CN114123376A - 基于开关电感电池均衡器的电流断续软开关实现方法 - Google Patents

基于开关电感电池均衡器的电流断续软开关实现方法 Download PDF

Info

Publication number
CN114123376A
CN114123376A CN202111191585.6A CN202111191585A CN114123376A CN 114123376 A CN114123376 A CN 114123376A CN 202111191585 A CN202111191585 A CN 202111191585A CN 114123376 A CN114123376 A CN 114123376A
Authority
CN
China
Prior art keywords
current
equalizer
switch tube
inductor
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111191585.6A
Other languages
English (en)
Inventor
叶磊
冯敏星
夏晓燕
阚加荣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yancheng Power Supply Co of State Grid Jiangsu Electric Power Co Ltd
Dongtai Power Supply Co of State Grid Jiangsu Electric Power Co Ltd
Original Assignee
Yancheng Power Supply Co of State Grid Jiangsu Electric Power Co Ltd
Dongtai Power Supply Co of State Grid Jiangsu Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yancheng Power Supply Co of State Grid Jiangsu Electric Power Co Ltd, Dongtai Power Supply Co of State Grid Jiangsu Electric Power Co Ltd filed Critical Yancheng Power Supply Co of State Grid Jiangsu Electric Power Co Ltd
Priority to CN202111191585.6A priority Critical patent/CN114123376A/zh
Publication of CN114123376A publication Critical patent/CN114123376A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0016Circuits for equalisation of charge between batteries using shunting, discharge or bypass circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • H02J7/00036Charger exchanging data with battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0019Circuits for equalisation of charge between batteries using switched or multiplexed charge circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00302Overcharge protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00306Overdischarge protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/00714Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery charging or discharging current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/007182Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/088Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the simultaneous control of series or parallel connected semiconductor devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1582Buck-boost converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本发明提出了一种基于开关电感电池均衡器的电流断续软开关实现方法,该方法根据被均衡电池单体的电压大小分三种情况,即电池单体间不需要均衡,第一电池单体B1向第二电池单体B2转移能量、以及第二电池单体B2向第一电池单体B1转移能量,并根据调制比进行调制信号,得到控制第一开关管S1、第二开关管S2的PWM信号;采用本发明的方法可使均衡器中所有开关管均可以实现软开关,且可以调节均衡器电感电流大小,相同均衡功率下均衡器中器件的电流应力变小,均衡器的效率得到了大大的提升。此外,均衡器的控制不需要电流反馈信号参与控制,取消了电流传感器,节省了均衡器的成本;该方法大大提升了基于开关电感锂离子电池均衡器的市场竞争力。

Description

基于开关电感电池均衡器的电流断续软开关实现方法
【技术领域】
本发明涉及电力电子变换器的控制的技术领域,特别是一种基于开关电感电池均衡器的电流断续软开关实现方法。
【背景技术】
锂离子电池在日常生产、生活中的应用广泛,如手持便携式电动工具、笔记本电脑电源、智能微电网的储能系统、电动汽车的动力电池等。由于电池单体间特性存在差异,在多次充放电以后,各串联的锂电池单体出现荷电状态(SOC)以及电压不一致的情况,长期运行会出现过充电与过放电,对电池单体的寿命、容量以及安全将产生不利影响。SOC差异通常反映在单体电压存在差异,因此电压均衡功能是串联使用的锂电池包必须具备的功能。
目前,锂离子电池均衡器可分为能耗型均衡器与非能耗型均衡器,其中能耗型均衡器采用开关控制电阻接入SOC较高的电池单体,以保证所有电池单体电压趋于一致,该方法控制简单、成本低、易于实现,但损耗较大,且易造成电池包局部过热等不安全隐患。
非能耗型均衡器又分为有源均衡器与无源均衡器。有源均衡器主要采用开关管主动实现电池单体间的能量与电压的均衡,常见的方式有开关电容及其衍生拓扑、开关电感及其衍生拓扑、双向CUK均衡器、双向反激均衡器等,对于单体串联数量多、电压高的电池包均衡损耗较大。
无源均衡器主要通过变压器线圈与二极管构成的整流电路实现电池单体之间的均压,其原理是电流总是流向电压最低的单体,因此最低电压电池单体总是接受到最多的电流分配,从而其电压迅速向电位较高的单体趋近。目前应用较多的拓扑有多线圈变压器的反激式均衡器、单副边变压器+单桥臂整流级联式均衡器、单副边变压器+桥式整流级联式均衡器、斜坡倍压整流式均衡器。多线圈变压器的反激式均衡器拓扑较简单,但受制于反激拓扑特性,只能应用于较小功率的电池包均压。
基于开关电感电池均衡器在近年有了其改进的层叠式均衡结构,虽然层叠式均衡器有效加速了电池单体间的均衡速度,但不同层级间的开关管、电感等元件设计方法、电压、电流应力均不一致,给模块化、成本带来了压力。虽然传统的基于开关电感电池均衡器均衡速度较慢,但其电路结构简单,模块化扩展能力强,在一些3-4单体串联的电池包应用场合,如手持便携式电动工具电池、笔记本电池等场合,相邻单体能量传递的开关电感均衡器仍有很强的应用价值,但是均衡器中每个开关管不能完全实现软开关,或者通过电流检测闭环控制实现软开关但是器件的电流应力太大,导致均衡器的效率偏低,这给均衡器进一步应用推广增加了难度。
因此,在结构简单、传统的基于开关电感电池均衡器中实现所有开关管的软开关,并在相同均衡器处理功率的情况下减小器件的电流应力,提升均衡器的效率,可进一步拓展传统的基于开关电感电池均衡器的应用场合,现提出一种基于开关电感电池均衡器的电流断续软开关实现方法。
【发明内容】
本发明的目的就是解决现有技术中均衡器开关管不能实现软开关、器件电流应力大、效率较低、控制实现成本高的问题,提出一种基于开关电感电池均衡器的电流断续软开关实现方法。
为实现上述目的,本发明提出了一种基于开关电感电池均衡器的电流断续软开关实现方法,该方法的实现基于开关电感锂离子电池均衡器,所述开关电感锂离子电池均衡器包括被均衡的两个电池单体:第一电池单体B1、第二电池单体B2,两个开关管:第一开关管S1、第二开关管S2,电感L0;所述第一电池单体B1、第二电池单体B2的电压分别为UB1、UB2;流入第一电池单体B1、第二电池单体B2的电流分别为iB1、iB2,电感电流为iL,电感L0的电感值为L;该方法包括如下步骤:
S1.判断UB1、UB2与UT的关系,其中,UT为开关电感锂离子电池均衡器开启电压,当|UB1-UB2|≤UT时,第一开关管S1、第二开关管S2全部关闭,否则,进入步骤S2;
S2.再次判断UB1、UB2与UT的关系,当UB1-UB2>UT时,进入步骤S3;当UB2-UB1>UT时,进入步骤S4;
S3.设定第一开关管S1的调制比为D1+,第二开关管S2的调制比为D2+,电感电流最大值iL_max
Figure BDA0003301328180000021
式中,Ts为开关周期,第二开关管S2开通时间段内电感电流下降量为(iL_max+x),则
Figure BDA0003301328180000022
第二开关管S2关断后,令电感电流从-x上升到0所花时间为ΔD+Ts,则
Figure BDA0003301328180000031
式中,UDF为开关管的体二极管导通压降,根据式(1)至式(3),得到此情况下电感电流的平均值为
Figure BDA0003301328180000032
然后将式(4)中的电感电流平均值用电流基准值I*代替,得到
Figure BDA0003301328180000033
再根据式(1)、式(2)所示关系得到
Figure BDA0003301328180000034
然后进入步骤S5;
S4.设定第一开关管S1的调制比为D1-,第二开关管S2的调制比为D2-,电感电流最小值iL_min
Figure BDA0003301328180000035
第一开关管S1开通时间段内电感电流上升量为(x-iL_min),则
Figure BDA0003301328180000036
第一开关管S1关断后,令电感电流从x下降到0所花时间为ΔD-Ts,则
Figure BDA0003301328180000037
根据式(7)至式(9),得到此情况下电感电流的平均值为
Figure BDA0003301328180000038
然后将式(10)中的电感电流平均值用电流基准值I*代替,得到
Figure BDA0003301328180000039
再根据式(7)、式(8)所示关系得到
Figure BDA00033013281800000310
然后进入步骤S5;
S5.根据调制比D1+、D2+或者D1-、D2-进行调制信号,得到控制第一开关管S1、第二开关管S2的PWM信号。
作为优选,所述电流基准值I*设定为
Figure BDA0003301328180000041
其中,kv为电压环控制系数,Imax为允许均衡器电感电流的最大值。
作为优选,步骤S3中,UB1-UB2>UT时,第一电池单体B1的能量流向第二电池单体B2,电感电流平均值IL>0。
作为优选,步骤S3中,在第一开关管S1导通时,电感电流开始从零增加,第一开关管S1关断时,电感电流值最大;继而第二开关管S2导通,电感电流下降,为实现软开关,在电感电流下降到-x时将第二开关管S2关断。
作为优选,步骤S3中,第二开关管S2关断后电感电流从负值上升到0,并保持一段时间为0,直至下一开关周期开始后第一开关管S1再次导通。
作为优选,步骤S4中,UB2-UB1>UT时,第二电池单体B2的能量流向第一电池单体B1,电感电流平均值IL<0。
作为优选,步骤S4中,第二开关管S2先开通,第一开关管S1后开通;第二开关管S2导通时,电感电流开始从零下降并变为负值,第二开关管S2关断时,电感电流值最小;继而第一开关管S1导通,电感电流从负的最小值增加;为实现软开关,在电感电流上升到x时将第一开关管S1关断。
作为优选,步骤S4中,第一开关管S1关断后电感电流从x下降到0,并保持一段时间为0,直至下一开关周期开始后第二开关管S2再次导通。
本发明的有益效果:采用本发明的方法可使均衡器中所有开关管均可以实现软开关,且可以调节均衡器电感电流大小,相同均衡功率下均衡器中器件的电流应力变小,均衡器的效率得到了大大的提升。此外,均衡器的控制不需要电流反馈信号参与控制,取消了电流传感器,节省了均衡器的成本;该方法大大提升了基于开关电感锂离子电池均衡器的市场竞争力。
本发明的特征及优点将通过实施例结合附图进行详细说明。
【附图说明】
图1为基于开关电感锂离子电池均衡器的电路拓扑;
图2为基于开关电感锂离子电池均衡器在电流连续时的波形;
图3为基于开关电感锂离子电池均衡器在UB1-UB2>UT时电感电流波形;
图4为基于开关电感锂离子电池均衡器在UB2-UB1>UT时电感电流波形;
图5为本发明方法的流程图;
图6为基于开关电感锂离子电池均衡器电流断续软开关控制策略;
图7为本发明方法与传统方法在电流应力比较曲线;
图中符号名称:B1—第一电池单体,B2—第二电池单体;UB1—第一电池单体电压,UB2—第二电池单体电压;iB1—第一电池单体电流,iB2—第二电池单体电流;S1—第一开关管,S2—第二开关管;L0—电感;iL—电感电流;uGS1—第一开关管的驱动信号,uGS2—第二开关管的驱动信号;D1+—UB1-UB2>UT时开关管S1调制比;D2+—UB1-UB2>UT时开关管S2调制比;D1-—UB2-UB1>UT时开关管S1调制比;D2-—UB2-UB1>UT时开关管S2调制比;Ts—开关周期;I*—均衡器电感电流基准值;UT—均衡器开启电压;kv—电压环控制系数;IL_RMSp—本发明公开方法控制均衡器电感电流;IL_RMSc—传统方法控制均衡器电感电流。
【具体实施方式】
基于开关电感锂离子电池均衡器电路拓扑如图1所示,实际上其为一个能量可以双向流动的升降压(Buck/Boost)变换器,将之应用于电池单元的均衡时,如采用两个开关管互补控制的策略,电感电流的波形如图2所示,图2中在t2时刻,电感电流为负值,则此时均衡器中所有的开关管均可以实现软开关。但是,如需要调节电感电流的平均值,则需要将电感电流波形下移,导致回馈功率增加,相同功率下器件的电流应力增加。因此本发明根据电池单体电压的大小,提出让电感电流波形运行于图3或图4所示的波形;如果电池单体之间不需要均衡,则两个开关管均关断,电感电流保持为零。
本发明提出了一种基于开关电感电池均衡器的电流断续软开关实现方法,根据电池单体之间电压大小关系,分别控制第一开关管S1、第二开关管S2的运行占空比,实现对均衡器中电感电流iL的平均值IL大小的控制,以及同时实现对电感电流iL特定时刻瞬时值大小的控制,同时实现了两个控制目标;电感电流的平均值IL的基准值I*设定为
Figure BDA0003301328180000051
其中,kv为电压环控制系数,Imax为允许均衡器电感电流平均值的最大值;
根据电池单体之间电压UB1、UB2的大小关系,存在以下三种情况:
I.|UB1-UB2|≤UT
当|UB1-UB2|≤UT时,其中UT为基于开关电感锂离子电池均衡器开启电压,两电池单元之间能量接近,不需要均衡,因此开关管S1-S2全部关闭。
II.UB1-UB2>UT
此时电感电流运行波形对应图3所示波形。设定第一开关管S1的调制比为D1+,第二开关管S2的调制比为D2+,第一电池单体B1的能量流向第二电池单体B2,电感电流平均值IL>0;在第一开关管S1导通时(图3中t0时刻),电感电流开始从零增加,S1关断时(图3中t1时刻),电感电流值最大;继而第二开关管S2导通,电感电流下降;为实现软开关,在电感电流下降到-x时(图3中t2时刻)将S2关断;S2关断后电感电流从负值上升到0,并保持一段时间为0,直至下一开关周期开始后S1再次导通;根据上述关系可得到电感电流最大值iL_max
Figure BDA0003301328180000061
式中,Ts为开关周期,第二开关管S2开通时间段内电感电流下降量为(iL_max+x),则
Figure BDA0003301328180000062
第二开关管S2关断后,令电感电流从-x上升到0所花时间为ΔD+Ts,则
Figure BDA0003301328180000063
式中,UDF为开关管的体二极管导通压降,根据式(2)-式(4),得到此情况下电感电流的平均值为
Figure BDA0003301328180000064
在控制过程中,希望控制电感电流的平均值以及第二开关管S2关断时刻的电流值,则将式(5)中的电感电流平均值用式(1)中的电流基准值I*代替,得到
Figure BDA0003301328180000065
再根据式(2)、式(3)所示关系得到
Figure BDA0003301328180000066
III.UB2-UB1>UT
此时电感电流运行波形对应图4所示波形。设定第一开关管S1的调制比为D1-,第二开关管S2的调制比为D2-,第二电池单体B2的能量流向第一电池单体B1,电感电流平均值IL<0;与UB1-UB2>UT时情况不一样,此时第二开关管S2先开通,第一开关管S1后开通;第二开关管S2导通时(图4中t0时刻),电感电流开始从零下降并变为负值,S2关断时(图4中t1时刻),电感电流值最小;继而第一开关管S1导通,电感电流从负的最小值增加;为实现软开关,在电感电流上升到x时(图4中t2时刻)将S1关断;S1关断后电感电流从x下降到0,并保持一段时间为0,直至下一开关周期开始后S2再次导通;根据上述关系可得到电感电流最小值iL_min
Figure BDA0003301328180000071
第一开关管S1开通时间段内电感电流上升量为(x-iL_min),则
Figure BDA0003301328180000072
第一开关管S1关断后,令电感电流从x下降到0所花时间为ΔD-Ts,则
Figure BDA0003301328180000073
根据式(8)-式(10),得到此情况下电感电流的平均值为
Figure BDA0003301328180000074
在控制过程中,希望控制电感电流的平均值以及第一开关管S1关断时刻的电流值,则将式(11)中的电感电流平均值用式(1)中的电流基准值I*代替,得到
Figure BDA0003301328180000075
再根据式(8)、式(9)所示关系得到
Figure BDA0003301328180000076
根据上述第II种、第III种情况得到的调制比D1+、D2+或者D1-、D2-进行调制信号,得到控制第一开关管S1、第二开关管S2的PWM信号。
图5所示流程图清晰地描述了上述求解过程。图5所示流程清晰,可以很容易的由DSP实现。
图5所示实现软开关的占空比预测控制策略不需要检测开关电感均衡器中的电感电流,可进一步降低均衡器的成本。
以UB1>UB2时的情况为例进行分析,要保证均衡器实现图3所示的运行波形,必须满足D1++D2++ΔD+≤1,据式(4)、(6),可得
Figure BDA0003301328180000081
因此可以得到D1+的上限值D1+max
Figure BDA0003301328180000082
以式(15)得到的占空比运行时,电感电流运行的波形如图2所示,说明本发明公开方法与传统均衡器控制策略的统一。由式(5)可以看出,占空比D1+越大,对应的电感电流IL(均衡速度的指标)越大,均衡速度则越快。限于均衡器额定功率,必须规定IL的最大值ILmax,则
Figure BDA0003301328180000083
将式(15)代入式(16)中,就得到电感值的二元一次方程,最终得到
Figure BDA0003301328180000084
其中,
Figure BDA0003301328180000085
Figure BDA0003301328180000086
因此,均衡器开关频率已知的情况下,确定了均衡过程中电感电流的均值最大值ILmax与瞬时最小值以后,通过式(17)设计电感的感值;运行过程中,根据图5所示方法得到开关管的运行占空比后,经信号调制得到的驱动信号波形可以保证均衡器运行于电流DCM。对应的控制框图如图6所示,由图6可以看出,电压环的输出作为电流基准,但策略中未采用电流反馈,而是根据所提算法实现了电感电流的跟踪。
反映均衡器的一个重要性能指标是效率,实现软开关与同等功率情况下器件较低的电流有效值可以大大提升效率。本发明公开图3、图4所示的DCM运行策略与图2所示传统控制方法波形均可以实现软开关功能,下面着重比较两种方法的器件电流应力。均衡器中,电感电流的有效值是反应均衡器效率的重要指标。
根据图3中3个模态的电感电流函数求取电感电流有效值,得
Figure BDA0003301328180000091
而图2所示波形对应的电感电流有效值为
Figure BDA0003301328180000092
式中,xc、D1c、D2c分别为实现软开关的电感电流值、开关管S1的调制比、开关管S2的调制比。
根据式(18)、(19),在相同电感电流均值IL的情况下得到两种控制策略时的电流有效值曲线,如图7所示。根据电池单体的实际情况,设图7中单体之间最大的电压差为0.1V,图中分别给出了UB1=2.9V、3.2V、3.6V三种情况下的电流有效值值曲线,可以看出:在电感电流均值IL较小的情况下,本发明公开DCM软开关方案电流有效值IL_RMSp明显比传统方案的电流有效值IL_RMSc要低;且随着电池单体电压的增加,IL_RMSp与IL_RMSc的差值变大;随着电流IL接近额定值,两者的差别变小并接近。由于电流有效值直接与损耗相关,包括线路损耗、电感铜损、开关管发热等,因此本发明公开DCM软开关方案在高效变换方面具有明显的优势。产生上述优势的主要原因是:传统电流连续软开关策略运行占空比受限于电池单体电压,为降低电流IL,必须将电流的最低值(式(19)中的xc值)同步下移,造成电流有效值基本不变;而电流断续软开关策略根据所需电流IL的大小得到开关管占空比,保证软开关的电流值-x在不同IL时大小不变,因此电流有效值与电流平均值基本呈线性关系。
综上所述,本发明公开的电流断续软开关实现方法,实现了均衡器中所有开关管的软开关,相同均衡功率情况下可有效降低均衡器中器件的电流应力,大大提升了均衡器的效率;且该方法中未采用电流反馈参与控制,省去了电流传感器的成本,降低了均衡器的造价;上述特性增加了基于开关电感锂离子电池均衡器的市场竞争力。
上述实施例是对本发明的说明,不是对本发明的限定,任何对本发明简单变换后的方案均属于本发明的保护范围。

Claims (8)

1.一种基于开关电感电池均衡器的电流断续软开关实现方法,该方法的实现基于开关电感锂离子电池均衡器,所述开关电感锂离子电池均衡器包括被均衡的两个电池单体:第一电池单体B1、第二电池单体B2,两个开关管:第一开关管S1、第二开关管S2,电感L0;所述第一电池单体B1、第二电池单体B2的电压分别为UB1、UB2;流入第一电池单体B1、第二电池单体B2的电流分别为iB1、iB2,电感电流为iL,电感L0的电感值为L;其特征在于,该方法包括如下步骤:
S1.判断UB1、UB2与UT的关系,其中,UT为开关电感锂离子电池均衡器开启电压,当|UB1-UB2|≤UT时,第一开关管S1、第二开关管S2全部关闭,否则,进入步骤S2;
S2.再次判断UB1、UB2与UT的关系,当UB1-UB2>UT时,进入步骤S3;当UB2-UB1>UT时,进入步骤S4;
S3.设定第一开关管S1的调制比为D1+,第二开关管S2的调制比为D2+,电感电流最大值iL_max
Figure FDA0003301328170000011
式中,Ts为开关周期,第二开关管S2开通时间段内电感电流下降量为(iL_max+x),则
Figure FDA0003301328170000012
第二开关管S2关断后,电感电流经关管S1的体二极管续流,令电感电流从-x上升到0所花时间为ΔD+Ts,则
Figure FDA0003301328170000013
式中,UDF为开关管的体二极管导通压降,根据式(1)至式(3),得到此情况下电感电流的平均值为
Figure FDA0003301328170000014
然后将式(4)中的电感电流平均值用电流基准值I*代替,得到
Figure FDA0003301328170000015
再根据式(1)、式(2)所示关系得到
Figure FDA0003301328170000016
然后进入步骤S5;
S4.设定第一开关管S1的调制比为D1-,第二开关管S2的调制比为D2-,电感电流最小值iL_min
Figure FDA0003301328170000021
第一开关管S1开通时间段内电感电流上升量为(x-iL_min),则
Figure FDA0003301328170000022
第一开关管S1关断后,令电感电流从x下降到0所花时间为ΔD-Ts,则
Figure FDA0003301328170000023
根据式(7)至式(9),得到此情况下电感电流的平均值为
Figure FDA0003301328170000024
然后将式(10)中的电感电流平均值用电流基准值I*代替,得到
Figure FDA0003301328170000025
再根据式(7)、式(8)所示关系得到
Figure FDA0003301328170000026
然后进入步骤S5;
S5.根据调制比D1+、D2+或者D1-、D2-进行调制信号,得到控制第一开关管S1、第二开关管S2的PWM信号。
2.如权利要求1所述的一种基于开关电感电池均衡器的电流断续软开关实现方法,其特征在于:所述电流基准值I*设定为
Figure FDA0003301328170000027
其中,kv为电压环控制系数,Imax为允许均衡器电感电流的最大值。
3.如权利要求1或2所述的一种基于开关电感电池均衡器的电流断续软开关实现方法,其特征在于:步骤S3中,UB1-UB2>UT时,第一电池单体B1的能量流向第二电池单体B2,电感电流平均值IL>0。
4.如权利要求3所述的一种基于开关电感电池均衡器的电流断续软开关实现方法,其特征在于:步骤S3中,在第一开关管S1导通时,电感电流开始从零增加,第一开关管S1关断时,电感电流值最大;继而第二开关管S2导通,电感电流下降,为实现软开关,在电感电流下降到-x时将第二开关管S2关断。
5.如权利要求4所述的一种基于开关电感电池均衡器的电流断续软开关实现方法,其特征在于:步骤S3中,第二开关管S2关断后电感电流从负值上升到0,并保持一段时间为0,直至下一开关周期开始后第一开关管S1再次导通。
6.如权利要求1或2所述的一种基于开关电感电池均衡器的电流断续软开关实现方法,其特征在于:步骤S4中,UB2-UB1>UT时,第二电池单体B2的能量流向第一电池单体B1,电感电流平均值IL<0。
7.如权利要求6所述的一种基于开关电感电池均衡器的电流断续软开关实现方法,其特征在于:步骤S4中,第二开关管S2先开通,第一开关管S1后开通;第二开关管S2导通时,电感电流开始从零下降并变为负值,第二开关管S2关断时,电感电流值最小;继而第一开关管S1导通,电感电流从负的最小值增加;为实现软开关,在电感电流上升到x时将第一开关管S1关断。
8.如权利要求7所述的一种基于开关电感电池均衡器的电流断续软开关实现方法,其特征在于:步骤S4中,第一开关管S1关断后电感电流从x下降到0,并保持一段时间为0,直至下一开关周期开始后第二开关管S2再次导通。
CN202111191585.6A 2021-10-13 2021-10-13 基于开关电感电池均衡器的电流断续软开关实现方法 Pending CN114123376A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111191585.6A CN114123376A (zh) 2021-10-13 2021-10-13 基于开关电感电池均衡器的电流断续软开关实现方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111191585.6A CN114123376A (zh) 2021-10-13 2021-10-13 基于开关电感电池均衡器的电流断续软开关实现方法

Publications (1)

Publication Number Publication Date
CN114123376A true CN114123376A (zh) 2022-03-01

Family

ID=80375812

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111191585.6A Pending CN114123376A (zh) 2021-10-13 2021-10-13 基于开关电感电池均衡器的电流断续软开关实现方法

Country Status (1)

Country Link
CN (1) CN114123376A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114530915A (zh) * 2022-03-15 2022-05-24 盐城工学院 基于双向开关控制的级联整流式锂电池均衡器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114530915A (zh) * 2022-03-15 2022-05-24 盐城工学院 基于双向开关控制的级联整流式锂电池均衡器

Similar Documents

Publication Publication Date Title
Qi et al. An integrated cascade structure-based isolated bidirectional DC–DC converter for battery charge equalization
Lee et al. Battery equalization using bi-directional Cuk converter in DCVM operation
Zhou et al. Two-mode active balancing circuit based on switched-capacitor and three-resonant-state LC units for series-connected cell strings
CN109889036B (zh) 一种追踪最高效率点的ipos直流充电电源
CN113992010B (zh) 一种宽增益dc-dc变换器及其控制方法
Qi et al. Optimization of centralized equalization systems based on an integrated cascade bidirectional DC–DC converter
CN110829837B (zh) 一种低电压应力ZVS高增益Boost变换器
US20220255327A1 (en) Decentralized active equalization method for cascaded lithium-ion battery pack
Qi et al. A reduced-component-count centralized equalization system for series-connected battery packs based on a novel integrated cascade topology
CN114844168A (zh) 串联电池组均衡系统及主动均衡控制方法
CN114123376A (zh) 基于开关电感电池均衡器的电流断续软开关实现方法
Nie et al. A High Efficiency Battery Equalizing Circuit Based on Half Bridge Topology With Multiport Transformer
CN113746174A (zh) 一种单电感单电容串联电池组自适应主动均衡方法
CN110758179B (zh) 基于lc-l的串联电池组均衡电路及均衡方法
AU2012216773B2 (en) Photovoltaic system having burp charger performing concept of energy treasuring and recovery and charging method thereof
CN218958586U (zh) 一种双模式的主动均衡锂离子电池电路
CN115133520B (zh) 适用于光储一体化系统的蓄电池能量协调控制方法
Yu et al. A multi-cell-to-multi-cell equalizer for series-connected batteries based on flyback conversion
CN110380460B (zh) 一种dc/dc电路、一种电压均衡系统及方法
CN115664169A (zh) 一种针对双向四开关Buck-Boost的准峰值电流控制方法
CN115021346A (zh) 一种串联电池组的直接均衡电路及其控制方法
Zhao et al. 8.4 A Fast-Transient 3-Fine-Level Buck-Boost Hybrid DC-DC Converter with Half-Voltage-Stress on All Switches and 98.2% Peak Efficiency
CN209488245U (zh) 一种复合电源系统
CN113489097A (zh) 一种基于l-lc储能的串联电池组主动均衡方法
Fan et al. The balancing system of super capacitor based on active clamped forward converter

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination