CN114846369A - 高透射率光控膜 - Google Patents

高透射率光控膜 Download PDF

Info

Publication number
CN114846369A
CN114846369A CN202080089787.7A CN202080089787A CN114846369A CN 114846369 A CN114846369 A CN 114846369A CN 202080089787 A CN202080089787 A CN 202080089787A CN 114846369 A CN114846369 A CN 114846369A
Authority
CN
China
Prior art keywords
light
tir
control film
core
light control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202080089787.7A
Other languages
English (en)
Inventor
刘涛
尼古拉斯·A·约翰逊
雷蒙德·J·肯尼
凯莱布·T·纳尔逊
丹尼尔·J·施密特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
3M Innovative Properties Co
Original Assignee
3M Innovative Properties Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 3M Innovative Properties Co filed Critical 3M Innovative Properties Co
Publication of CN114846369A publication Critical patent/CN114846369A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/003Light absorbing elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B2207/00Coding scheme for general features or characteristics of optical elements and systems of subclass G02B, but not including elements and systems which would be classified in G02B6/00 and subgroups
    • G02B2207/123Optical louvre elements, e.g. for directional light blocking

Abstract

一种光控膜包括:光输入表面和光输出表面;交替的透射区域和吸收区域,所述交替的透射区域和吸收区域设置在所述光输入表面与所述光输出表面之间;以及TIR包覆层。该TIR包覆层具有折射率nTIR。该透射区域在具有折射率n2的高折射率透射区域与具有折射率n1的低折射率透射区域之间交替。该吸收区域包括具有折射率n的芯部,该芯部与AR包覆层相邻;其中n1<n2并且nTIR<n2。该TIR包覆层与该高折射率透射区域相邻。该芯部具有至少20的高宽比。该高折射率透射区域具有6度或更小的壁角。

Description

高透射率光控膜
技术领域
本发明涉及光控膜以及制备这些光控膜的方法。
背景技术
传统上已通过刮削工艺、微复制或浇铸和固化工艺来制备基于天窗的光控膜,用于诸如私密滤光器和汽车显示器滤光器的应用。传统的基于天窗的光控膜的缺陷在于,由于天窗的高宽比,同轴透光率是有限的,该高宽比通常为约10:1至约15:1。
最近,例如在WO 2019/118685中已经开发出用于制备高高宽比光控膜的方法。所得的光控膜可以获得高得多的轴向透光率。
附图说明
图1为现有技术的光控膜的剖视图。
图2为现有技术的光控膜的剖视图。
图3A为具体体现的光控膜的剖视图。
图3B示出图3A的光控膜的极面截止视角。
图4为微结构化膜制品的透视示意图。
图5A至图5F为制备光控膜的具体体现的方法的剖面示意图。
图6为包括具体体现的光控膜的背光显示器的透视示意图。
发明内容
我们已经认识到,在本领域中对高高宽比、高透射率百叶窗膜(也具有经改善的“顶帽”性能(即,穿过膜的光的轴向亮度))的需求增加,并且亮度在视角内更均匀,并且截止视角为锐化的。顶帽性能对于汽车应用中的显示器特别关键。
我们已经识别出对基于百叶窗的光控膜中的顶帽性能而言很重要的因素。例如,在包括透射区域30和深色树脂百叶窗40的传统百叶窗膜(诸如图1所示的膜10)中,透射区域30与深色百叶窗40之间的折射率/消光系数的Δ,以及百叶窗壁的角度对于增强通过全内反射(TIR)进行的光反射很重要。如图1所示,左侧成角度的百叶窗壁和右侧成角度的百叶窗壁两者均使光准直并增强TIR。
相比之下,用例如通过WO 2019/118685中所述的工艺进行制备的对称高高宽比百叶窗膜难以实现TIR。图2示出了在高高宽比百叶窗41之间具有透射区域31的膜11。非常薄的百叶窗需要非常高的吸光材料(例如,炭黑)填充以吸收高角度光。因此,折射率/消光系数显著增加,从而使得难以在透射区域/黑色百叶窗界面处实现TIR。此外,虽然高高宽比百叶窗能够实现优异的轴向透射率,但是难以使用百叶窗角度来使光准直以实现顶帽性能。如图2所示,百叶窗壁的一侧使光准直,但是另一侧使光去准直。
在一个方面,本发明提供了光控膜,该光控膜包括:
光输入表面和与所述光输入表面相反的光输出表面;
交替的透射区域和吸收区域,所述交替的透射区域和吸收区域设置在所述光输入表面与所述光输出表面之间;和
TIR包覆层,所述TIR包覆层具有折射率nTIR和消光系数kTIR
其中所述透射区域在具有折射率n2的高折射率透射区域与具有折射率n1的低折射率透射区域之间交替,
其中所述吸收区域包括具有折射率n和消光系数k的芯部,所述芯部与AR包覆层相邻,所述AR包覆层具有折射率nAR和消光系数kAR
其中n1<n2
其中nTIR<n2
其中所述TIR包覆层与所述高折射率透射区域相邻;
其中所述芯部具有至少20的高宽比;和
其中所述高折射率透射区域具有6度或更小的壁角。
在另一方面,本发明提供了光控膜,该光控膜包括:
光输入表面和与所述光输入表面相反的光输出表面;
交替的透射区域和吸收区域,所述交替的透射区域和吸收区域设置在所述光输入表面与所述光输出表面之间;和
TIR包覆层,所述TIR包覆层具有折射率nTIR和吸光材料浓度CTIR
其中所述透射区域在具有折射率n2的高折射率透射区域与具有折射率n1的低折射率透射区域之间交替,
其中所述吸收区域包括具有折射率n和吸光材料浓度C的芯部,所述芯部与AR包覆层相邻,所述AR包覆层具有折射率nAR和吸光材料浓度CAR
其中n1<n2
其中nTIR<n2
其中所述TIR包覆层与所述高折射率透射区域相邻;
其中所述芯部具有至少20的高宽比;和
其中所述高折射率透射区域具有6度或更小的壁角。
本发明的光控膜提供了高透射率以及经改善的顶帽性能。百叶窗的一侧具有TIR界面,该TIR界面提供具有准直的增强的TIR。百叶窗的另一侧具有抗反射(AR)界面,该抗反射界面由于去准直而具有非常低的反射并且不显著增加高角度光。在一些实施方案中,例如,本发明的光控膜具有在20度的视角下的45%或更多的平均相对透射率。
本发明还提供了用于制备具有高透射率和经改善的顶帽性能的光控膜的方法。
在一个方面,本发明提供了一种制备光控膜的方法,该方法包括:
提供微结构化膜,所述微结构化膜包括与沟槽交替的具有折射率n2的多个高折射率透射区域,其中所述微结构化膜具有由所述透射区域的顶表面和侧壁以及所述沟槽的底表面限定的表面,其中所述侧壁具有6度或更小的壁角;
将具有折射率nTIR和消光系数kTIR的吸光或透光包覆材料的TIR层施加到所述表面;
将具有折射率n和消光系数k的吸光芯材料层施加在所述TIR层上;
将具有折射率nAR和消光系数kAR的吸光包覆材料的AR层施加在所述吸光芯材料层上;
从所述透射区域的所述顶表面和所述沟槽的所述底表面去除所述TIR层、所述吸光芯材料层和所述AR层的至少一部分;以及
用具有折射率n1的透光有机聚合物材料填充所述沟槽;
其中n1<n2并且nTIR<n2
在另一方面,本发明提供了制备光控膜的方法,该方法包括:
提供微结构化膜,所述微结构化膜包括与沟槽交替的具有折射率n2的多个高折射率透射区域,其中所述微结构化膜具有由所述透射区域的顶表面和侧壁以及所述沟槽的底表面限定的表面,其中所述侧壁具有6度或更小的壁角;
将具有折射率nTIR和吸光材料浓度CTIR的吸光或透光包覆材料的TIR层施加到所述表面;
将具有折射率n和吸光材料浓度C的吸光芯材料层施加在所述TIR层上;
将具有折射率nAR和吸光材料浓度CAR的吸光包覆材料的AR层施加在所述吸光芯材料层上;
从所述透射区域的所述顶表面和所述沟槽的所述底表面去除所述TIR层、所述吸光芯材料层和所述AR层的至少一部分;以及
用具有折射率n1的透光有机聚合物材料填充所述沟槽;
其中n1<n2并且nTIR<n2
具体实施方式
在一个实施方案中,描述了光控膜(“LCF”)。参考图3A(具体体现的LCF 300的剖视图),LCF包括光输出表面310和相反的光输入表面320。光输出表面310通常平行于光输入表面320。LCF 300包括设置在光输出表面310与光输入表面320之间的交替的透射区域330和吸收区域340以及TIR包覆层343。透射区域330在高折射率透射区域330a与低折射率透射区域330b之间交替。吸收区域340包括芯部341和AR包覆层342。
在一个实施方案中,如图3A所示,高折射率透射区域330a与基体区域“L”成一体,这意味着在基体区域与透射区域330a的基部部分331之间不存在界面。另选地,LCF可不含此类基体区域L,或者在基体区域L与透射区域330之间可存在界面。在该实施方案中,基体区域设置在交替的透射区域330和吸收区域340与光输入表面320之间。
透射区域330可由宽度“WT”限定。除了基体区域“L”之外,透射区域330通常具有与吸收区域340标称相同的高度。在典型的实施方案中,吸收区的高度HA为至少30微米、40微米、50微米、60微米、70微米、80微米、90微米或100微米。在一些实施方案中,该高度不大于200微米、190微米、180微米、170微米、160微米或150微米。在一些实施方案中,该高度不大于140微米、130微米、120微米、110微米或100微米。LCF通常包括具有标称相同的高度和宽度的多个透射区域。在一些实施方案中,透射区域具有高度“HT”、其最宽部分处的最大宽度“WT”和至少1.75的高宽比HT/WT。在一些实施方案中,HT/WT为至少2.0、2.5、3.0、3.5、4.0、4.5或5.0。在其它实施方案中,透射区域的高宽比为至少2、3、4、5、6、7、8、9或10。在其它实施方案中,透射区域的高宽比为至少15、20、25、30、35、40、45或50。
吸收区域340具有由底表面345与顶表面355之间的距离限定的高度“HA”,此类顶表面和底表面通常平行于光输出表面310和光输入表面320。吸收区域340具有最大宽度WA,并且沿着表面光输出表面120间隔开节距“PA”。
在基部(即,与底表面345相邻)处的吸收区域的宽度“WA”通常与相邻于顶表面355的吸收区域的宽度标称相同。然而,当吸收区域在底部处的宽度不同于与顶表面相邻的宽度时,该宽度由最大宽度限定。多个吸收区域的最大宽度可针对感兴趣的区域诸如测量透射率(例如,亮度)的区域进行平均。LCF通常包括具有标称相同的高度和宽度的多个吸收区域。在典型的实施方案中,吸收区域通常具有不大于10微米、9微米、8微米、7微米、6微米、5微米、4微米、3微米、2微米或1微米的宽度。在一些实施方案中,吸收区域通常具有不大于5微米、4微米、3微米、2微米或1微米的宽度。在一些实施方案中,吸收区域具有至少150纳米、160纳米、170纳米、180纳米、190纳米或200纳米的宽度。
吸收区域包括夹置在TIR包覆层与AR包覆层之间的芯部。芯部具有宽度“WA芯”,并且包覆层具有宽度“WA-TIR包覆层”和“WA-AR包覆层”。在典型的实施方案中,芯部通常具有不大于5微米、4微米、3微米、2微米或1微米的宽度。在一些实施方案中,芯部通常具有不大于900纳米、800纳米、700纳米、600纳米、500纳米、400纳米、300纳米或200纳米的宽度。在一些实施方案中,芯部具有至少50纳米、60纳米、70纳米、80纳米、90纳米或100纳米的宽度。在典型的实施方案中,每个包覆层通常具有不大于5微米、4微米、3微米、2微米或1微米的宽度。在一些实施方案中,每个包覆层通常具有不大于900纳米、800纳米、700纳米、600纳米、500纳米、400纳米、300纳米或200纳米的宽度。在一些实施方案中,每个包覆层具有至少50纳米、60纳米、70纳米、80纳米、90纳米或100纳米的宽度。
吸收区域可由高宽比限定,即,吸收区域的高度除以吸收区域的最大宽度(HA/WA)。在一些实施方案中,吸收区域的高宽比为至少1、2、3、4、5、6、7、8、9或10。在有利的实施方案中,选择一个或多个吸收区域的高度和宽度,使得一个或多个吸收区域具有甚至更高的高宽比。在一些实施方案中,吸收区域的高宽比为至少15、20、25、30、35、40、45、50、55、60、65、70、75、80、85、90、95或100。在其它实施方案中,吸收区域的高宽比为至少200、300、400或500。高宽比的范围可为高达10,000或更大。在一些实施方案中,高宽比不大于9,000、8,000、7,000、6,000、5,000、4,000、3000、2,000或1,000。
如图3B所示,LCF 300包括交替的透射区域330a/330b、TIR包覆层343以及包括芯部341和AR包覆层342的吸收区域340。在透射区域330与吸收区域340之间存在界面150。界面350与垂直于光输出表面310的线360形成壁角θ。
较大壁角θ降低了法向入射或换句话讲0度的视角下的透射率。优选较小壁角,使得法向入射下的透射率可尽可能地大。在一些实施方案中,壁角θ小于10度、9度、8度、7度、6度或5度。在一些实施方案中,壁角不大于2.5度、2.0度、1.5度、1.0度、0.5度或0.1度。在一些实施方案中,壁角接近零。当壁角为零时,吸收区域和光输出表面120之间的角度为90度。根据壁角,透射区域可具有梯形的或近似矩形的横截面。
当入射光从位于吸收区域与透射区域之间的界面发生全内反射(TIR)时,透射率(例如,可见光亮度)可得以增加。根据光线与界面的入射角以及透射区域和吸收区域的材料的折射率差值,可确定光线是否将发生TIR。
如图3B所示,吸收区域340a/330b之间的透射区域330具有由交替的透射区域330和吸收区域的几何形状限定的界面角θI。如图3A和图3B所示,界面角θI可由两条线的交点限定。第一线从由第一吸收区域的底表面和侧壁表面限定的第一点以及由最近的第二吸收区域的顶表面和侧壁表面限定的第二点延伸。第二线从由第一吸收区域的顶表面和侧壁表面限定的第一点以及由第二吸收区域的底表面和侧壁表面限定的第二点延伸。
极面截止视角θP等于极面截止半视角θ1和极面截止半视角θ2之和,两者中的每一者从光输入表面320的法线测量。在典型的实施方案中,极面截止视角θP是对称的,并且极面截止半视角θ1等于极面半视角θ2。另选地,极面截止视角θP可以是不对称的,并且极面截止半视角θ1不等于极面截止半视角θ2。
可例如使用锥光测量来测量光亮度,如准直光源的光亮度分布测试方法中所述。可在交替的透射区域和吸收区域(如图3A中所示)或还可包括覆盖膜的总光控膜(如图4中所示)上测量光亮度。相对透射率(例如,可见光亮度)被定义为在具有包括交替的透射区域和吸收区域以及任选的其他层的光控膜的读数与不具有光控膜的读数(即,基线)之间在指定视角或视角范围下的光亮度百分比。视角可在-90度至90度的范围内。0度的视角正交于光输入表面320;而-90度和+90度的视角平行于光输入表面320。
交替的透射区域和吸收区域或总LCF可在0度的视角下表现出增加的相对透射率(例如,亮度)。在一些实施方案中,相对透射率(例如,亮度)为至少75%、80%、85%或90%。相对透射率(例如,亮度)通常小于100%。在典型的实施方案中,LCF具有在其它视角下的显著较低的透射率。例如,在一些实施方案中,在-30度、+30度或-30度和+30度的平均值的视角下的相对透射率(例如,亮度)小于50%、45%、40%、35%、30%或25%。在其它实施方案中,在30度、+30度或-30度和+30度的平均值的视角下的相对透射率(例如,亮度)小于25%、20%、15%、10%或5%。在一些实施方案中,在+/-35度、+/-40度、+/-45度、+/-50度、+/-55度、+/-60度、+/-65度、+/-70度、+/-75度或+/-80度的视角下的相对透射率(例如,亮度)小于25%、20%、15%、10%或5%,或者小于5%。在一些实施方案中,对于在+35度至+80度、-35度至-80度范围内或这些范围的平均值的视角下的平均相对透射率(例如,亮度)小于10%、9%、8%、7%、6%、5%、4%、3%或2%。
对于许多应用,增加亮度并因此增加具有高达25度的非零角度的百叶窗膜的透射率,以用于获得更好的显示器均匀度和更大的视图框是有利的。与现有技术相比,本发明的实施方案可使透射率在10度处增加25%(例如,从70%透射率的基础情况增加至87%)、在15度处增加33%(55%对比73%)、在20度处增加49%(37%对比55%)并且在25度处增加76%(17%对比30%)。TIR包覆层可在低角度(例如,25度和以下)处增加透射率,同时在较高角度(例如,35度和以上)处保持低透射率。该改善来自全内反射,其中本体材料的高折射率n2和TIR包覆层的低折射率nTIR将使来自百叶窗侧壁的全反射达到临界角αc,其中αc=sin-1(nTIR/n2)并且αc为与百叶窗的法向的角度。在超出临界角的角度下,将存在非常低的反射,从而导致在高于35度的角度处穿过百叶窗的低透射率或亮度。
在“偏轴”视角(例如,超出约30度)下具有显著较低透射率的LCF适合用作私密膜。此类膜允许显示器正前方(0度的视角)的观察者看到图像,但阻挡观察者在“偏轴”角度下看到此类图像。本发明的LCF还示出了经改善的顶帽性能,并且因此尤其是可用于汽车应用。
吸收区域可通过涂覆微结构化膜的表面而形成。图4示出了具体体现的微结构化膜制品400,其可被涂覆以制备LCF。所示微结构化膜包括微结构化顶表面,该微结构化顶表面包括位于基底层460上的多个沟槽401a至401d。如图4所示,连续基体层“L”可存在于沟槽405的底部与基底层460的顶表面410之间。另选地,沟槽401可一直延伸穿过微结构化膜制品400到达基底层460。在该实施方案(未示出)中,沟槽的底表面405可与基底层460的顶表面410重合。在典型的实施方案中,基底层460为预成形膜,该预成形膜包含与透射区域430不同的有机聚合物材料,如随后将描述的。
突起(例如,透射区域)430的高度和宽度由相邻的沟槽(例如,401a和401b)限定。突起(例如,透射区域)430可由顶表面420、底表面431以及将顶表面接合到底表面的侧壁432和433限定。侧壁可彼此平行。更典型地,侧壁具有如前所述的壁角。
在一些实施方案中,突起(例如,透射区域)430具有至少10微米的节距“PT”。节距为第一突起(例如,透射区域)的起点与第二突起(例如,透射区域)的起点之间的距离,如图4所示。节距可为至少15微米、20微米、25微米、30微米、35微米、40微米、45微米或50微米。节距通常不大于1mm。节距通常不大于900微米、800微米、700微米、600微米或500微米。在一些实施方案中,节距通常不大于550微米、500微米、450微米、400微米、350微米、300微米、250微米或200微米。在一些实施方案中,节距不大于175微米、150微米、100微米。在典型的实施方案中,突起是均匀间隔的,具有单一节距。另选地,突起可被间隔成使得相邻的突起之间的节距不相同。在该稍后的实施方案中,至少一些且通常大多数(总突起的至少50%、60%、70%、80%、90%或更大)具有刚刚描述的节距。
吸收区域的节距PA在与刚刚针对透射区域描述的相同的范围内。
突起(例如,透射区域)的节距和高度对于促进用吸光涂层涂覆突起(例如,透射区域)可能是重要的。当突起间隔太近时,可能难以均匀地涂覆侧壁。当突起间隔开太远时,吸光涂层可能无法有效地提供其预期功能,诸如在偏轴视角下私密。
TIR包覆层和吸收区域通过在微结构化膜的突起(例如,透射区域)的侧壁上提供两个或更多个吸光涂层来形成。该层可通过在侧壁(例如,432、433)上提供足够薄、适形的透光涂层或吸光涂层的任何方法形成。如本文所用,术语“适形”或“适形涂层”意指在整个HA的中间80%中厚度变化小于20%的涂层。
在一个实施方案中,吸收区域通过增材和减材方法的组合形成。
参考图5A至图5F,光控膜可通过提供包括由顶表面(例如,520)和侧壁(532、533)限定的多个突起(例如,透射区域)的微结构化膜500(诸如图4的微结构化膜)来制备。多个突起(例如,透射区域)530通过沟槽501a和501b彼此隔开。突起(例如,透射区域)的侧壁与沟槽的侧壁重合。沟槽还包括与基底层560的顶表面平行或重合的底表面505。该方法还包括将透光或吸光TIR包覆涂层543施加到微结构化膜的(例如,整个)表面,即,突起(例如,透射区域)的顶表面520和侧壁532、533以及隔开突起(例如,透射区域)的沟槽的底表面505。该方法还包括将吸光芯涂层541施加到包覆涂层的(例如,整个)表面。该方法还包括将AR吸光包覆涂层542施加到吸光芯涂层的(例如,整个)表面。该方法还包括从突起(例如,透射区域)的顶表面520和沟槽的底表面505基本上去除涂层。如本文所用,术语“基本上去除涂层”承认一些残余物可能保留下来。该方法还包括用低折射率有机聚合物材料545填充沟槽并固化可聚合树脂。
含微结构的制品(例如,图4中所示的微结构化膜制品400)可通过任何合适的方法制备。在一个实施方案中,含微结构的制品(例如,图4中所示的微结构化膜制品400)可通过如下方法来制备,该方法包括以下步骤:(a)制备可聚合组合物;(b)以刚刚足以填充母模的腔体的量,将可聚合组合物沉积到母模负微结构化模制表面(例如,工具)上;(c)通过在(例如,预成形膜)基底层与母模之间移动可聚合组合物液滴填充腔体,该基底层和母模中的至少一者是柔性的;以及(d)固化组合物。沉积温度可在环境温度至约180℉(82℃)的范围内。母模可为金属(诸如镍、镀铬或镀镍的铜或黄铜)材料,或者可为在聚合条件下稳定的热塑性材料,并且具有允许从母模干净地去除聚合材料的表面能。当基底层为预成形膜时,膜的表面中的一个或多个可任选地涂底漆或以其它方式进行处理,以促进与透射区域的有机材料的粘附。
可聚合树脂具有1.3至1.55或1.47至1.55的折射率。树脂可例如由诸如美国专利号9,360,59中描述的那些材料制成。在一些实施方案中,微结构化制品包含可聚合组合物的反应产物,该可聚合组合物包含至少20重量%的无机纳米颗粒和包含至少三个邻接的亚烷基氧重复单元的非芳族多(甲基)丙烯酸酯单体。在一些实施方案中,亚烷基氧重复单元具有下式:-[O-L]-,其中每个L独立地为C2–C6亚烷基。
基底层的化学组合物和厚度可取决于LCF的最终用途。在典型实施方案中,基底层的厚度可为至少约0.025毫米(mm),并且可以是约0.05mm至约0.25mm。
可用的基底层材料包括例如苯乙烯-丙烯腈、乙酸丁酸纤维素、乙酸丙酸纤维素、三乙酸纤维素、聚醚砜、聚甲基丙烯酸甲酯、聚氨酯、聚酯、聚碳酸酯、聚氯乙烯、聚苯乙烯、聚萘二甲酸乙二醇酯、基于萘二甲酸的共聚物或共混物、基于聚烯烃的材料(诸如聚乙烯、聚丙烯和聚环烯烃的浇注或取向膜)、聚酰亚胺和玻璃。任选地,基底层可包含这些材料的混合物或组合。在一个实施方案中,基底层可以是多层的,或者可包含悬浮或分散在连续相中的分散组分。
基底层材料的示例包括聚对苯二甲酸乙二醇酯(PET)和聚碳酸酯(PC)。可用的PET膜的示例包括光学等级的聚对苯二甲酸乙二醇酯,其以商品名“Melinex 618”购自特拉华州威尔明顿的杜邦膜公司(DuPont Films,Wilmington,Del.)。光学等级的聚碳酸酯膜的示例包括购自华盛顿州西雅图的GE Polymershapes公司(GE Polymershapes,SeattleWash.)的LEXANTM聚碳酸酯膜8010和购自佐治亚州阿法乐特的帝人化成株式会社(TeijinKasei,Alpharetta Ga)的Panlite 1151。
一些基底层可以是光学活性的,并且可充当偏振材料。使透过膜的光的偏振可以(例如)通过在选择性吸收透过光的膜材料中包含二向色性偏振片来实现。光偏振也可以通过包括无机材料(诸如定向的云母晶片)或者通过分散在连续膜内的不连续相(诸如分散在连续膜内的成滴状的光调制液晶)来实现。作为替代方案,可由不同材料的超薄层制备膜。例如,可通过采用诸如拉伸膜、施加电场或磁场以及涂覆技术的方法使膜内的偏振材料沿偏振方向定向。
偏振膜的示例包括以下专利中描述的那些:美国专利5,825,543(Ouderkirk等人);美国专利5,783,120(Ouderkirk等人);美国专利号5,882,774(Jonza等人);美国专利5,612,820(Shrenk等人)和5,486,949(Shrenk等人)。结合棱镜增亮膜使用这些偏振膜已经在例如美国专利6,111,696(Allen等人)和美国专利5,828,488(Ouderkirk等人)中有所描述。可商购获得的膜为多层反射偏振膜,诸如购自3M公司(3M Company)的3MTM双倍增亮膜“DBEF”。
在一些实施方案中,基底层是赋予色移效应的多层膜,诸如US8,503,122中所述。合适的色移膜在Weber等人的美国专利6,531,230中有所描述;该文献以引用方式并入本文。
其它合适的色移膜包括通过旋涂、刮涂、浸涂、蒸镀、溅射、化学气相沉积(CVD)等生成的多层膜。示例性膜包含有机材料和无机材料两者。此类膜公开于例如美国专利7,140,741;7,486,019、和7,018,713。
另选地,含微结构的制品(例如,图4中所示的微结构化膜制品400)可通过熔融挤出(即,将流体树脂组合物浇注到母模负微结构化模制表面(例如,工具)上并允许组合物硬化来制备。在该实施方案中,突起(例如,透射区域)在连续层中互连到基底层260。单个突起(例如,透射区域)以及它们之间的连接部通常包含相同的热塑性材料。基体层的厚度(即,除由复制的微结构产生的部分之外的厚度)通常介于0.001英寸和0.100英寸之间,并且优选地介于0.003英寸和0.010英寸之间。
适用于熔融挤出的树脂组合物为尺寸上稳定、耐用、耐候且可容易形成为期望配置的透明材料。合适的材料的示例包括丙烯酸类,其折射率为约1.5,诸如由罗门哈斯公司(Rohm and Haas Company)制造的Plexiglas牌树脂;折射率为约1.59的聚碳酸酯;反应性材料,诸如热固性丙烯酸酯和环氧丙烯酸酯;基于聚乙烯的离聚物,诸如以商品名SURLYN由杜邦公司(E.I.Dupont de Nemours and Co.,Inc.)销售的那些;乙烯丙烯酸共聚物;聚酯;聚氨酯;以及乙酸丁酸纤维素。聚碳酸酯由于其韧性和相对较高的折射率而特别合适。
在另一实施方案中,母模负微结构化模制表面(例如,工具)可用作压印工具,诸如美国专利4,601,861(Pricone)中所述。
TIR包覆和吸收区域通常通过涂覆微结构化膜的表面来形成。可使用各种涂覆方法,包括例如逐层(LbL)涂覆、气相沉积、溅射、反应溅射和原子层沉积(ALD)。
可用于形成吸光区域的芯部和一个或多个包覆层的吸光材料可为用来吸收或阻挡可见光谱的至少一部分的光的任何合适的材料。优选地,吸光材料可被涂覆或以其它方式提供于透射区域的侧壁上,以在LCF中形成吸光区域。示例性吸光材料包括黑色或其它吸光着色剂(诸如炭黑、或者另一颜料或染料、或者它们的组合)。其它吸光材料可包括可用来阻挡光透射穿过吸光区域的颗粒或其它散射元件。芯层和包覆层中的吸光材料可以相同或不同。
当吸光材料(例如,涂层)包括颗粒时,颗粒的中值粒度D50等于或小于吸光材料(例如,涂层)的厚度或者换句话讲基本上小于吸收区域的宽度WA
中值粒度通常小于1微米。在一些实施方案中,中值粒度不大于900nm、800nm、700nm、600nm或500nm。在一些实施方案中,中值粒度不大于450nm、400nm、350nm、300nm、250nm、200nm或100nm。在一些实施方案中,中值粒度不大于90nm、85nm、80nm、75nm、70nm、65nm、60nm、55nm或50nm。在一些实施方案中,中值粒度不大于30nm、25nm、20nm或15nm。中值粒度通常为至少1纳米、2纳米、3纳米、4纳米或5纳米。例如,吸收区域的纳米颗粒的粒度可使用透射电子显微镜或扫描电镜来测量。
“初级粒度”是指单个(非聚集、非团聚)颗粒的中值直径。“团聚”是指初级颗粒之间的弱缔合,该初级颗粒可由电荷或极性固持在一起并可被分解成较小的实体。本文相对于颗粒所用的“聚集体”是指强力粘合或熔凝的颗粒,其中所得的外表面积可以显著小于各个组分的计算的表面积之和。将聚集体保持在一起的力是很强的力,例如共价键,或通过烧结或复杂物理缠结产生的力。尽管团聚的纳米颗粒可诸如通过施加表面处理来分解成较小的实体诸如离散的初级颗粒;但向聚集体施加表面处理只是得到经表面处理的聚集体。在一些实施方案中,大多数纳米颗粒(即,至少50%)作为离散的未团聚纳米颗粒存在。例如,(例如,涂覆溶液的)至少70%、80%或90%的纳米颗粒作为离散的未团聚纳米颗粒存在。
芯部中的光吸收纳米颗粒的浓度通常为总吸光芯区域的至少10重量%、15重量%、20重量%、25重量%、30重量%、35重量%、40重量%、45重量%或50重量%。在一些实施方案中,芯部中的光吸收纳米颗粒的浓度为总吸光芯区域的至少55重量%、60重量%、65重量%、70重量%、75重量%、80重量%、85重量%、90重量或95重量%。在一些实施方案中,芯部中的光吸收纳米颗粒的浓度为100重量%。在一些实施方案中,芯部中的光吸收纳米颗粒的浓度为总吸光区域的30重量%-100重量%或75重量%-90重量%。
TIR包覆层和AR包覆层中的光吸收纳米颗粒的浓度小于芯部中的光吸收纳米颗粒的浓度。在一些实施方案中,TIR包覆层中的光吸收纳米颗粒的浓度小于AR包覆层。
AR包覆层中的光吸收纳米颗粒的浓度通常为总包覆层的至少0.5重量%、1重量%、5重量%、10重量%、15重量%、20重量%、25重量%、30重量%、35重量%、40重量%或45重量%。在一些实施方案中,AR包覆层中的光吸收纳米颗粒的浓度不大于总包覆层的20重量%、25重量%、30重量%、35重量%、40重量%、45重量%、50重量%、55重量%、60重量%、70重量%或75重量%。在一些实施方案中,AR包覆层的光吸收纳米颗粒的浓度为总AR包覆层的0.5重量%至50重量%或25重量%至45重量%。在一些实施方案中,光吸收纳米颗粒的浓度比芯部中光吸收纳米颗粒的浓度小至少30%。
TIR包覆层中的光吸收纳米颗粒的浓度通常为总包覆层的至少0.5重量%、1重量%、5重量%、10重量%、15重量%、20重量%、25重量%、30重量%或35重量%。在一些实施方案中,TIR包覆层中的光吸收纳米颗粒的浓度不大于总包覆层的20重量%、25重量%、30重量%、35重量%或40重量%。在一些实施方案中,AR包覆层的光吸收纳米颗粒的浓度为总TIR包覆层的0重量%至40重量%或25重量%至35重量%。在一些实施方案中,光吸收纳米颗粒的浓度比芯部中光吸收纳米颗粒的浓度小至少30%。然而,在一些实施方案中,TIR包覆层是透光性的。
在一些实施方案中,AR包覆层和TIR包覆层还包括非吸光稀释剂。如本文所用,术语“非吸光”意指稀释剂基本上不吸收可见光(例如,400nm-700nm波长)或者是透明的(即,在整个可见光谱上具有接近零的消光系数,例如小于0.01或小于0.001)。在一些实施方案中,非吸光稀释剂包含无机材料,诸如纳米二氧化硅颗粒。在一些实施方案中,非吸光稀释剂是有机材料。合适的有机材料包括丙烯酸乳液、聚氨酯分散体、磺基聚酯和其他类型的水性胶乳。颗粒必须具有足够的表面电荷(阴离子或阳离子)以通过基于静电的逐层组装沉积。优选的粒径(即中值粒径,d50)小于500nm,更优选小于250nm。示例性阴离子丙烯酸乳液为购自马萨诸塞州威明顿的DSM涂料树脂公司(DSM Coating Resins(Wilmington,Massachusetts))的
Figure BDA0003709754690000141
A-639。示例性阴离子聚氨酯分散体为购自宾夕法尼亚州匹兹堡的科思创公司(Covestro(Pittsburgh,Pennsylvania))的
Figure BDA0003709754690000151
DLC-F。示例性磺基聚酯为购自田纳西州金斯波特的伊士曼化工公司(Eastman Chemical(Kingsport,Tennessee))Eastek 1100。稀释剂可与炭黑混合并共沉积;或者,稀释剂可制备为单独的涂覆溶液,并以与炭黑分开的层沉积。
光吸收纳米颗粒的浓度可通过本领域中已知的方法诸如热重量分析来确定。
芯部的消光系数通常为0.1至0.5。在一些实施方案中,芯部的消光系数为0.2至0.4。
TIR包覆层的消光系数和AR包覆层的消光系数小于芯部的消光系数。在一些实施方案中,TIR包覆层的消光系数小于AR包覆层的消光系数。
AR包覆层的消光系数为0.005至0.15。在一些实施方案中,AR包覆层的消光系数为0.01至0.1。在一些实施方案中,AR包覆层的消光系数比芯部的消光系数小至少50%。
TIR包覆层的消光系数为0至0.1。在一些实施方案中,TIR包覆层的消光系数为0至0.01。在一些实施方案中,一个或多个包覆层的消光系数小于芯部的消光系数的至少50%。
薄膜涂层的消光系数k可例如通过椭圆光度法或UV/Vis光谱法来确定。k被定义为αλ/(4π),其中α为吸收系数并且λ为波长。对于透明基板上的薄膜涂层,可使用UV/Vis光谱法来将吸收率(A)测量为1–T–R,其中T为透射率,并且R为反射率。必须针对基板的A对测量的A进行适当校正,以获得薄膜本身的A。然后通过公式α=-ln[(100-A)/100]/h将A转换为α,其中h为薄膜涂层的厚度;当R相对较小且A相对较大时,该α的公式为所用的近似值。厚度可例如通过触针轮廓术或横截面扫描电子显微术来测量。
芯部通常具有1.7至2.0的折射率。TIR包覆层通常具有1.40至1.65的折射率。AR包覆层通常具有1.40至1.65的折射率。
在一个实施方案中,该方法包括将逐层吸光涂层(即,芯部和包覆涂层)施加到微结构化膜的表面,即,突起的顶表面和侧壁以及沟槽的底表面。
在一些实施方案中,设置在微结构化膜的表面上的多个层包括由通常称之为“逐层自组装工艺”而沉积的至少两个层。该工艺通常用于静电地组装带相反电荷的高分子电解质的膜或涂层,但其它功能诸如氢键供体/受体、金属离子/配体以及共价键部分可以是膜组装的驱动力。“高分子电解质”意指带有能够发生静电相互作用的多个离子基团的聚合物或化合物。“强高分子电解质”在宽泛的pH范围内具有持久的电荷(例如,聚合物包含季铵基团或磺酸基团)。“弱高分子电解质”具有pH依赖水平的电荷(例如,聚合物包含伯、仲或叔胺,或者羧酸)。通常,该沉积工艺涉及将具有表面电荷的基板暴露于一系列液体溶液或浴。这可以通过将基板浸入液体浴(也称作浸涂)、喷涂、旋涂、辊涂、喷墨印刷等来实现。暴露于具有与基板相反电荷的第一聚离子(例如,高分子电解质浴)液体溶液,结果是基板表面附近的带电物质快速吸附、建立浓度梯度,以及将更多高分子电解质从本体溶液吸到表面。发生进一步吸附,直到有足够的层已发展到掩蔽下面的电荷并且使基板表面的净电荷反向。为了实现质量传递和发生吸附,该暴露时间通常为分钟级。然后,将基板从第一聚离子(例如浴)液体溶液中去除,接着将其暴露于一系列水冲洗浴,以去除任何物理缠结的或松散结合的聚合电解质。在这些冲洗(例如,浴)液体溶液之后,接着使基板暴露于第二聚离子(例如,高分子电解质或无机氧化物纳米颗粒浴)液体溶液,其具有与第一聚离子(例如,浴)液体溶液相反的电荷。由于基板的表面电荷与第二(例如,浴)液体溶液的电荷相反,因此再次发生吸附。继续暴露于第二聚离子(例如,浴)液体溶液则引起基板的表面电荷的逆转。可执行后续的冲洗以完成循环。这一系列步骤被称为构建一个层对,在本文中也称为沉积的“双层”,并且可根据需要进行重复以进一步将另外的层对添加至基板。
合适的方法的一些示例包括在Krogman等人的US 8,234,998;Hammond-Cunningham等人的US2011/0064936;和Nogueira等人的US8,313,798中描述的那些。逐层浸涂可使用StratoSequence VI(佛罗里达州塔拉哈西的nanoStrata公司(nanoStrata Inc.,Tallahassee,FL))浸涂机器人进行。
在一个实施方案中,通过逐层自组装沉积的多个双层是包含含有吸光材料(例如,颜料)的有机聚合物聚离子(例如,阳离子)和抗衡离子(例如,阴离子)的高分子电解质叠堆。阳离子层、阴离子层或它们的组合的至少一部分包含离子地粘结到高分子电解质的吸光材料(例如,颜料)。应当理解,最终制品中的各个双层可能无法通过本领域中的常见方法诸如扫描电子显微术(SEM)或透射电子显微术(TEM)彼此区分。
选择双层的厚度和双层的数目以实现期望的吸光。在一些实施方案中,使用最小总厚度的自组装层和/或最少数目的逐层沉积步骤选择双层的厚度、双层的数目以实现期望的(例如,吸收)光学特性。每个双层的厚度通常在约5nm至350nm的范围内。双层的数目通常为至少5个、6个、7个、8个、9个或10个。在一些实施方案中,每个叠堆的双层的数目为不大于150个或100个。叠堆的厚度等于吸收区域的宽度WA,如前所述。
吸光化合物分散在高分子电解质层的至少一部分内。可利用各种高分子电解质,包括无机化合物诸如二氧化硅或硅酸盐,以及各种膦酰基羧酸及其盐(其中的一些描述于WO2015/095317中;该专利以引用方式并入本文)。
高分子电解质有机聚合物可为优选的,因为与无机材料相比,此类材料可通过反应离子蚀刻更容易地除去。
合适的聚阳离子有机聚合物包括但不限于直链和支链聚(乙烯亚胺)(PEI)、聚(烯丙胺盐酸盐)、聚乙烯胺、脱乙酰壳多糖、聚苯胺、聚酰胺胺、聚(乙烯基苄基三甲基胺)、聚二烯丙基二甲基氯化铵(PDAC)、聚(甲基丙烯酸二甲氨基乙酯)、聚(甲基丙烯酰氨基)丙基-三甲基氯化铵、以及它们的组合,包括它们的共聚物。
合适的聚阴离子有机聚合物包括但不限于聚(乙烯基硫酸盐)、聚(乙烯基磺酸盐)、聚(丙烯酸)(PAA)、聚(甲基丙烯酸)、聚(苯乙烯磺酸盐)、硫酸葡聚糖、肝素、透明质酸、角叉菜胶、羧甲基纤维素、藻朊酸盐、基于磺化四氟乙烯的含氟聚合物诸如
Figure BDA0003709754690000171
聚(乙烯基磷酸)、聚(乙烯基膦酸)、以及它们的组合,包括它们的共聚物。
高分子电解质聚合物的分子量可在约1,000克/摩尔至约1,000,000克/摩尔的范围内变化。在一些实施方案中,(例如,聚(丙烯酸))带负电阴离子层的分子量(Mw)在50,000克/摩尔至150,000克/摩尔的范围内。在一些实施方案中,(例如,聚二烯丙基二甲基氯化铵)带正电阳离子层的分子量(Mw)在50,000克/摩尔至300,000克/摩尔的范围内。在一些实施方案中,(例如,聚(乙烯亚胺))带正电阳离子层的分子量(Mw)在10,000克/摩尔至50,000克/摩尔的范围内。聚离子(例如,聚阴离子或聚阳离子)中的至少一种包含吸光材料。
为了作为胶态分散体在水中稳定并赋予聚离子基团,吸光(例如,颜料)颗粒通常还包括离子表面处理。在一些实施方案中,表面处理化合物为阴离子型的,诸如就磺酸盐或羧酸盐而言。吸光(例如,颜料)颗粒还用作交替的高分子电解质层的离子粘结基团。
合适的颜料可以胶态稳定的水分散体从制造商诸如卡博特(Cabot)、科莱恩(Clariant)、杜邦(DuPont)、大日本(Dainippon)和德固赛(DeGussa)商购获得。尤其合适的颜料包括以商品名
Figure BDA0003709754690000181
购自卡博特公司(Cabot Corporation)的那些,例如250C(青色)、260M(品红色)、270Y(黄色)或352K(黑色)。吸光(例如,颜料)颗粒通常经表面处理以赋予可离子化官能度。用于吸光(例如,颜料)颗粒的合适的可离子化官能度的示例包括磺酸根官能度、羧酸根官能度以及磷酸根或双膦酸根官能度。在一些实施方案中,具有可离子化官能度的经表面处理的吸光(例如,颜料)颗粒可商购获得。例如,可以商品名250C(青色)、260M(品红色)、270Y(黄色)和200(黑色)从卡博特公司(Cabot Corporation)商购获得的
Figure BDA0003709754690000182
颜料包括磺酸根官能度。又如,可以商品名352K(黑色)和300(黑色)从卡博特公司(Cabot Corporation)商购获得的
Figure BDA0003709754690000184
Figure BDA0003709754690000183
颜料包括羧酸根官能度。
当吸光(例如,颜料)颗粒未被预处理时,吸光(例如,颜料)颗粒可被表面处理以赋予如本领域已知的可离子化官能度。
可使用多种吸光材料(例如,颜料)来实现最终产品中的特定色度或色调或颜色。当使用多种吸光材料(例如,颜料)时,选择材料以确保它们彼此之间以及与光学产品部件之间的相容性和性能两者。
在有利的实施方案中,制备高分子电解质并将其作为水溶液施加到微结构化表面。术语“水性”意指涂层的液体包含至少85重量%的水。其可包含更高量的水,诸如例如至少90重量%、95重量%、或甚至至少99重量%的水或更多。水性液体介质可包含水和一种或多种水溶性有机助溶剂的混合物,它们的量使得水性液体介质形成单相。水溶性有机助溶剂的示例包括甲醇、乙醇、异丙醇、2-甲氧基乙醇、3-甲氧基丙醇、1-甲氧基-2-丙醇、四氢呋喃、以及酮或酯溶剂。有机助溶剂的量通常不超过涂料组合物的总液体的15重量%。用于逐层自组装的水性高分子电解质组合物通常包含至少0.01重量%、0.05重量%或0.1重量%,并且通常不大于5重量%、4重量%、3重量%、2重量%或1重量%的高分子电解质。
在一些实施方案中,水溶液还包含“掩蔽剂”,即通过增加离子强度和减少颗粒间静电排斥而促进均匀且可再现的沉积的添加剂。合适的掩蔽剂包括任何低分子量盐,诸如卤化物盐、硫酸盐、硝酸盐、磷酸盐、氟磷酸盐等。卤化物盐的示例包括氯化物盐诸如LiCl、NaCl、KCl、CaCl2、MgCl2、NH4Cl等,溴化物盐诸如LiBr、NaBr、KBr、CaBr2、MgBr2等,碘化物盐诸如LiI、NaI、KI、CaI2、MgI2等,以及氟化物盐诸如NaF、KF等。硫酸盐的示例包括Li2SO4、Na2SO4、K2SO4、(NH4)2SO4、MgSO4、CoSO4、CuSO4、ZnSO4、SrSO4、Al2(SO4)3和Fe2(SO4)3。有机盐诸如(CH3)3CCl、(C2H5)3CCl等也是合适的掩蔽剂。
合适的掩蔽剂浓度可随盐的离子强度而变化。在一些实施方案中,水溶液包含浓度在0.01M至0.1M的范围内的(例如,NaCl)掩蔽剂。吸收区域可包含痕量的掩蔽剂。
在将吸光涂层施加到微结构化膜的(例如,整个)表面并干燥之后,然后将吸光涂层从透射(例如,突起)区域的顶部部分去除,并且也从透射(例如,突起)区域之间的基体区域去除。应当理解,即使保留吸光涂层中的一些,LCF也可具有改善的轴向透射率(例如,亮度)。
可使用任何合适的方法来从突起(例如,吸光区域)的顶表面和沟槽的底表面选择性地除去吸光材料。
在一个实施方案中,吸光材料通过反应离子蚀刻来除去。反应离子蚀刻(RIE)是利用离子轰击来除去材料的定向蚀刻工艺。RIE系统用于通过蚀刻正交于离子轰击的方向的表面来除去有机或无机材料。反应离子蚀刻与各向同性等离子体蚀刻之间最显著的差异是蚀刻方向。反应离子蚀刻的特征在于竖直蚀刻速率与侧向蚀刻速率的比率大于1。用于反应离子蚀刻的系统围绕耐用真空室构建。在开始蚀刻工艺之前,将室抽空至低于1托、100毫托、20毫托、10毫托或1毫托的基础压力。电极固持待处理的材料并与真空室电隔离。电极可为圆柱形状的可旋转电极。反电极也设置在室内,并且可由真空反应器壁构成。包含蚀刻剂的气体通过控制阀进入室。通过真空泵连续抽空室气体来维持工艺压力。所用气体的类型取决于蚀刻工艺。四氟化碳(CF4)、六氟化硫(SF6)、八氟丙烷(C3F8)、三氟甲烷(CHF3)、三氯化硼(BCl3)、溴化氢(HBr)、氯、氩和氧通常用于蚀刻。将RF功率施加到电极以生成等离子体。样品可通过等离子体在电极上输送达受控时间段,以实现指定的蚀刻深度。反应离子蚀刻是本领域已知的并且进一步描述于US 8,460,568中;该文献以引用方式并入本文。
在一些实施方案中,反应离子蚀刻的步骤导致吸收区域在沟槽的底表面511附近更窄(小于平均宽度)。除去吸光材料可导致沟槽的深度(例如,轻微)增加。
在从沟槽的底表面去除吸光涂层之后,沟槽可用透光性的低折射率有机聚合物材料填充。在一些实施方案中,有机聚合物材料为可聚合树脂组合物,并且该方法还包括(例如,辐射)固化可聚合树脂。用于制造微结构化膜的可聚合树脂具有比用于填充沟槽的树脂高的折射率。在一些实施方案中,低折射率可聚合树脂的折射率是1.47至1.55。
可聚合树脂可包含选自以下物质的第一可聚合组分和第二可聚合组分的组合:(甲基)丙烯酸酯单体、(甲基)丙烯酸酯低聚物以及它们的混合物。如本文所用,“单体”或“低聚物”是可转换成聚合物的任何物质。术语“(甲基)丙烯酸酯”是指丙烯酸酯化合物和甲基丙烯酸酯化合物两者。在一些情况下,可聚合组合物可包含(甲基)丙烯酸酯化聚氨酯低聚物、(甲基)丙烯酸酯化环氧低聚物、(甲基)丙烯酸酯化聚酯低聚物、(甲基)丙烯酸酯化酚醛低聚物、(甲基)丙烯酸酯化丙烯酸类低聚物以及它们的混合物。
可聚合树脂可以是可辐射固化的聚合物树脂,诸如可UV固化的树脂。在一些情况下,可用于本发明的LCF的可聚合树脂组合物可包括诸如美国专利8,012,567(Gaides等人)中所述的可聚合树脂组合物,前提是这些组合物满足本文所述的折射率和吸收特征。
当沟槽用固化可聚合树脂填充时,光控膜可任选地包括用粘合剂410粘结到微结构化膜的覆盖膜470,如图4所示。当沟槽用空气填充时,通常包括粘合剂膜和覆盖膜。
在另一实施方案中,层410可为表涂层而不是粘合剂。在该实施方案中,覆盖膜470可不存在。
LCF还可包括与基底层相同或不同的任选的覆盖膜。任选的覆盖膜可用粘合剂粘结到微结构化表面。粘合剂可为任何光学透明的粘合剂,诸如可UV固化的丙烯酸酯粘合剂、转移粘合剂等。
LCF还可包括通常设置在暴露表面上的其它涂层。
多种硬质涂层、抗眩涂层、抗反射涂层、防静电涂层和防污涂层均是本领域已知的。参见例如美国专利7,267,850;美国专利7,173,778、PCT公布WO2006/102383、WO2006/025992、WO2006/025956、和美国专利7,575,847。
图6示出了根据一个实施方案的背光显示器700的透视示意图。背光显示器700包括如前所述的包括透射区域740和吸收区域7550的LCF730。如前所述,此类LCF具有离开LCF7530的输出表面790的光的极面截止视角θP。背光显示器700包括光源710,该光源被配置为使光透射穿过LCF 730、透射穿过图像平面720(诸如LCD面板)并到达观察者795。亮度最大时的视角可取决于如前所述的极面截止视角。
背光显示器700还可包括任选的增亮膜760和反射偏振膜770以进一步改善显示器的亮度和均匀度。增亮膜可以为棱镜膜,诸如购自3M公司的3MTM增亮膜(3MTMBrightnessEnhancement Film,简称“BEF”)或增亮薄膜(Thin Brightness Enhancement Film,简称“TBEF”)。反射偏振膜570可为多层光学膜,诸如购自明尼苏达州圣保罗的3M公司(3MCompany,St.Paul,MN)的3MTM双倍增亮膜“DBEF”。增亮膜760和反射偏振膜770(如果包括的话)可如图7所示定位。
在其它实施方案中,如前所述,包括透射区域和吸收区域的光控膜可粘结到发射(例如,有机发光二极管或OLED)显示器。
在一些实施方案中,本文所述的LCF(即,第一LCF)可与第二LCF组合。在一些实施方案中,第二LCF可为诸如在以下专利中描述的LCF(例如,私密膜):US 6,398,370;US 8,013,567;US 8,213,082;以及US 9,335,449。在其它实施方案中,第二LCF为如本文所述的LCF(例如,其中吸光区域具有至少30的高宽比)。第一LCF和第二LCF可以各种取向堆叠。
在一个实施方案中,第一光控膜和第二光控膜被定位成使得第一LCF的吸收区域与第二LCF的吸收区域平行并且通常重合。在另一实施方案中,第一光控膜和第二光控膜被定位成使得第一LCF的吸收区域与第二LCF的吸收区域正交。第一光控膜和第二光控膜还可被定位成使得吸收区域在0度的视角下在彼此平行到正交的范围内。
在一些实施方案中,第一LCF和第二LCF的组合具有在0度的视角下的至少60%、65%、70%、75%、80%、85%或90%的相对透射率(例如,亮度)。在一些实施方案中,在+30度、-30度或+30度和-30度的平均值的视角下的相对透射率(例如,亮度)小于25%、20%、15%、10%或5%。在一些实施方案中,对于在+35度至+80度、-35度至-85度范围内或这些范围的平均值的视角下的平均相对透射率(例如,亮度)小于10%、9%、8%、7%、6%、5%、4%、3%、2%或1%。
在一些实施方案中,LCF的这种组合具有在0度的视角下的至少60%、65%、70%、75%、80%、85%或90%的相对透射率(例如,亮度)。在一些实施方案中,在+30度、-30度或+30度和-30度的平均值的视角下的相对透射率(例如,亮度)小于25%、20%、15%、10%或5%。
本文所述的光控膜尤其可用作显示设备的部件,作为所谓的混合式私密滤光器。混合式私密滤光器可以结合显示器表面使用,其中光在光控膜的输入侧上进入混合式私密滤光器并在色移膜处出射混合式私密滤光器或膜叠堆。具有显示器的大量电子设备可结合本发明使用,包括膝上型监视器、外部计算机监视器、移动电话显示器、电视机、智能电话、汽车中心信息显示器、汽车驱动器信息显示器、汽车侧镜显示器(也称为电子镜)、控制台,或者任何其它类似的基于LCD、OLED、微型LED或迷你LED的显示器。将混合式私密滤光器施加到显示器的附加的有益效果是对比度增强。
还可以想到其它类型的背光显示器成像设备,包括非电子显示器,诸如太阳镜、文档封面、汽车和航空应用中的控制台开关、飞行器驾驶舱控件、直升机驾驶舱控件、窗以及任何数目的其它设备。
在其它实施方案中,本文所述的光控膜叠堆可用作玻璃的覆层。例如,膜叠堆可以层合到门窗设施之上或之内。门窗设施可以选自玻璃板、窗、门、壁和天窗装置。门窗设施可以位于建筑物的外部或内部上。这些设施也可以是汽车窗、火车窗、飞机乘客窗等。将这些膜叠堆组装到门窗设施中的优点包括IR透射减少(这可以导致节能增加)、阻挡环境光、私密性和装饰效果。
本说明书不应被认为限于本文所述的具体示例,而是应当理解为本说明书涵盖在所附权利要求中清楚地给出的说明书的所有方面。在审阅本说明书后,可对本说明书适用的各种修改、等同过程以及众多结构对本说明书所涉及领域技术人员将显而易见。以上描述可通过以下得到更好的理解:
实施例
以下实施例进一步说明了本发明的目的和优点,但这些实施例中列举的具体材料及其量以及其他条件和细节不应被解释为是对本发明的不当限制。
LCF的光线追踪建模
采用光学光线追踪程序对LCF的性能进行建模。光学光线追踪程序提供了与公共商用光线追踪软件,诸如
Figure BDA0003709754690000231
(购自美国马萨诸塞州立托顿的Lambda Research公司(Lambda Research Corp.,Littleton,MA))和
Figure BDA0003709754690000232
(购自美国加利福尼亚州帕萨迪纳的光学研究协会(Optical Research Associates,Pasadena,CA))相当的结果。
光学值
Figure BDA0003709754690000233
Figure BDA0003709754690000234
结果
Figure BDA0003709754690000241
本文引用的出版物的完整公开内容全文以引用方式并入,就好像每篇出版物单独并入那样。在不脱离本发明的范围和实质的前提下,本发明的各种变型和更改对本领域的技术人员而言将显而易见。应当理解,本发明并非意图不当地限制于本文所示出的示例性实施方案和实施例,并且上述实施例和实施方案仅以举例的方式提出,而且本发明的范围旨在仅受下面本文所示出的权利要求书的限制。

Claims (44)

1.一种光控膜,包括:
光输入表面和与所述光输入表面相反的光输出表面;
交替的透射区域和吸收区域,所述交替的透射区域和吸收区域设置在所述光输入表面与所述光输出表面之间;和
TIR包覆层,所述TIR包覆层具有折射率nTIR和消光系数kTIR
其中所述透射区域在具有折射率n2的高折射率透射区域与具有折射率n1的低折射率透射区域之间交替,
其中所述吸收区域包括具有折射率n和消光系数k的芯部,所述芯部与AR包覆层相邻,所述AR包覆层具有折射率nAR和消光系数kAR
其中n1<n2
其中nTIR<n2
其中所述TIR包覆层与所述高折射率透射区域相邻;
其中所述芯部具有至少20的高宽比;并且
其中所述高折射率透射区域具有6度或更小的壁角。
2.根据权利要求1所述的光控膜,其中kTIR<k并且kAR<k
3.根据权利要求2所述的光控膜,其中kTIR<kAR
4.根据上述权利要求中任一项所述的光控膜,其中所述芯部、所述TIR包覆层和所述AR包覆层包括光吸收颗粒。
5.根据权利要求4所述的光控膜,其中所述光吸收颗粒包括炭黑。
6.根据上述权利要求中任一项所述的光控膜,其中kTIR为0至0.1。
7.根据上述权利要求中任一项所述的光控膜,其中kAR为0.005至0.15。
8.根据上述权利要求中任一项所述的光控膜,其中k为0.1至0.5。
9.一种光控膜,包括:
光输入表面和与所述光输入表面相反的光输出表面;
交替的透射区域和吸收区域,所述交替的透射区域和吸收区域设置在所述光输入表面与所述光输出表面之间;和
TIR包覆层,所述TIR包覆层具有折射率nTIR和吸光材料浓度CTIR
其中所述透射区域在具有折射率n2的高折射率透射区域与具有折射率n1的低折射率透射区域之间交替,
其中所述吸收区域包括具有折射率n和吸光材料浓度C的芯部,所述芯部与AR包覆层相邻,所述AR包覆层具有折射率nAR和吸光材料浓度CAR
其中n1<n2
其中nTIR<n2
其中所述TIR包覆层与所述高折射率透射区域相邻;
其中所述芯部具有至少20的高宽比;并且
其中所述高折射率透射区域具有6度或更小的壁角。
10.根据权利要求9所述的光控膜,其中CTIR<C并且CAR<C
11.根据权利要求10所述的光控膜,其中CTIR<CAR
12.根据上述权利要求中任一项所述的光控膜,其中所述芯部、所述TIR包覆层和所述AR包覆层包括光吸收颗粒。
13.根据权利要求12所述的光控膜,其中所述光吸收颗粒包括炭黑。
14.根据权利要求9至13中任一项所述的光控膜,其中所述TIR包覆层包含0重量%至40重量%的吸光材料。
15.根据权利要求9至14中任一项所述的光控膜,其中所述AR包覆层包含25重量%至45重量%的吸光材料。
16.根据上述权利要求中任一项所述的光控膜,所述芯部包含30重量%至100重量%的吸光材料。
17.根据上述权利要求中任一项所述的光控膜,其中n1为1.47至1.55。
18.根据上述权利要求中任一项所述的光控膜,其中n2为1.6至1.7。
19.根据上述权利要求中任一项所述的光控膜,其中n为1.7至2.0。
20.根据上述权利要求中任一项所述的光控膜,其中nTIR为1.40至1.65。
21.根据上述权利要求中任一项所述的光控膜,其中nAR为4.40至1.65。
22.根据上述权利要求中任一项所述的光控膜,其中所述透射区域和所述吸收区域具有在从40微米至400微米的范围内的高度。
23.根据上述权利要求所述的光控膜,其中所述芯部具有不大于5微米的平均宽度。
24.根据上述权利要求中任一项所述的光控膜,其中所述TIR包覆层和所述AR包覆层各自具有不大于1微米的平均宽度。
25.根据权利要求24所述的光控膜,其中所述TIR包覆层和所述AR包覆层各自具有100nm至600nm的平均宽度。
26.根据上述权利要求中任一项所述的光控膜,其中所述吸收区域具有至少50的高宽比。
27.根据上述权利要求中任一项所述的光控膜,其中所述透射区域具有至少2的高宽比。
28.根据上述权利要求中任一项所述的光控膜,其中所述吸收区域具有10微米至400微米的平均节距。
29.根据上述权利要求中任一项所述的光控膜,其中所述光控膜具有在0度视角下的至少75%的相对透射率。
30.根据上述权利要求中任一项所述的光控膜,其中所述光控膜具有在35度至80度视角下的不大于5%的平均相对透射率。
31.根据上述权利要求中任一项所述的光控膜,其中所述光控膜具有在20度视角下的至少45%的平均相对透射率。
32.根据上述权利要求中任一项所述的光控膜,其中所述高折射率透射区域为非对称的。
33.根据上述权利要求中任一项所述的光控膜,其中所述TIR包覆层和所述AR包覆层为所述芯部上的适形涂层。
34.根据上述权利要求中任一项所述的光控膜,其中所述芯部具有至少30的高宽比。
35.根据上述权利要求中任一项所述的光控膜,其中所述吸收区域包括高分子电解质。
36.根据权利要求1或9所述的光控膜,其中所述TIR包覆层为透射性的。
37.一种制备光控膜的方法,包括:
提供微结构化膜,所述微结构化膜包括与沟槽交替的具有折射率n2的多个高折射率透射区域,其中所述微结构化膜具有由所述透射区域的顶表面和侧壁以及所述沟槽的底表面限定的表面,其中所述侧壁具有6度或更小的壁角;
将具有折射率nTIR和消光系数kTIR的吸光或透光包覆材料的TIR层施加到所述表面;
将具有折射率n和消光系数k的吸光芯材料层施加在所述TIR层上;
将具有折射率nAR和消光系数kAR的吸光包覆材料的AR层施加在所述吸光芯材料层上;
从所述透射区域的所述顶表面和所述沟槽的所述底表面去除所述TIR层、所述吸光芯材料层和所述AR层的至少一部分;以及
用具有折射率n1的透光有机聚合物材料填充所述沟槽;
其中n1<n2并且nTIR<n2
38.根据权利要求37所述的方法,其中kTIR<k并且kAR<k
39.根据权利要求38所述的方法,其中kTIR<kAR
40.一种制备光控膜的方法,包括:
提供微结构化膜,所述微结构化膜包括与沟槽交替的具有折射率n2的多个高折射率透射区域,其中所述微结构化膜具有由所述透射区域的顶表面和侧壁以及所述沟槽的底表面限定的表面,其中所述侧壁具有6度或更小的壁角;
将具有折射率nTIR和吸光材料浓度CTIR的吸光或透光包覆材料的TIR层施加到所述表面;
将具有折射率n和吸光材料浓度C的吸光芯材料层施加在所述TIR层上;
将具有折射率nAR和吸光材料浓度CAR的吸光包覆材料的AR层施加在所述吸光芯材料层上;
从所述透射区域的所述顶表面和所述沟槽的所述底表面去除所述TIR层、所述吸光芯材料层和所述AR层的至少一部分;以及
用具有折射率n1的透光有机聚合物材料填充所述沟槽;
其中n1<n2并且nTIR<n2
41.根据权利要求40所述的方法,其中CTIR<C并且CAR<C
42.根据权利要求41所述的方法,其中CTIR<CAR
43.根据权利要求37至42中任一项所述的方法,其中施加所述第一吸光包覆材料层的步骤、施加所述吸光芯材料层的步骤以及施加所述第二吸光材料层的步骤包括逐层组装。
44.根据权利要求37至43中任一项所述的方法,其中所述去除步骤包括反应离子蚀刻。
CN202080089787.7A 2019-12-23 2020-12-18 高透射率光控膜 Pending CN114846369A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201962952755P 2019-12-23 2019-12-23
US62/952,755 2019-12-23
PCT/IB2020/062226 WO2021130637A1 (en) 2019-12-23 2020-12-18 High transmission light control film

Publications (1)

Publication Number Publication Date
CN114846369A true CN114846369A (zh) 2022-08-02

Family

ID=76575282

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202080089787.7A Pending CN114846369A (zh) 2019-12-23 2020-12-18 高透射率光控膜

Country Status (5)

Country Link
US (1) US20230028958A1 (zh)
EP (1) EP4081842A4 (zh)
JP (1) JP2023507843A (zh)
CN (1) CN114846369A (zh)
WO (1) WO2021130637A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023047204A1 (en) * 2021-09-24 2023-03-30 3M Innovative Properties Company Coated microstructured films, methods of making same, and methods of making light control films

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992011549A1 (en) * 1990-12-21 1992-07-09 Minnesota Mining And Manufacturing Company Light control film with reduced ghost images
CN102798924A (zh) * 2007-12-12 2012-11-28 财团法人工业技术研究院 光偏振化结构及发光装置
CN103688210A (zh) * 2011-01-31 2014-03-26 怀西普斯公司 具有集成光伏电池的立体3d显示屏及其制造方法
CN107765359A (zh) * 2017-11-10 2018-03-06 中国科学院半导体研究所 基于谐振腔增强波导传输的高效波片

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2240117A1 (en) * 1997-07-23 1999-01-23 Litton Systems, Inc. Absorbing coating of optical media to prevent reflection, transmission and scatter
US6832037B2 (en) * 2002-08-09 2004-12-14 Eastman Kodak Company Waveguide and method of making same
US7057810B2 (en) * 2003-12-11 2006-06-06 3M Innovative Properties Company Microstructured screen with light absorbing material and method of manufacturing
CN101370857B (zh) * 2006-01-12 2012-09-05 3M创新有限公司 光准直薄膜
WO2012162458A2 (en) * 2011-05-25 2012-11-29 3M Innovative Properties Company Light control film
US11885989B2 (en) * 2017-12-13 2024-01-30 3M Innovative Properties Company High transmission light control film
US10473851B2 (en) * 2018-01-08 2019-11-12 Au Optronics Corporation Optical film and display module

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992011549A1 (en) * 1990-12-21 1992-07-09 Minnesota Mining And Manufacturing Company Light control film with reduced ghost images
CN102798924A (zh) * 2007-12-12 2012-11-28 财团法人工业技术研究院 光偏振化结构及发光装置
CN103688210A (zh) * 2011-01-31 2014-03-26 怀西普斯公司 具有集成光伏电池的立体3d显示屏及其制造方法
CN107765359A (zh) * 2017-11-10 2018-03-06 中国科学院半导体研究所 基于谐振腔增强波导传输的高效波片

Also Published As

Publication number Publication date
EP4081842A4 (en) 2024-01-24
JP2023507843A (ja) 2023-02-27
US20230028958A1 (en) 2023-01-26
EP4081842A1 (en) 2022-11-02
WO2021130637A1 (en) 2021-07-01

Similar Documents

Publication Publication Date Title
US11940689B2 (en) High transmission light control film
US20240118463A1 (en) High transmission light control film
JP7358356B2 (ja) 高透過率の光制御フィルム
CN101957460B (zh) 抗反射薄膜、偏振片及其制备方法、液晶显示元件、液晶显示装置和图象显示装置
US20220221624A1 (en) High transmission light control films with asymmetric light output
US20080284950A1 (en) Composition, single layer, member or laminate for realizing an antistatic (and hardcoat) features
JP2013254116A (ja) 光学積層体、及びこれを用いた偏光板
JP2013254118A (ja) 光学積層体、及びこれを用いた偏光板
CN114846369A (zh) 高透射率光控膜
US20220019007A1 (en) Light control film
WO2016204234A1 (ja) 反射フィルムおよび面光源装置用反射ユニット
US20220252770A1 (en) Coated Substrate Comprising Electrically Conductive Particles and Dried Aqueous Dispersion of Organic Polymer
KR101148305B1 (ko) 광학 적층체 및 그 제조 방법, 및 그것을 이용한 편광판 및 표시 장치
WO2023047204A1 (en) Coated microstructured films, methods of making same, and methods of making light control films

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination