CN114844168A - 串联电池组均衡系统及主动均衡控制方法 - Google Patents

串联电池组均衡系统及主动均衡控制方法 Download PDF

Info

Publication number
CN114844168A
CN114844168A CN202210587816.3A CN202210587816A CN114844168A CN 114844168 A CN114844168 A CN 114844168A CN 202210587816 A CN202210587816 A CN 202210587816A CN 114844168 A CN114844168 A CN 114844168A
Authority
CN
China
Prior art keywords
battery pack
converter
battery
double
active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210587816.3A
Other languages
English (en)
Inventor
洪琪
唐国鹏
金程超
柳天琪
张妍
吴凡
汪子涵
洪炜强
黄林生
许耀华
郭小辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anhui University
Original Assignee
Anhui University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anhui University filed Critical Anhui University
Priority to CN202210587816.3A priority Critical patent/CN114844168A/zh
Publication of CN114844168A publication Critical patent/CN114844168A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0019Circuits for equalisation of charge between batteries using switched or multiplexed charge circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4207Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/441Methods for charging or discharging for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0018Circuits for equalisation of charge between batteries using separate charge circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00302Overcharge protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00306Overdischarge protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33573Full-bridge at primary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • H02M3/33584Bidirectional converters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本发明提供一种串联电池组均衡系统以及主动均衡控制方法,包括:一个由n个单体电池串联的电池组;双有源桥DC/DC变换器,该双有源桥DC/DC变换器的原边开关管与副边开关管的驱动波形之间存在移相比(D),该双有源桥DC/DC变换器的原边全桥电路两端与电池组的正负极相连,双有源桥DC/DC变换器的副边全桥电路两端与开关矩阵的公共端相连;以及开关矩阵,该开关矩阵能够对单体电池进行选通。本发明的电池均衡系统针对不同串数的电池组,可以灵活地增加或减少开关矩阵中单刀双掷开关的数量来与电池组匹配,大大增加了均衡系统的可扩展性;另外,由于高频变压器的隔离特性,在电池组均衡过程中,实现了能量流入与流出回路的电气隔离,提高了系统的安全性。

Description

串联电池组均衡系统及主动均衡控制方法
技术领域
本发明涉及电池管理技术领域,具体涉及一种串联电池组均衡系统及主动均衡控制方法。
背景技术
近年来人们对于储能装置的需求越来越大,要求也越来越高。在一些需要高压供电的可移动电子设备中,往往需要把很多的单体电池通过串并联组合成一个高压的电池组使用。电池本身是一个非常复杂的非线性系统,在电池制造过程中难免会存在微小差异,这种差异会造成电池的容量、内阻、电压等参数的不一致,使得电池组中的个别单体电池会出现过充和过放的情况。由于这种“短板效应”的存在,整个电池组的寿命会大打折扣,同时增加了安全隐患。
因此,在电池使用过程中需要动态调整串联电池组中每个单体电池的电量,以确保所有电池的电压趋于一致。现有技术中常采用的是被动均衡即能量耗散均衡,通过将较高电压电池的电能通过耗能元件耗散的方式进行均衡,其电路由电池并联的开关和泄放电阻组成,这种均衡电路结构简单,易于实现,但是存在被均衡电池能量有额外损耗的问题,效率比较低,应用场景受限。。
发明内容
本发明提供一种串联电池组均衡系统及主动均衡控制方法,主动均衡是以能量转移的方式进行均衡的,所以在能量利用率和均衡速度方面均优于被动均衡。
为解决上述技术问题,本发明采用如下技术方案:
一种串联电池组均衡系统,包括:
一个由n个单体电池串联的电池组;
双有源桥DC/DC变换器,该双有源桥DC/DC变换器的原边开关管与副边开关管的驱动波形之间存在移相比(D),该双有源桥DC/DC变换器的原边全桥电路两端与电池组的正负极相连,双有源桥DC/DC变换器的副边全桥电路两端与开关矩阵的公共端相连;以及
开关矩阵,该开关矩阵能够对单体电池进行选通。
进一步地,所述开关矩阵包括n路单刀双掷开关,n路单刀双掷开关的其中一端并联形成公共端,另一端分别与n个单体电池的正负极对应相连,并能够控制每个单刀双掷开关在同一时刻最多有一个被选通。
进一步地,还包括滤波电容C1和滤波电容C2,所述滤波电容C1并联在双有源桥DC/DC变换器的原边全桥电路两端,滤波电容C2并联在双有源桥DC/DC变换器的副边全桥电路两端。
一种主动均衡控制方法,采用上述的串联电池组均衡系统,包括以下步骤:
S1:采集电池组内各单体电池电压;
S2:计算电池组中单体电池电压的平均值Vave与标准差σ,若标准差σ大于设定的阈值时转至S3,否则转至S1;
S3:若Vmax-Vave≥Vave-Vmin,转至S4,否则转至S5,其中Vmax为电池组中单体最高电压,Vmin为电池组中单体最低电压;
S4:将Vmax对应的电池单体接入均衡回路,双有源桥DC/DC变换器开启,移相比满足-1<D<0,能量由单体电池向电池组转移,均衡周期结束后转至S6;
S5:将Vmin对应的电池单体接入均衡回路,双有源桥DC/DC变换器开启,移相比满足0<D<1,能量由电池组向单体电池转移,均衡周期结束后转至S6;
S6:关闭双有源桥DC/DC变换器,开关矩阵复位,均衡系统回到初始状态。
由以上技术方案可知,本发明的电池均衡系统针对不同串数的电池组,可以灵活地增加或减少开关矩阵中单刀双掷开关的数量来与电池组匹配,大大增加了均衡系统的可扩展性;另外,由于高频变压器的隔离特性,在电池组均衡过程中,实现了能量流入与流出回路的电气隔离,提高了系统的安全性;均衡回路中不含有耗能原件,均衡过程中能量损耗非常低,提高了均衡效率,适用于大功率电池组的供电系统。
附图说明
图1为本发明串联电池组均衡系统的电路结构示意图;
图2为本发明中双有源桥DC/DC变换器各开关管的驱动波形及工作波形示意图;
图3为本发明实施例的电池组主动均衡控制方法的流程图。
具体实施方式
下面结合附图对本发明的一种优选实施方式作详细的说明。
本发明串联电池组均衡系统,包括电池组、双有源桥DC/DC变换器、开关矩阵,以及并联在输入和输出端的两个滤波电容,DC/DC变换器的原边全桥电路两端与电池组的正负极相连,DC/DC变换器的副边全桥电路两端与开关矩阵的公共端相连。
所述双有源桥DC/DC变换器的原边开关管与副边开关管的驱动波形之间存在移相比(D),该双有源桥DC/DC变换器的原边全桥电路两端与电池组的正负极相连,双有源桥DC/DC变换器的副边全桥电路两端与开关矩阵的公共端相连。该双有源桥DC/DC变换器实现电池均衡中的能量交换,控制单元通过改变变换器驱动波形的移相比实现对均衡电流的控制。
所述开关矩阵包括n路单刀双掷开关,该n路单刀双掷开关的其中一端并联形成公共端,另一端分别与n个单体电池的正负极对应相连。所述开关矩阵能够对单体电池进行选通,被选通的单刀双掷开关所连接的单体电池接入均衡回路。
如图1所示,本实施例中,串联电池组均衡系统包括:
由n个相互串联的单体电池B1~Bn组成的电池组、电压隔离型的双有源桥DC/DC变换器、由n个单刀双掷开关组成的开关矩阵、并联在电池组两端的滤波电容C1和并联在开关矩阵公共端的滤波电容C2。
所述开关矩阵的电流可以经过开关双向流动,n路单刀双掷开关的其中一端并联形成公共端,另一端分别与n个单体电池的正负极对应相连,每一个开关由一个控制信号控制,主控制器控制每个开关在同一时刻最多只有一个被选通,被选通的电池单体接入均衡回路。
所述滤波电容C1并联在变换器的原边全桥电路两端,滤波电容C2并联在变换器的副边全桥电路两端,滤波电容的存在用于滤除电源中的高频分量、降低电源纹波。其中,iC为流入被开关矩阵选通的单体电池的电流,iL为经功率电感L流入高频变压器T同名端的电流。
所述双有源桥DC/DC变换器能够实现能量的双向传输,具体包含:8个开关管Q1~Q8、8个与开关管反并联的二极管D1~D8、一个功率电感L和一个变比为n:1的高频变压器T。
变换器的原边全桥电路包括:第一开关管Q1、第二开关管Q2、第三开关管Q3、第四开关管Q4,功率电感L和高频变压器T,开关管Q1~Q4的两端分别反向并联了一个二极管D1~D4;原边全桥电路的第一桥臂由开关管Q1、Q2和与其反向并联的二极管D1、D2构成,原边全桥电路的第二桥臂由开关管Q3、Q4和与其反向并联的二极管D3、D4构成。功率电感L一端连接到第一开关管Q1和第二开关管Q2之间,另一端与高频变压器T的原边同名端相连,高频变压器T的原边异名端连接到第三开关管Q3和第四开关管Q4之间。
变换器的副边全桥电路包括:第五开关管Q5、第六开关管Q6、第七开关管Q7、第八开关管Q8,开关管Q5~Q8的两端分别反向并联了一个二极管D5~D8;副边全桥电路的第一桥臂由开关管Q5、Q6和与其反向并联的二极管D5、D6构成,副边全桥电路的第二桥臂由开关管Q7、Q8和与其反向并联的二极管D7、D8构成。高频变压器T的副边同名端连接到第五开关管Q5和第六开关管Q6之间,高频变压器T的副边异名端连接到第七开关管Q7和第八开关管Q8之间。
如图2所示。变换器中开关管Q1~Q8驱动波形的占空比均为50%,第一开关管Q1与第四开关管Q4的驱动波形一致,第二开关管Q2与第三开关管Q3的驱动波形一致,第五开关管Q5与第八开关管Q8的驱动波形一致,第六开关管Q6与第七开关管Q7的驱动波形一致。所述第一开关管Q1、第四开关管Q4的驱动波与第二开关管Q2、第三开关管Q3的驱动波形的相位相差180°,第五开关管Q5、第八开关管Q8的驱动波与第六开关管Q6、第七开关管Q7的驱动波形的相位相差180°。
Ths表示开关管驱动波形周期Ts的一半;DThs表示第五开关管Q5驱动波形和开第一关管Q1驱动波形之间的相位差;UL表示功率电感L两端的电压,UL与iL的关系为;UL=L*(d(iL)/dt)。
当电路工作在一个稳定的状态时:
在t0时刻,电感电流iL为负,二极管D1、D4、D6、D7导通续流,此阶段iL由负值上升至0;
在t'0时刻,电感电流iL为0,二极管D1、D4、D6、D7关断,开关管Q1、Q4、Q6、Q7导通,电感电流iL开始正向增大;
在t1时刻,开关管Q6、Q7关断,二极管D5、D8导通续流;此时开关管Q1、Q4依旧保持导通,电感电流iL逐渐增大;
在t2时刻,电感电流iL达到最大值,开关管Q1、Q4关闭,二极管D2、D3、D5、D8导通续流,电感电流iL开始减小;
在t'2时刻,电感电流iL降至0,二极管D2、D3、D5、D8关断,开关管Q2、Q3、Q5、Q8打开,电感电流iL由0开始反向增大;
在t3时刻,开关管Q5、Q8关断,二极管D6、D7导通续流,Q2、Q3继续保持导通,电感电流iL继续反向增大;
t4时刻与t0时刻状态相同,t0~t4为一个均衡周期。
所述双有源桥DC/DC变换器采用单移相控制方法,第一开关管Q1和第五开关管Q5的驱动波形周期均为Ts,两者之间存在移相比D。通过改变D的大小可以改变能量的传输方向,即能量是从单体电池向串联电池组转移还是由串联电池组向组内单体电池转移;通过改变|D|的大小可以调节串联电池组与单体电池间能量转移速度。
设第五开关管Q5的驱动波形滞后于第一开关管Q1时的移相比D为正,第五开关管Q5的驱动波形超前于第一开关管Q1时的移相比D为负;当D为正时(0<D<1),能量由串联电池组向组内单体电池转移,当D为时(-1<D<0),能量由组内单体电池向串联电池组转移。
设电池组电压为UE,开关矩阵选通单体电池BX,变压器变比为n:1,开关周期为TS,能量从电池组向单体电池转移时P为正,则有:
Figure BDA0003666545710000051
在D为±0.5时均衡电流达到最大值。
针对上述均衡系统,本发明还提出了一种电池组均衡方法:
首先采集组内各单体电池电压,计算单体电池电压的平均值Vave与标准差σ,以标准差为判定依据来控制均衡器的启动与停止及能量传输方向,当标准差σ大于一定的阈值时开启均衡器,否则开关矩阵复位,均衡器停止工作;
当满足均衡器开启条件时,分别计算最高和最低单体电池电压对于平均值Vave的偏离程度;比较单体电池电压的上下偏离程度,若最高电压的单体电池偏离平均电压Vave的程度大时,开关矩阵选通最高电压的单体电池接入均衡回路,PWM信号驱动变换器工作,此时能量由单体电池转移至电池组;若最低电压的单体电池偏离平均电压Vave程度大时,开关矩阵选通最低电压的单体电池接入均衡回路,此时能量由电池组转移至单体电池。
如图3所示,具体地,本实施例电池组主动均衡电路的控制方法包括以下步骤:
步骤1:采集组内各单体电池电压;
步骤2:计算电池组中单体电池电压的平均值Vave与标准差σ:
Figure BDA0003666545710000061
若标准差σ大于设定的阈值时转至步骤3,否则转至步骤1;
步骤3:若Vmax-Vave≥Vave-Vmin,转至步骤4,否则转至步骤5(Vmax为电池组中单体最高电压,Vmin为电池组中单体最低电压);
步骤4:Vmax对应的电池单体接入均衡回路,均衡器开启,移相比-1<D<0,能量由单体电池向电池组转移,均衡周期结束后转至步骤6;
步骤5:Vmin对应的电池单体接入均衡回路,均衡器开启,移相比0<D<1,能量由电池组向单体电池转移,均衡周期结束后转至步骤6;
步骤6:关闭均衡器,开关矩阵复位,均衡系统回到初始状态。
上述过程即为本电池均衡系统的一个均衡周期,无论电池组处在充电状态、放电状态或者静置状态下,都可以实现单体电池与串联电池组的能量交换,以保证电池组内的各单体电池的电压趋于一致,有效地解决电池组内个别单体电池欠压、过充的问题,最大限度保护电池,提高整个电池组的使用寿命。
在本实施例中针对不同串数的电池组,可以根据需要增加或减少开关矩阵中单刀双掷开关的数量,大大增加了均衡系统的可扩展性。
以上所述实施方式仅仅是对本发明的优选实施方式进行描述,并非对本发明的范围进行限定,在不脱离本发明设计精神的前提下,本领域普通技术人员对本发明的技术方案作出的各种变形和改进,均应落入本发明的权利要求书确定的保护范围内。

Claims (6)

1.一种串联电池组均衡系统,其特征在于,包括:
一个由n个单体电池串联的电池组;
双有源桥DC/DC变换器,该双有源桥DC/DC变换器的原边开关管与副边开关管的驱动波形之间存在移相比(D),该双有源桥DC/DC变换器的原边全桥电路两端与电池组的正负极相连,双有源桥DC/DC变换器的副边全桥电路两端与开关矩阵的公共端相连;以及
开关矩阵,该开关矩阵能够对单体电池进行选通。
2.根据权利要求1所述的串联电池组均衡系统,其特征在于,所述双有源桥DC/DC变换器的原边开关管与副边开关管上都反并联连接有二极管。
3.根据权利要求1所述的串联电池组均衡系统,其特征在于,所述电池组内各单体电池均采用三元锂电池。
4.根据权利要求1所述的串联电池组均衡系统,其特征在于,所述开关矩阵包括n路单刀双掷开关,该n路单刀双掷开关的其中一端并联形成公共端,另一端分别与n个单体电池的正负极对应相连,并能够控制每个单刀双掷开关在同一时刻最多有一个被选通。
5.根据权利要求1所述的串联电池组均衡系统,其特征在于,还包括滤波电容C1和滤波电容C2,所述滤波电容C1并联在双有源桥DC/DC变换器的原边全桥电路两端,滤波电容C2并联在双有源桥DC/DC变换器的副边全桥电路两端。
6.一种主动均衡控制方法,采用权利要求1~5所述的串联电池组均衡系统,其特征在于,包括以下步骤:
S1:采集电池组内各单体电池电压;
S2:计算电池组中单体电池电压的平均值Vave与标准差σ,若标准差σ大于设定的阈值时转至S3,否则转至S1;
S3:若Vmax-Vave≥Vave-Vmin,转至S4,否则转至S5,其中Vmax为电池组中单体最高电压,Vmin为电池组中单体最低电压;
S4:将Vmax对应的电池单体接入均衡回路,双有源桥DC/DC变换器开启,移相比满足-1<D<0,能量由单体电池向电池组转移,均衡周期结束后转至S6;
S5:将Vmin对应的电池单体接入均衡回路,双有源桥DC/DC变换器开启,移相比满足0<D<1,能量由电池组向单体电池转移,均衡周期结束后转至S6;
S6:关闭双有源桥DC/DC变换器,开关矩阵复位,均衡系统回到初始状态。
CN202210587816.3A 2022-05-27 2022-05-27 串联电池组均衡系统及主动均衡控制方法 Pending CN114844168A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210587816.3A CN114844168A (zh) 2022-05-27 2022-05-27 串联电池组均衡系统及主动均衡控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210587816.3A CN114844168A (zh) 2022-05-27 2022-05-27 串联电池组均衡系统及主动均衡控制方法

Publications (1)

Publication Number Publication Date
CN114844168A true CN114844168A (zh) 2022-08-02

Family

ID=82571797

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210587816.3A Pending CN114844168A (zh) 2022-05-27 2022-05-27 串联电池组均衡系统及主动均衡控制方法

Country Status (1)

Country Link
CN (1) CN114844168A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115765122A (zh) * 2023-02-13 2023-03-07 杭州协能科技股份有限公司 基本均衡单元、电池组的主动均衡拓扑结构和方法
CN116131417A (zh) * 2023-04-19 2023-05-16 宁波均胜新能源研究院有限公司 均衡电路、均衡控制方法与充电机

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115765122A (zh) * 2023-02-13 2023-03-07 杭州协能科技股份有限公司 基本均衡单元、电池组的主动均衡拓扑结构和方法
CN115765122B (zh) * 2023-02-13 2023-05-26 杭州协能科技股份有限公司 基本均衡单元、电池组的主动均衡拓扑结构和方法
CN116131417A (zh) * 2023-04-19 2023-05-16 宁波均胜新能源研究院有限公司 均衡电路、均衡控制方法与充电机

Similar Documents

Publication Publication Date Title
CN114844168A (zh) 串联电池组均衡系统及主动均衡控制方法
CN203660604U (zh) 电动汽车动力电池均衡管理系统
CN107733007B (zh) 一种电池组双目标直接均衡电路及均衡方法
CN107147162B (zh) 一种基于电感电容准谐振的均衡电路及其控制方法
CN113872288B (zh) 一种电池模组中电池单体的电压均衡电路及方法
CN109066846B (zh) 一种模块化电池间均衡电路结构与方法
WO2020186496A1 (zh) 主动均衡电路、电池管理系统、电源系统及用电设备
CN107134599B (zh) 一种串联电池组的电压均衡电路及其工作方法
CN109245220A (zh) 一种最少开关的充放电限流电池组并联控制装置及控制方法
Qi et al. Optimization of centralized equalization systems based on an integrated cascade bidirectional DC–DC converter
CN114362305A (zh) 一种串联电池模组均衡电路及方法
CN113547945B (zh) 基于导抗网络的带均压功能的电池充电装置及方法
CN209088562U (zh) 一种最少开关的充放电限流电池组并联控制装置
CN205195336U (zh) 一种电池组双向均衡充放电电路
CN114614550A (zh) 一种电池管理系统的电路拓扑和控制方法
CN208571618U (zh) 一种多绕组谐振独立电流控制的电池储能系统
CN113746174A (zh) 一种单电感单电容串联电池组自适应主动均衡方法
CN105262182A (zh) 一种电池组双向均衡充放电电路及其充放电控制实现方法
CN218958586U (zh) 一种双模式的主动均衡锂离子电池电路
CN114884150A (zh) 基于双向Cuk斩波电路的“E”型锂电池均衡器
CN110867921B (zh) 一种基于变换器的串联电池组直接均衡方法
CN212332427U (zh) 一种动力电池组主动均衡系统
CN114123376A (zh) 基于开关电感电池均衡器的电流断续软开关实现方法
CN113489097A (zh) 一种基于l-lc储能的串联电池组主动均衡方法
CN112234679A (zh) 一种电池组均衡电路及其均衡方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination