℃的烘箱中烘干。将干燥的ITO玻璃放入紫外臭氧清洗机(UVO)中处理30min后,旋涂一层聚乙撑二氧噻吩:聚苯乙烯磺酸盐(PEDOT:PSS)作为空穴注入与传输层,放入烘箱中于120℃退火40min。冷却后,将发光分子与CBP主体的氯苯溶液(10mg/mL)在室温下过滤旋涂在PEDOT:PSS层上作为器件的发光层(EML)。将片子转移至高真空蒸镀系统中,在真空度达到4×10-4Pa时,依次蒸镀电子传输层TmPyPB和阴极LiF/Al。所蒸镀材料的厚度和沉积速度通过石英晶体振荡器来进行监控和检测。蒸镀结束后,冷却1h后取出,未经封装,直接在空气中测试。具体器件结构如下:
器件1:ITO/PEDOT:PSS(30nm)/CBP:C1(6wt%)(40nm)/TmPyPB(42nm)/ LiF(1nm)/Al(100nm)
器件2:ITO/PEDOT:PSS(30nm)/CBP:C2(6wt%)(40nm)/TmPyPB(42nm)/ LiF(1nm)/Al(100nm)
其中,主体材料CBP和电子传输材料TmPyPB的结构如下:
Figure RE-GDA0003003536230000141
器件的电流-电压和亮度-电压曲线是Keithley源表模组(Keithley2400源表) 测量;器件的电致发光光谱以及色坐标(CIE)由PR650光谱仪测量。器件的性能结果如表2所示:
表2 DMAC-BPF与DMAC-BPF5-CN的电致发光器件性能数据
Figure RE-GDA0003003536230000142
从表2可见,本发明提供的烯胺酮硼配合物热活化延迟荧光材料制备的器件具有纯红光的电致发光光谱:电致发光峰位于620nm以上,色坐标可以达到 (0.61,0.37);器件均具有较高的效率,其最大外量子效率达到12.5%。
图1为烯胺酮硼配合物热活化延迟荧光材料C1与C2在聚苯乙烯掺杂膜中的发射光谱;图2为烯胺酮硼配合物热活化延迟荧光材料C1与C2的电致发光光谱;图3为烯胺酮硼配合物热活化延迟荧光材料C1与C2的电流密度-EQE 曲线。
上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之中。

Claims (9)

1.一种烯胺酮硼配合物荧光材料,其特征在于,其结构通式如式1:
Figure FDA0002932180280000011
其中,
配体R为氟、氯、溴、氰基、苯基、对氟苯基、对三氟甲基苯基或者五氟苯基;
Ar为与烯胺酮硼配合物上的氮原子相连的取代或未取代的芳基、杂芳基或稠杂环基团;
D为与烯胺酮硼配合物上的氧原子相邻碳原子相连的芳基、杂芳基或稠杂环基团。
2.根据权利要求1所述的烯胺酮硼配合物荧光材料,其特征在于,Ar选自下列结构中的一种:
Figure FDA0002932180280000012
其中:L1~L8独立地选自氢、氟、氰基、硝基或者三氟甲基;m选自1~4的整数;n选自1~3的整数;p选自1~5的整数。
3.根据权利要求1所述的烯胺酮硼配合物荧光材料,其特征在于,D选自下列结构中的一种:
Figure FDA0002932180280000021
4.一种权利要求1所述的烯胺酮硼配合物荧光材料的制备方法,其特征在于,包括以下步骤:
惰性气氛下,在无水甲苯中,加入烯胺酮中间体1与硼化合物B(R)3,在90~130℃下反应6~36h,经柱分离获得烯胺酮硼配合物荧光材料;
反应式如下:
Figure FDA0002932180280000031
所述的烯胺酮中间体1的结构为
Figure FDA0002932180280000032
其中,Ar为取代或未取代的芳基、杂芳基或稠杂环基团;D为芳基、杂芳基或稠杂环基团;
所述的硼化合物的结构为B(R)3,其中,R为氟、氯、溴、氰基、苯基、对氟苯基、对三氟甲基苯基或者五氟苯基。
5.根据权利要求4所述的烯胺酮硼配合物荧光材料的制备方法,其特征在于,Ar选自下列结构中的一种:
Figure FDA0002932180280000033
其中:L1~L8独立地选自氢、氟、氰基、硝基或者三氟甲基;m选自1~4的整数;n选自1~3的整数;p选自1~5的整数。
6.根据权利要求4所述的烯胺酮硼配合物荧光材料的制备方法,其特征在于,D选自下列结构中的一种:
Figure FDA0002932180280000041
7.一种权利要求1-3任意一项所述的烯胺酮硼配合物荧光材料在制备OLED器件中的应用。
8.根据权利要求7所述的应用,其特征在于,所述OLED器件:包括阳极、阴极以及位于所述阳极和所述阴极之间的有机薄膜层;所述有机薄膜层包括权利要求1-3任意一项所述的烯胺酮硼配合物荧光材料。
9.根据权利要求8所述的应用,其特征在于,所述有机薄膜层包括发光层;所述发光层包括权利要求1-3任意一项所述的烯胺酮硼配合物荧光材料。
CN202110149566.0A 2021-02-03 2021-02-03 烯胺酮硼配合物荧光材料及其制备方法与应用 Active CN114853792B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110149566.0A CN114853792B (zh) 2021-02-03 2021-02-03 烯胺酮硼配合物荧光材料及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110149566.0A CN114853792B (zh) 2021-02-03 2021-02-03 烯胺酮硼配合物荧光材料及其制备方法与应用

Publications (2)

Publication Number Publication Date
CN114853792A true CN114853792A (zh) 2022-08-05
CN114853792B CN114853792B (zh) 2023-12-08

Family

ID=82623577

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110149566.0A Active CN114853792B (zh) 2021-02-03 2021-02-03 烯胺酮硼配合物荧光材料及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN114853792B (zh)

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUA LI ET AL.: "Orange-red thermally activated delay fluorescence emitters based on asymmetric difluoroboron chelated enaminone: Impact of donor position on luminescent properties", DYES AND PIGMENTS, vol. 184, pages 108810 - 108817 *
MACROMOLECULES: "N,N-Dimethyl-Substituted Boron Ketoiminates for Multicolor Fluorescent Initiators and Polymers", vol. 53, no. 9, pages 3339 - 3348 *

Also Published As

Publication number Publication date
CN114853792B (zh) 2023-12-08

Similar Documents

Publication Publication Date Title
Wan et al. Multifunctional electron-transporting indolizine derivatives for highly efficient blue fluorescence, orange phosphorescence host and two-color based white OLEDs
WO2020000826A1 (zh) 一种稠环化合物及其制备方法和用途
Zhang et al. Synthesis, photophysical and optoelectronic properties of quinazoline-centered dyes and their applications in organic light-emitting diodes
CN106905220B (zh) 一种螺芴类衍生物及有机电致发光器件
CN108250214B (zh) 氧杂螺芴三苯胺衍生物、制备方法及其用途
CN112457313B (zh) 一种萘酰亚胺并氮杂环发光材料及其应用
KR20100094413A (ko) 안트라센 유도체 및 이를 채용한 유기전계발광소자
WO2020211122A1 (zh) 双极性热活化延迟荧光材料及其制备方法与有机电致发光二极管器件
CN106831861A (zh) 一种芴并咔唑类衍生物及磷光有机电致发光器件
JP2023503663A (ja) 金属錯体及びその用途
Ban et al. Spirobifluorene/sulfone hybrid: highly efficient solution-processable material for UV–violet electrofluorescence, blue and green phosphorescent OLEDs
CN113004292A (zh) 一种基于三唑并三嗪的主体发光材料及其应用
Jia et al. New bipolar host materials based on methyl substituted pyridazine for high-performance green and red phosphorescent OLEDs
CN110256439B (zh) 有机电致发光材料及器件
Bao et al. New carbazole-based bipolar hosts for efficient green phosphorescent organic light-emitting diodes
CN106898709B (zh) 一种红色磷光有机电致发光器件
CN106941133B (zh) 一种有机发光器件及其制备方法
Liu et al. Synthesis and electroluminescence properties of europium (III) complexes with new second ligands
CN102391301B (zh) 一种磷光主体材料
CN111285877A (zh) 有机电致发光材料及器件
JP5649029B2 (ja) 発光性組成物、有機電界発光素子、及びベンゾジフラン誘導体
CN114853792B (zh) 烯胺酮硼配合物荧光材料及其制备方法与应用
KR102708766B1 (ko) 유기 광전자 소자용 화합물 및 이를 포함하는 유기 광전자 소자
CN113861206A (zh) 一种蓝色电致发光材料及其合成方法和应用
CN113054126A (zh) 一种多环稠合有机硼半导体材料及oled器件应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant