CN114844126A - 基于分布式模型预测控制的dfig有功功率控制方法 - Google Patents

基于分布式模型预测控制的dfig有功功率控制方法 Download PDF

Info

Publication number
CN114844126A
CN114844126A CN202210503967.6A CN202210503967A CN114844126A CN 114844126 A CN114844126 A CN 114844126A CN 202210503967 A CN202210503967 A CN 202210503967A CN 114844126 A CN114844126 A CN 114844126A
Authority
CN
China
Prior art keywords
representing
control
axis component
rotor
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210503967.6A
Other languages
English (en)
Other versions
CN114844126B (zh
Inventor
刘群英
柴鑫
朱德清
夏锐
郭贞
盖鑫
陈树恒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN202210503967.6A priority Critical patent/CN114844126B/zh
Publication of CN114844126A publication Critical patent/CN114844126A/zh
Application granted granted Critical
Publication of CN114844126B publication Critical patent/CN114844126B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/48Controlling the sharing of the in-phase component
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/004Generation forecast, e.g. methods or systems for forecasting future energy generation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/007Control circuits for doubly fed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/008Arrangements for controlling electric generators for the purpose of obtaining a desired output wherein the generator is controlled by the requirements of the prime mover
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/28The renewable source being wind energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2101/00Special adaptation of control arrangements for generators
    • H02P2101/15Special adaptation of control arrangements for generators for wind-driven turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

本发明公开了一种基于分布式模型预测控制的DFIG有功功率控制方法,获取DFIG的历史数据并到预测时域内的风速序列,构建基于随机模型预测的变桨距控制器的控制模型,预测得到预测时域内的控制输入变量序列,将当前风轮转速作为最优风轮转速,然后计算得到最优有功功率参考值,转子侧变流控制器中的定子外环控制环根据最优有功功率参考值得到转子电流参考值,转子侧变流控制器中的转子内环控制环根据转子电流参考值得到转子电压参考值,根据转子电压参考值生成电机的控制信号,以控制转子电流值,从而实现有功功率控制。本发明采用基于分布式模型预测控制的控制架构,从而提高控制效果。

Description

基于分布式模型预测控制的DFIG有功功率控制方法
技术领域
本发明属于风力发电技术领域,更为具体地讲,涉及一种基于分布式模型预测控制的DFIG有功功率控制方法。
背景技术
近年来,风电并网电力系统的风电渗透率也逐渐增加,并网容量达到更高的水平,越来越多新能源发电系统并入传统电网,构成了更加复杂的电网系统体系。近些年来电网安全事故时有发生,尤其是自然灾害给风力发电安全带来了许多困难,考虑到风速随机性将给整个系统带来诸多不确定因素,能否克服风速随机变化带来的影响成为风力发电系统安全方面的全新挑战。
风力发电技术成本低,发展速度快,是一种可再生的清洁能源利用方式,机具发展前景。风速具有随机性、波动性和间歇性等特点,因此风能的稳定性差,不能储存,且风能和风速之间存在强烈的非线性关系,在建立模型时由于简化处理,忽略了未建模动态,这给系统控制精度带来了严重影响。
DFIG(Doubly fed Induction Generator,双馈异步风力发电机)是目前风力发电领域应用最为广泛的风力发电机,由定子绕组直连相电网的绕线型异步发电机和安装在转子绕组上的双向背靠背IGBT电压源变流器组成。DFIG的暂态响应可以看作是一系列复杂的机械暂态响应和电磁暂态响应的耦合,两者在时间上并无先后顺序。由于风轮的巨大惯性,风速的瞬间变化不会导致风力涡轮机的机械量突变,因此研究的时间尺度较长,风力涡轮机的暂态响应主要表现为由风力机输出功率不平衡所引发的发电机转速变化;而发电机的电气量则会因为短路等故障导致突变,因而研究的时间尺度较短,其暂态响应表现为定转子电压、磁链和电流的变化。
分布式模型预测控制被广泛应用于处理带有显示输入、输出约束的优化的复杂系统的控制问题,通过代价函数的设计可灵活选择控制目标,通过一系列在线计算实现滚动优化,其控制效果具有较好的鲁棒性,且通过代价函数对控制增量的约束,一定程度上克服了控制保守性。但是由于机械暂态和电磁暂态时间尺度不同这一原因,传统的风机有功功率控制通常以电磁暂态控制为主,即使结合机械暂态也会忽略风速随机性给系统暂态稳定性带来的影响。然而从整体上看,风力发电系统的运行过程具有长期性,如果忽略风速的随机性信息,则不能全面的考虑风速随机变化给系统暂态稳定性带来的影响。
发明内容
本发明的目的在于克服现有技术的不足,提供一种基于分布式模型预测控制的DFIG有功功率控制方法,基于分布式模型预测控制的控制架构,将DFIG看作由风力涡轮机为主的机械设备和以发电机为主的电气设备两部分分别进行控制,控制风轮机系统控制机械暂态,并为电磁暂态控制提供参考值计算,两者同时进行,从而提高控制效果。
为了实现上述发明目的,本发明基于分布式模型预测控制的DFIG有功功率控制方法包括以下步骤:
S1:获取DFIG的历史风机转速序列、历史桨距角序列和历史发电机转矩序列,然后根据预先设置的随机风速模型得到预测时域Np内各个时刻的风速,得到风速序列;
S2:采用如下方法构建基于随机模型预测的变桨距控制器的控制模型:令风力涡轮机系统状态空间的状态变量xwt(k)=[ωm(k) Te(k) β(k)]T,其中ωm(k)表示时刻k的风机转速,Te(k)表示时刻k的发电机转矩,β(k)表示时刻k的桨距角,令控制输入变量
Figure BDA0003636594390000023
其中β*(k)表示时刻k的桨距角调节设定值,
Figure BDA0003636594390000024
表示时刻k的发电机转矩调节设定值,上标T表示转置,输出ywt(k)=ωm(k),构建风力涡轮机系统状态空间模型如下式所示:
Figure BDA0003636594390000021
其中,xwt(k)、xwt(k+1)分别表示时刻k和k+1的状态变量,ywt(k)表示时刻k的输出,uwt(k)表示时刻k的控制输入变量,d(k)表示时刻k的风速值,Awt、Bwt、Wwt、Cwt为状态矩阵,表达式分别如下:
Figure BDA0003636594390000022
Figure BDA0003636594390000031
Figure BDA0003636594390000032
Cwt=[1 0 0]
其中,a、b、c表示风轮转矩用泰勒展开后在额定工作点处的线性系数,τe表示调节发电机转矩变化的时间常数,τβ表示调节桨距角变化的时间常数;
代价函数表达式如下:
Figure BDA0003636594390000033
其中,E()表示求取期望,
Figure BDA0003636594390000034
βe(k)=βe *(k)-βe(k),Q=diag(qwt1),RΔu=diag(rwt1),Ru=diag(rwt2),qwt1和rwt1,rwt2为各部分预设的权重,diag(z)表示以z为元素的对角矩阵;Δuwt(k+j)表示时刻k+j的控制输入增量,Δuwt(k+j)=[Δβ(k+j)ΔTe(k+j)]T,Δβ(k+j)表示时刻k+j时控制输入的桨距角增量,ΔTe(k+j)表示时刻k+j的控制输入的发电机转矩增量,uwt(k+j)表示时刻k+j时的控制输入变量,Np表示预测时域,Nc表示控制时域,Nc≤Np
约束条件如下:
Figure BDA0003636594390000035
其中:
Figure BDA0003636594390000041
其中,ywt(i)表示预测时域Np内时刻i的输出,ywt,constrain表示输出的取值范围,uwt(i)表示预测时域Np内时刻i的控制输入变量,uwt,constrain表示控制输入变量的取值范围,Δuwt表示预测时域Np内时刻i的控制输入增量,Δuwt,constrain为控制输入增量的取值范围;
ε表示预设阈值且ε>0,Pe表示发电机的有功功率,Pe,ref表示有功功率参考值,采用如下方法确定:根据控制输入变量序列中第一个控制输入变量中的桨距角调节设定值和发电机转矩调节设定值对风力涡轮机进行控制,将得到的风轮转速作为最优风轮转速ωm,opt,采用如下公式计算得到最优有功功率参考值Pe,ref
Figure BDA0003636594390000042
其中,kopt表示最佳功率控制系数;
变桨距控制器根据历史风机转速序列、历史桨距角序列和历史发电机转矩序列和风速序列,通过控制模型预测得到预测时域内的控制输入变量序列
Figure BDA0003636594390000043
根据控制输入变量序列
Figure BDA0003636594390000044
中第一个控制输入变量
Figure BDA0003636594390000045
中的桨距角调节设定值和发电机转矩调节设定值对风力涡轮机进行控制,将当前时刻k的风轮转速作为最优风轮转速ωm,opt,然后计算得到当前时刻k的最优有功功率参考值Pe,ref
S3:转子侧变流控制器中的定子外环控制环从变桨距控制器获取最优有功功率参考值Pe,ref,求解如下方程组得到时刻k定子电流的d轴分量isd(k)和q轴分量isq(k):
Figure BDA0003636594390000046
其中,Qs表示当前发电机的无功功率;
然后求解如下方程组得到时刻k转子电流参考值的d轴分量
Figure BDA0003636594390000051
和q轴分量
Figure BDA0003636594390000052
Figure BDA0003636594390000053
其中,Lm表示定子和转子绕组间的互感,Ls表示定子的自感,ψs表示定子的磁链;
采用如下公式预测得到时刻k+1的定子电压预测值的d轴分量usd(k|k+1)和q轴分量usq(k|k+1):
Figure BDA0003636594390000054
其中,usd(k|k+1)、usq(k|k+1)分别表示表示根据时刻k的数据预测得到时刻k+1的定子电压预测值的d轴分量和q轴分量,ω1表示定子转速,ird(k)、irq(k)分别表示时刻k的转子电流的d轴分量和q轴分量、
Figure BDA0003636594390000055
分别表示定子电压补偿项的d轴分量和q轴分量,补偿项的表达式如下式所示;
Figure BDA0003636594390000056
其中,Υu表示电压补偿的误差系数;
采用如下公式计算得到转子电流控制增量的d轴分量
Figure BDA0003636594390000057
和q轴分量
Figure BDA0003636594390000058
Figure BDA0003636594390000059
其中,qsd、qsq、rsd、rsq分别表示预设的定子控制的权重值,isd(k)、isq(k)分别表示时刻k转子电流控制增量的d轴分量和q轴分量;
然后采用如下公式计算转子电流参考值的d轴分量
Figure BDA00036365943900000510
和q轴分量
Figure BDA00036365943900000511
Figure BDA00036365943900000512
S4:转子侧变流控制器中的转子内环控制环从定子外环控制环获取转子电流参考值的d轴分量
Figure BDA0003636594390000061
和q轴分量
Figure BDA0003636594390000062
先采用如下公式预测得到时刻k+1的转子电流预测值的d轴分量ird(k|k+1)和q轴分量irq(k|k+1):
Figure BDA0003636594390000063
其中,TMPC表示离散采样时间,Rr表示转子电阻,Lr表示转子的自感,ωs表示转差速度,urd(k-1)、urq(k-1)分别表示时刻k-1的转子电压的d轴分量和q轴分量,ξrd(k)、ξrq(k)表示转子电流补偿项的d轴分量和q轴分量,表达式如下式所示:
Figure BDA0003636594390000064
其中,Υi表示电流补偿项的误差系数;
采用如下公式计算得到控制转子电流的转子电压控制增量的d轴分量
Figure BDA0003636594390000065
和q轴分量
Figure BDA0003636594390000066
Figure BDA0003636594390000067
采用如下公式计算得到控制转子电流的转子电压参考值的d轴分量
Figure BDA0003636594390000068
和q轴分量
Figure BDA0003636594390000069
Figure BDA00036365943900000610
根据转子电压参考值的d轴分量
Figure BDA00036365943900000611
和q轴分量
Figure BDA00036365943900000612
生成发电机的控制信号,以控制转子电流值,从而实现有功功率控制。
本发明基于分布式模型预测控制的DFIG有功功率控制方法,获取DFIG的历史数据并到预测时域内的风速序列,构建基于随机模型预测的变桨距控制器的控制模型,预测得到预测时域内的控制输入变量序列,将当前风轮转速作为最优风轮转速,然后计算得到最优有功功率参考值,转子侧变流控制器中的定子外环控制环根据最优有功功率参考值得到转子电流参考值,转子侧变流控制器中的转子内环控制环根据转子电流参考值得到转子电压参考值,根据转子电压参考值生成电机的控制信号,以控制转子电流值,从而实现有功功率控制。
本发明具有以下有益效果:
(1)与传统方法大多将机械暂态和电磁暂态分开控制不同,本发明利用分布式模型预测控制将机械暂态和电磁暂态联系起来,同时进行控制,提高了控制效果;
(2)本发明通过变桨距控制器的模型预测控制可以避免频繁的机械结构变动,有利于保护机械器件;
(3)传统方法处理暂态稳定性问题时往往忽略风速的随机性,不能准确模拟真实风力发电机工作场景,控制方法具有一定的保守性,本发明在考虑风速随机信息的基础上进行控制,克服了一定的保守性,增强了鲁棒性。
附图说明
图1是本发明中分布式模型预测控制架构图;
图2是本发明基于分布式模型预测控制的DFIG有功功率控制方法的具体实施方式流程图;
图3是本发明和对比方法在发生风速波动和网侧三相故障后并网点的有功功率和节点电压对比曲线图。
具体实施方式
下面结合附图对本发明的具体实施方式进行描述,以便本领域的技术人员更好地理解本发明。需要特别提醒注意的是,在以下的描述中,当已知功能和设计的详细描述也许会淡化本发明的主要内容时,这些描述在这里将被忽略。
实施例
为了更好地说明本发明的技术方案,首先对本发明中涉及的控制器模型的推导过程进行简要说明。
由于DFIG的模型复杂,且内部的机械结构和电气结构响应时间不同,因此在引入分布式模型预测控制时存在较大难度。因此本发明对分布式模型预测控制架构进行了适应性改进。图1是本发明中分布式模型预测控制架构图。如图1所示,因此本发明中,将DFIG视为由风力涡轮机系统和发电机系统耦合而成,利用分布式模型预测控制理论针对两个子系统分别设计独立的控制器,其中风力涡轮机系统采用基于随机模型预测控制(StochasticModel Predictive Control,SMPC)的变桨距控制器,设置在风力涡轮机侧,用于对风力涡轮机的桨距角和发电机转矩进行控制,令风力涡轮机的转速稳定;发电机系统采用基于模型预测控制(Model Predictive Control,MPC)的转子侧变流控制器,设置在转子侧变流器处,用于确定控制转子电流的转子电压参考值,从而实现有功功率控制。
在大型风力发电系统中,变桨距控制系统属于其中的核心组成部分,用来维持转速和功率稳定,进而保障机组运行的稳定、安全和高效。传统的变桨距控制器设计以PID控制为主,基于PID控制的变桨距控制器响应较快,在风速变化较为平缓的环境下可取得较好的控制效果。为了适应更复杂的工作环境,本发明充分利用风速的随机性信息,采用基于随机模型预测控制理论的变桨距控制器,控制桨距角和发电机转矩实现以下目标:
(1)低风速区域限制风轮的最小转速,获取最大风能;
(2)额定风速区域保持风轮转速稳定,实现发电机输出功率平滑;
(3)高风速区域限制最大功率和风轮最大转速,保护机械系统,防止机械结构损伤和功率过大。
在设计变桨距控制器中,需要针对风力机模型和实际运行条件设计代价函数。本发明为了解决风速随机波动带来的输入输出波动性问题,在原有约束的基础上,将约束形式修改为概率约束,即允许系统按照一定的概率违反约束条件,这样既可以避免整体约束条件放宽带来的保守性,又能保护风力机中的相关机械组件。在风力涡轮机系统的模型推导时,利用了泰勒公式将风轮机械转矩线性化,因此系数矩阵中带有随机项。
本发明中,令风力涡轮机系统状态空间的状态变量xwt(k)=[ωm(k) Te(k) β(k)]T,其中ωm(k)表示时刻k的风机转速,Te(k)表示时刻k的电机转矩,β(k)表示时刻k的桨距角,令控制输入变量
Figure BDA0003636594390000096
其中β*(k)表示时刻k的桨距角调节设定值,
Figure BDA0003636594390000097
表示时刻k的电机转矩调节设定值,上标T表示转置,输出ywt(k)=ωm(k),将随机风速值d(k)作为加型随机扰动,构建得到风力涡轮机系统状态空间模型如下式所示:
Figure BDA0003636594390000091
其中,xwt(k)、xwt(k+1)分别表示时刻k和k+1的状态变量,ywt(k)表示时刻k的输出,uwt(k)表示时刻k的控制输入变量,d(k)表示时刻k的风速值,Awt、Bwt、Wwt、Cwt为状态矩阵,表达式分别如下:
Figure BDA0003636594390000092
Figure BDA0003636594390000093
Figure BDA0003636594390000094
Cwt=[1 0 0]
其中,a、b、c表示风轮转矩用泰勒展开后在额定工作点处的线性系数,可以采用如下表达式表示:
Figure BDA0003636594390000095
v0表示额定工作点的风速,ω0表示额定工作点的风机转速,β0表示额定工作点的桨距角。
τe表示调节发电机转矩变化的时间常数,τβ表示表示调节桨距角变化的时间常数。
变桨距控制器的控制目标是风轮转速快速跟踪参考值,并且桨距角增量不超过一定的范围,与此同时要保证桨距角作为输入量和风轮转速作为输出量时不超过约束值,这样也可避免机械传动结构频繁变化。由于本发明中风力涡轮机系统为带有随机干扰项(随机风速)的不确定性系统,因此设计出的变桨距代价函数为期望的形式,表达式为:
Figure BDA0003636594390000101
其中,E()表示求取期望,
Figure BDA0003636594390000102
βe(k)=βe *(k)-βe(k),Q=diag(qwt1),R=diag(rwt1),Ru=diag(rwt2),qwt1和rwt1,rwt2为各部分预设的权重,diag(z)表示以z为元素的对角矩阵;Δuwt(k+j)表示时刻k+j的控制输入增量,Δuwt(k+j)=[Δβ(k+j) ΔTe(k+j)]T,Δβ(k+j)表示时刻k+j时控制输入的桨距角增量,ΔTe(k+j)表示k+j时控制输入的发电机转矩增量,uwt(k+j)表示时刻k+j时控制输入变量,Np表示预测时域,Nc表示控制时域,Nc≤Np
被控输入、输出的整体约束设置为高于额定值的比例λ(本实施例中λ为10%),桨距角增量设置为Δβ*≤θ(本实施例中θ为5°),电机转矩增量设置为ΔTe *≤τ(本实施例中τ=540N·m),这样设计是为了保护机械结构,减少机械传动结构的频繁变化。由于随机风速作为干扰项,使系统成为不确定性系统,硬约束会导致优化问题无法求解,因此采用概率约束的形式:规定在预测时域Np内,允许系统输入、输出、控制量的增量以一定的概率超过原λ的约束,以概率的形式给出的约束如下式所示。
Figure BDA0003636594390000103
由于计算时系统采用离散形式,因此给出离散下的约束条件如下式所示。
Figure BDA0003636594390000104
其中:
Figure BDA0003636594390000111
其中,ywt(i)表示预测时域Np内时刻i的输出,ywt,constrain表示输出的取值范围,uwt(i)表示预测时域Np内时刻i的控制输入变量,uwt,constrain表示控制输入变量的取值范围,Δuwt表示预测时域Np内时刻i的控制输入增量,Δuwt,constrain为控制输入增量的取值范围。这三个取值范围是由双馈风力发电机的自身参数确定的。
此外,为了实现发电机有功功率的反馈控制闭环,在变桨距控制器控制模型中,本发明还在约束条件中增加了当前的有功功率实际值Pe和控制得到的最优有功功率参考值Pe,ref的差值约束,其表达式如下:
|Pe-Pe,ref|<ε
其中,ε表示预设阈值且ε>0,一般来说为了控制的平滑,阈值ε不会太大。有功功率参考值Pe,ref采用如下方法确定:根据控制输入变量序列中第一个控制输入变量中的桨距角调节设定值和电机转矩调节设定值对风力涡轮机进行控制,将得到的风轮转速作为最优风轮转速ωm,opt,采用如下公式计算得到最优有功功率参考值Pe,ref
Figure BDA0003636594390000112
其中,kopt表示最佳功率控制系数,由最佳风能利用曲线得到。
综上所述,可以基于随机模型预测控制理论构建变桨距控制器C1的控制模型:
状态空间方程的表达式如下:
Figure BDA0003636594390000113
代价函数表达式如下:
Figure BDA0003636594390000114
约束条件包括:
Figure BDA0003636594390000121
变桨距控制器求解上述优化问题,即可得到最优控制序列
Figure BDA0003636594390000122
从而实现对风力涡轮机的控制。本实施例中,该优化问题采用内点法求解,内点法是一种常用的优化问题求解方法,其具体过程在此不再赘述。
将最优控制序列
Figure BDA0003636594390000123
中第一个控制输入,对风力涡轮机进行控制,将控制后风力涡轮机的风轮转速作为最优风轮转速ωm,opt,然后计算得到有功功率最优参考值Pe,ref
接下来对转子侧变流控制器的控制模型的推导过程进行简要说明。
DFIG并网后,在并网点处,定子电压等于电网电压,此时DFIG网侧的有功功率和无功功率可表示为下式。
Figure BDA0003636594390000124
其中,Ps、Qs分别表示有功功率和无功功率,usd、usq分别表示定子电压的d轴分量和q轴分量,isd、isq分别表示定子电流的d轴分量和q轴分量。
采用定子电压矢量定向(即将d、q坐标系的轴定为电网电压的方向),定子电压的q轴分量usq=0,可将上式改写为下式。
Figure BDA0003636594390000125
当基于随机模型预测控制的变桨距子控制器计算出最优有功功率参考值后Pe,ref,即可采用公式
Figure BDA0003636594390000126
结合上述公式得到定子电流的d轴分量和q轴分量,再利用基于模型预测控制的转子侧变流子控制器计算出转子电流参考值和转子电压参考值,从而通过调节转子电流控制双馈风机的有功功率。
并网后的定子电压等于电网电压,定子电流d、q轴分量改写为下式,即可通过网侧有功功率的关系计算转子侧电流的参考值。
Figure BDA0003636594390000131
其中,ird、irq表示转子电流的d轴分量和q轴分量,Lm表示定子和转子绕组间的互感,Ls表示定子的自感,ψs表示定子的磁链。
并可推导出新的转子磁链关系表达式如下式所示:
Figure BDA0003636594390000132
其中,ψrd、ψrq分别表示转子磁链的d轴分量和q轴分量;Lr表示转子的自感,
Figure BDA0003636594390000133
转子电流控制器的控制目标是通过控制转子电流以达到控制有功功率的目的,根据双馈风力发电机的原理知识可知,转子电流控制器采用了双闭环结构,外层为定子外环控制环,内层为转子内环控制环,有功功率参考值Pe,ref由变桨距控制器给出,定子外环控制环根据有功功率参考值计算出转子电流参考值
Figure BDA0003636594390000134
Figure BDA0003636594390000135
转子内环控制环根据转子电流参考值计算出转子电压最优控制量
Figure BDA0003636594390000136
然后通过控制转子电压调整转子电流,最后达到控制有功功率的目的。因此本发明需要设计定子外环代价函数和转子内环代价函数两部分。定子外环控制环控制定子电压快速跟踪参考值,且转子电流控制增量尽可能小,因此本发明设置定子外环的代价函数如下式所示:
Figure BDA0003636594390000137
其中,
Figure BDA0003636594390000138
分别表示时刻k的定子电压参考值的d轴分量和q轴分量,usd(k|k+j)、usq(k|k+j)分别表示根据时刻k的数据预测得到时刻k+j的定子电压预测值的d轴分量和q轴分量,Δird(k)、Δirq(k)分别表示时刻k的转子电流增量的d轴分量和q轴分量,qsd、qsq、rsd、rsq分别表示预设的定子外环控制的权重值。电压电流矢量在解耦过程中会产生耦合项,所以为了消除交叉耦合项带来的影响,预测值计算出的结果包括定子电压预测值和针对交叉耦合项的补偿项,如下式所示。
Figure BDA0003636594390000141
其中,usd(k|k+1)、usq(k|k+1)分别表示表示根据时刻k的数据预测得到时刻k+1的定子电压预测值的d轴分量和q轴分量,ω1表示定子转速,ird(k)、irq(k)分别表示时刻k的转子电流的d轴分量和q轴分量、
Figure BDA0003636594390000142
分别表示定子电压补偿项的d轴分量和q轴分量,补偿项的表达式如下式所示。
Figure BDA0003636594390000143
其中,Υu表示电压补偿的误差系数。
求解定子外环优化问题,可求出控制定子电压的最优转子电流增量如下式所示:
Figure BDA0003636594390000144
结合上式求出的转子电流最优增量,可以推导出转子电流参考值如下式所示。
Figure BDA0003636594390000145
通过基于模型预测控制的定子外环控制环计算出转子电流参考值后,转子内环控制环需要通过调节转子电压达到控制转子电流的目的,控制目标为使转子电流迅速跟踪参考值,且转子电压增量不能过大,由此可以设计出转子内环控制环的代价函数如下式所示。
Figure BDA0003636594390000151
其中,urd(k|k+j)、urq(k|k+j)分别表示根据时刻k的数据预测得到时刻k+j的转子电压预测值的d轴分量和q轴分量,Δurd(k)、Δurq(k)分别表示时刻k的转子电流增量的d轴分量和q轴分量,qrd、qrq、rrd、rrq分别表示预设的转子控制的权重值。
电压电流矢量在解耦过程中会产生耦合项,所以为了消除交叉耦合项带来的影响,转子电流预测值计算出的结果包括转子电流预测值和针对交叉耦合项的补偿项,如下式所示。
Figure BDA0003636594390000152
其中,ird(k|k+1)、irq(k|k+1)分别表示根据时刻k的数据预测得到时刻k+1的转子电流预测值的d轴分量和q轴分量,TMPC表示模型预测控制MPC算法里的离散采样时间,Rr表示转子电阻,Lr表示转子的自感,ωs表示转差速度,urd(k-1)、urq(k-1)分别表示时刻k-1的转子电压的d轴分量和q轴分量,ξrd(k)、ξrq(k)表示转子电流补偿项的d轴分量和q轴分量,表达式如下式所示:
Figure BDA0003636594390000153
其中,Υi表示电流补偿项的误差系数。
求解转子电流内环优化问题,可求出控制转子电流的最优转子电压增量如下式所示:
Figure BDA0003636594390000161
结合上式求出的转子电压最优增量,可以推导出转子电压参考值如下式所示:
Figure BDA0003636594390000162
基于以上推导过程,本发明提出了基于分布式模型预测控制的双DFIG有功功率控制方法。图2是本发明基于分布式模型预测控制的DFIG有功功率控制方法的具体实施方式流程图。如图2所示,基于分布式模型预测控制的DFIG有功功率控制方法的具体步骤包括:
S201:获取预测参考数据:
获取DFIG的历史风机转速序列、历史桨距角序列和历史电机转矩序列,然后根据预先设置的随机风速模型得到预测时域Np内各个时刻的风速,得到风速序列。
由于随机风速的存在,测得的历史风机转速序列、历史桨距角序列和历史电机转矩序列存在随机扰动,可能会造成控制结果不收敛,因此在实际应用中,可以采用卡尔曼滤波对历史风机转速序列、历史桨距角序列和历史电机转矩序列进行滤波处理。
为了提升风速的随机性,本实施例中风速模型采用平均风加扰动风合成,表达式为v(k)=vm+vt,v(k)表示时刻k的风速,vm表示平均风分量,vt表示扰动风分量,其中平均风分量的初值服从Weibull分布,概率密度函数如下式所示。
Figure BDA0003636594390000171
其中,γ>0是预设的比例参数,μ>0为预设的形状参数,平均风vm的均值E(vm)和方差D(vm)分别表示:
Figure BDA0003636594390000172
其中,Γ()表示伽马函数。
扰动风分量vt可看做高斯白噪声,表达风速模型中剧烈变化的随机量,表达式如下式所示:
Figure BDA0003636594390000173
也就是说,扰动风分量vt的瞬时值服从均值为0、标准差为
Figure BDA0003636594390000179
的高斯分布。
S202:采用变桨距控制器对风力涡轮机进行控制:
首先采用如下方法构建变桨距控制器的控制模型:令风力涡轮机系统状态空间的状态变量xwt(k)=[ωm(k) Te(k) β(k)],其中ωm(k)表示时刻k的风机转速,Te(k)表示时刻k的电机转矩,β(k)表示时刻k的桨距角,令控制输入变量
Figure BDA0003636594390000174
其中β*(k)表示时刻k的桨距角调节设定值,
Figure BDA0003636594390000175
表示时刻k的电机转矩调节设定值,上标T表示转置,输出ywt(k)=ωm(k),构建风力涡轮机系统状态空间模型如下式所示:
Figure BDA0003636594390000176
其中,xwt(k)、xwt(k+1)分别表示时刻k和k+1的状态变量,ywt(k)表示时刻k的输出,uwt(k)表示时刻k的控制输入变量,d(k)表示时刻k的风速值,Awt、Bwt、Wwt、Cwt为状态矩阵,表达式分别如下:
Figure BDA0003636594390000177
Figure BDA0003636594390000178
Figure BDA0003636594390000181
Cwt=[1 0 0]
其中,a、b、c表示风轮转矩用泰勒展开后在额定工作点处的线性系数,τe表示调节发电机转矩变化的时间常数,τβ表示调节桨距角变化的时间常数。
代价函数表达式如下:
Figure BDA0003636594390000182
其中,E()表示求取期望,
Figure BDA0003636594390000183
βe(k)=βe *(k)-βe(k),Q=diag(qwt1),R=diag(rwt1),Ru=diag(rwt2),qwt1和rwt1,rwt2为各部分预设的权重,diag(z)表示以z为元素的对角矩阵。Δuwt(k+j)表示时刻k+j的控制输入增量,Δuwt(k+j)=[Δβ(k+j) ΔTe(k+j)]T,Δβ(k+j)表示时刻k+j时控制输入的桨距角增量,ΔTe(k+j)表示时刻k+j的控制输入的发电机转矩增量,uwt(k+j)表示时刻k+j时控制输入变量,Np表示预测时域,Nc表示控制时域,Nc≤Np
约束条件如下:
Figure BDA0003636594390000184
其中:
Figure BDA0003636594390000185
其中,ywt(i)表示预测时域Np内时刻i的输出,ywt,constrain表示输出的取值范围,uwt(i)表示预测时域Np内时刻i的控制输入变量,uwt,constrain表示控制输入变量的取值范围,Δuwt表示预测时域Np内时刻i的控制输入增量,Δuwt,constrain为控制输入增量的取值范围。
ε表示预设阈值且ε>0,Pe表示发电机的有功功率,Pe,ref表示有功功率参考值,采用如下方法确定:根据控制输入变量序列中第一个控制输入变量中的桨距角调节设定值和电机转矩调节设定值对风力涡轮机进行控制,将得到的风轮转速作为最优风轮转速ωm,opt,采用如下公式计算得到最优有功功率参考值Pe,ref
Figure BDA0003636594390000191
变桨距控制器根据历史桨距角、历史风轮转速和风速序列,通过控制模型预测得到预测时域内的控制输入变量序列
Figure BDA0003636594390000192
根据控制输入变量序列
Figure BDA0003636594390000193
中第一个控制输入变量
Figure BDA0003636594390000194
中的桨距角调节设定值和电机转矩调节设定值对风力涡轮机进行控制,将当前时刻k的风轮转速作为最优风轮转速ωm,opt,然后计算得到当前时刻k的最优有功功率参考值Pe,ref
S203:采用定子外环控制环对转子电流进行控制:
转子侧变流控制器中的定子外环控制环从变桨距控制器获取最优有功功率参考值Pe,ref,求解如下方程组得到时刻k定子电流的d轴分量isd(k)和q轴分量isq(k):
Figure BDA0003636594390000195
其中,Qs表示当前发电机的无功功率。
然后求解如下方程组得到时刻k转子电流参考值的d轴分量
Figure BDA0003636594390000196
和q轴分量
Figure BDA0003636594390000197
Figure BDA0003636594390000198
其中,Lm表示定子和转子绕组间的互感,Ls表示定子的自感,ψs表示定子的磁链。
采用如下公式预测得到时刻k+1的定子电压预测值的d轴分量usd(k|k+1)和q轴分量usq(k|k+1):
Figure BDA0003636594390000201
其中,usd(k|k+1)、usq(k|k+1)分别表示表示根据时刻k的数据预测得到时刻k+1的定子电压预测值的d轴分量和q轴分量,ω1表示定子转速,ird(k)、irq(k)分别表示时刻k的转子电流的d轴分量和q轴分量、
Figure BDA0003636594390000202
分别表示定子电压补偿项的d轴分量和q轴分量,补偿项的表达式如下式所示。
Figure BDA0003636594390000203
其中,Υu表示表示电压补偿的误差系数。
采用如下公式计算得到转子电流控制增量的d轴分量
Figure BDA0003636594390000204
和q轴分量
Figure BDA0003636594390000205
Figure BDA0003636594390000206
其中,qsd、qsq、rsd、rsq分别表示预设的定子控制的权重值,isd(k)、isq(k)分别表示时刻k转子电流控制增量的d轴分量和q轴分量。
然后采用如下公式计算转子电流参考值的d轴分量
Figure BDA0003636594390000207
和q轴分量
Figure BDA0003636594390000208
Figure BDA0003636594390000209
S204:采用转子内环控制环对转子电压进行控制:
转子侧变流控制器中的转子内环控制环从定子外环控制环获取转子电流参考值的d轴分量
Figure BDA00036365943900002010
和q轴分量
Figure BDA00036365943900002011
先采用如下公式预测得到时刻k+1的转子电流预测值的d轴分量ird(k|k+1)和q轴分量irq(k|k+1):
Figure BDA00036365943900002012
其中,TMPC表示离散采样时间,Rr表示转子电阻,Lr表示转子的自感,ωs表示转差速度,urd(k-1)、urq(k-1)分别表示时刻k-1的转子电压的d轴分量和q轴分量,ξrd(k)、ξrq(k)表示转子电流补偿项的d轴分量和q轴分量,表达式如下式所示:
Figure BDA0003636594390000211
其中,Υi表示电流补偿项的误差系数。
采用如下公式计算得到控制转子电流的转子电压控制增量的d轴分量
Figure BDA0003636594390000212
和q轴分量
Figure BDA0003636594390000213
Figure BDA0003636594390000214
采用如下公式计算得到控制转子电流的转子电压参考值的d轴分量
Figure BDA0003636594390000215
和q轴分量
Figure BDA0003636594390000216
Figure BDA0003636594390000217
根据转子电压参考值的d轴分量
Figure BDA0003636594390000218
和q轴分量
Figure BDA0003636594390000219
生成电机的控制信号,以控制转子电流值,从而实现有功功率控制。
为了说明本发明的技术效果,采用具体实例对本发明进行实验验证。本实施例中将40台1.5MW风机组成的容量为60MW的风电机组以直接并入电网的方式并入3机9节点标准电网模型中的5号节点处,设置风速湍流强度为0.1,并在网侧设置三相短路接地故障,故障开始时间为20.5s,故障持续时间为0.1s。采用使用传统模型预测控制MPC理论设计的控制策略(变桨距控制器和转子侧变流控制器的设计均只采用MPC法)作为对比方法,和本发明的分布式模型预测控制策略进行有功功率控制比较。图3是本发明和对比方法在发生风速波动和网侧三相故障后并网点的有功功率和节点电压对比曲线图。如图3所示,当三相故障发生后,双馈风机输出的有功功率会发生瞬间跌落,后续逐渐恢复稳定,由于随机风的干扰,在有功功率恢复的过程中存在一定的波动,整体风机的出力仍然较低。根据电力系统知识,有功功率会影响电压的变化,仿真结果与之对应。在传统的模型预测控制MPC控制策略下,有功功率的恢复过程较慢,主要是因为抵抗风速随机波动影响的能力较弱,24s左右恢复稳定,从而导致并网点电压恢复较慢,且受到随机风速扰动的影响体现的更明显;采用本实施所述的分布式模型预测控制策略后,DFIG有功功率在23s左右恢复,速度更快,由于本发明中变桨距控制器的设计采用随机模型控制SMPC理论,充分考虑了风速随机性信息,对风速随机波动的抑制效果更加明显,且转子侧变流控制器的设计采用了模型预测控制MPC理论,有功功率控制的响应更快,系统在故障后恢复的速度也更快。
尽管上面对本发明说明性的具体实施方式进行了描述,以便于本技术领域的技术人员理解本发明,但应该清楚,本发明不限于具体实施方式的范围,对本技术领域的普通技术人员来讲,只要各种变化在所附的权利要求限定和确定的本发明的精神和范围内,这些变化是显而易见的,一切利用本发明构思的发明创造均在保护之列。

Claims (3)

1.一种基于分布式模型预测控制的DFIG有功功率控制方法,其特征在于,包括以下步骤:
S1:获取DFIG的历史风机转速序列、历史桨距角序列和历史发电机转矩序列,然后根据预先设置的随机风速模型得到预测时域Np内各个时刻的风速,得到风速序列;
S2:采用如下方法构建基于随机模型预测的变桨距控制器的控制模型:令风力涡轮机系统状态空间的状态变量xwt(k)=[ωm(k) Te(k) β(k)]T,其中ωm(k)表示时刻k的风机转速,Te(k)表示时刻k的发电机转矩,β(k)表示时刻k的桨距角,令控制输入变量
Figure FDA0003636594380000011
其中β*(k)表示时刻k的桨距角调节设定值,
Figure FDA0003636594380000012
表示时刻k的发电机转矩调节设定值,上标T表示转置,输出ywt(k)=ωm(k),构建风力涡轮机系统状态空间模型如下式所示:
Figure FDA0003636594380000013
其中,xwt(k)、xwt(k+1)分别表示时刻k和k+1的状态变量,ywt(k)表示时刻k的输出,uwt(k)表示时刻k的控制输入变量,d(k)表示时刻k的风速值,Awt、Bwt、Wwt、Cwt为状态矩阵,表达式分别如下:
Figure FDA0003636594380000014
Figure FDA0003636594380000015
Figure FDA0003636594380000016
Cwt=[1 0 0]
其中,a、b、c表示风轮转矩用泰勒展开后在额定工作点处的线性系数,τe表示调节发电机转矩变化的时间常数,τβ表示调节桨距角变化的时间常数;
代价函数表达式如下:
Figure FDA0003636594380000021
其中,E()表示求取期望,
Figure FDA0003636594380000022
Q=diag(qwt1),RΔu=diag(rwt1),Ru=diag(rwt2),qwt1和rwt1,rwt2为各部分预设的权重,diag(z)表示以z为元素的对角矩阵;Δuwt(k+j)表示时刻k+j的控制输入增量,Δuwt(k+j)=[Δβ(k+j)ΔTe(k+j)]T,Δβ(k+j)表示时刻k+j时控制输入的桨距角增量,ΔTe(k+j)表示时刻k+j的控制输入的发电机转矩增量,uwt(k+j)表示时刻k+j时的控制输入变量,Np表示预测时域,Nc表示控制时域,Nc≤Np
约束条件如下:
Figure FDA0003636594380000023
其中:
Figure FDA0003636594380000024
其中,ywt(i)表示预测时域Np内时刻i的输出,ywt,constrain表示输出的取值范围,uwt(i)表示预测时域Np内时刻i的控制输入变量,uwt,constrain表示控制输入变量的取值范围,Δuwt表示预测时域Np内时刻i的控制输入增量,Δuwt,constrain为控制输入增量的取值范围;
ε表示预设阈值且ε>0,Pe表示发电机的有功功率,Pe,ref表示有功功率参考值,采用如下方法确定:根据控制输入变量序列中第一个控制输入变量中的桨距角调节设定值和发电机转矩调节设定值对风力涡轮机进行控制,将得到的风轮转速作为最优风轮转速ωm,opt,采用如下公式计算得到最优有功功率参考值Pe,ref
Figure FDA0003636594380000031
其中,kopt表示最佳功率控制系数;
变桨距控制器根据历史风机转速序列、历史桨距角序列和历史发电机转矩序列和风速序列,通过控制模型预测得到预测时域内的控制输入变量序列
Figure FDA0003636594380000032
根据控制输入变量序列
Figure FDA0003636594380000033
中第一个控制输入变量
Figure FDA0003636594380000034
中的桨距角调节设定值和发电机转矩调节设定值对风力涡轮机进行控制,将当前时刻k的风轮转速作为最优风轮转速ωm,opt,然后计算得到当前时刻k的最优有功功率参考值Pe,ref
S3:转子侧变流控制器中的定子外环控制环从变桨距控制器获取最优有功功率参考值Pe,ref,求解如下方程组得到时刻k定子电流的d轴分量isd(k)和q轴分量isq(k):
Figure FDA0003636594380000035
其中,Qs表示当前发电机的无功功率;
然后求解如下方程组得到时刻k转子电流参考值的d轴分量
Figure FDA0003636594380000036
和q轴分量
Figure FDA0003636594380000037
Figure FDA0003636594380000038
其中,Lm表示定子和转子绕组间的互感,Ls表示定子的自感,ψs表示定子的磁链;
采用如下公式预测得到时刻k+1的定子电压预测值的d轴分量usd(k|k+1)和q轴分量usq(k|k+1):
Figure FDA0003636594380000039
其中,usd(k|k+1)、usq(k|k+1)分别表示表示根据时刻k的数据预测得到时刻k+1的定子电压预测值的d轴分量和q轴分量,ω1表示定子转速,ird(k)、irq(k)分别表示时刻k的转子电流的d轴分量和q轴分量、
Figure FDA0003636594380000041
分别表示定子电压补偿项的d轴分量和q轴分量,补偿项的表达式如下式所示;
Figure FDA0003636594380000042
其中,Υu表示电压补偿的误差系数;
采用如下公式计算得到转子电流控制增量的d轴分量
Figure FDA0003636594380000043
和q轴分量
Figure FDA0003636594380000044
Figure FDA0003636594380000045
其中,qsd、qsq、rsd、rsq分别表示预设的定子控制的权重值,isd(k)、isq(k)分别表示时刻k转子电流控制增量的d轴分量和q轴分量;
然后采用如下公式计算转子电流参考值的d轴分量
Figure FDA0003636594380000046
和q轴分量
Figure FDA0003636594380000047
Figure FDA0003636594380000048
S4:转子侧变流控制器中的转子内环控制环从定子外环控制环获取转子电流参考值的d轴分量
Figure FDA0003636594380000049
和q轴分量
Figure FDA00036365943800000410
先采用如下公式预测得到时刻k+1的转子电流预测值的d轴分量ird(k|k+1)和q轴分量irq(k|k+1):
Figure FDA00036365943800000411
其中,TMPC表示离散采样时间,Rr表示转子电阻,Lr表示转子的自感,ωs表示转差速度,urd(k-1)、urq(k-1)分别表示时刻k-1的转子电压的d轴分量和q轴分量,ξrd(k)、ξrq(k)表示转子电流补偿项的d轴分量和q轴分量,表达式如下式所示:
Figure FDA00036365943800000412
其中,Υi表示电流补偿项的误差系数;
采用如下公式计算得到控制转子电流的转子电压控制增量的d轴分量
Figure FDA0003636594380000051
和q轴分量
Figure FDA0003636594380000052
Figure FDA0003636594380000053
采用如下公式计算得到控制转子电流的转子电压参考值的d轴分量
Figure FDA0003636594380000054
和q轴分量
Figure FDA0003636594380000055
Figure FDA0003636594380000056
根据转子电压参考值的d轴分量
Figure FDA0003636594380000057
和q轴分量
Figure FDA0003636594380000058
生成发电机的控制信号,以控制转子电流值,从而实现有功功率控制。
2.根据权利要求1所述的双馈风力发电机有功功率控制方法,其特征在于,所述步骤S1中,对历史风机转速序列、历史桨距角序列和历史发电机转矩序列采用卡尔曼滤波进行处理。
3.根据权利要求1所述的双馈风力发电机有功功率控制方法,其特征在于,所述随机风速模型采用平均风加扰动风合成,表达式为v(k)=vm+vt,v(k)表示时刻k的风速,vm表示平均风分量,vt表示扰动风分量,其中平均风分量的初值服从Weibull分布,概率密度函数如下式所示;
Figure FDA0003636594380000059
其中,γ>0是预设的比例参数,μ>0为预设的形状参数,平均风vm的均值E(vm)和方差D(vm)分别表示:
Figure FDA0003636594380000061
其中,Γ()表示伽马函数;
扰动风分量vt的瞬时值服从均值为0、标准差为
Figure FDA0003636594380000062
的高斯分布。
CN202210503967.6A 2022-05-10 2022-05-10 基于分布式模型预测控制的dfig有功功率控制方法 Active CN114844126B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210503967.6A CN114844126B (zh) 2022-05-10 2022-05-10 基于分布式模型预测控制的dfig有功功率控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210503967.6A CN114844126B (zh) 2022-05-10 2022-05-10 基于分布式模型预测控制的dfig有功功率控制方法

Publications (2)

Publication Number Publication Date
CN114844126A true CN114844126A (zh) 2022-08-02
CN114844126B CN114844126B (zh) 2023-04-18

Family

ID=82569682

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210503967.6A Active CN114844126B (zh) 2022-05-10 2022-05-10 基于分布式模型预测控制的dfig有功功率控制方法

Country Status (1)

Country Link
CN (1) CN114844126B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115833117A (zh) * 2023-02-13 2023-03-21 广东电网有限责任公司中山供电局 一种分布式机组功率控制方法、装置、设备及介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060113799A1 (en) * 2004-12-01 2006-06-01 Denso Corporation Exhaust gas-driven generator system and method of controlling electrical system
CN110417047A (zh) * 2019-06-28 2019-11-05 武汉大学 基于复转矩系数分析双馈风机ssci阻尼特性的方法
CN111244966A (zh) * 2020-01-20 2020-06-05 内蒙古电力(集团)有限责任公司内蒙古电力科学研究院分公司 一种基于双层模型预测控制的双馈风机调压方法
CN111682552A (zh) * 2020-06-10 2020-09-18 清华大学 电压控制方法、装置、设备及存储介质
CN112366735A (zh) * 2020-12-01 2021-02-12 合肥工业大学 一种基于自适应在线模型辨识的微电网二次调频方法
CN113285638A (zh) * 2021-05-26 2021-08-20 盐城工学院 一种风力发电机转子侧变换器的功率控制方法及系统
CN113394827A (zh) * 2021-07-12 2021-09-14 南通大学 一种适用于高风电渗透水平的风电调频控制方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060113799A1 (en) * 2004-12-01 2006-06-01 Denso Corporation Exhaust gas-driven generator system and method of controlling electrical system
CN110417047A (zh) * 2019-06-28 2019-11-05 武汉大学 基于复转矩系数分析双馈风机ssci阻尼特性的方法
CN111244966A (zh) * 2020-01-20 2020-06-05 内蒙古电力(集团)有限责任公司内蒙古电力科学研究院分公司 一种基于双层模型预测控制的双馈风机调压方法
CN111682552A (zh) * 2020-06-10 2020-09-18 清华大学 电压控制方法、装置、设备及存储介质
CN112366735A (zh) * 2020-12-01 2021-02-12 合肥工业大学 一种基于自适应在线模型辨识的微电网二次调频方法
CN113285638A (zh) * 2021-05-26 2021-08-20 盐城工学院 一种风力发电机转子侧变换器的功率控制方法及系统
CN113394827A (zh) * 2021-07-12 2021-09-14 南通大学 一种适用于高风电渗透水平的风电调频控制方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115833117A (zh) * 2023-02-13 2023-03-21 广东电网有限责任公司中山供电局 一种分布式机组功率控制方法、装置、设备及介质

Also Published As

Publication number Publication date
CN114844126B (zh) 2023-04-18

Similar Documents

Publication Publication Date Title
Mousavi et al. Sliding mode control of wind energy conversion systems: Trends and applications
Karunanayake et al. Nonlinear SSR damping controller for DFIG based wind generators interfaced to series compensated transmission systems
Barambones et al. Variable speed wind turbine control scheme using a robust wind torque estimation
Darabian et al. Predictive control strategy to improve stability of DFIG‐based wind generation connected to a large‐scale power system
CN108964127B (zh) 一种双馈风力发电系统故障穿越的控制方法
Khemiri et al. An adaptive nonlinear backstepping control of DFIG driven by wind turbine
CN109659955B (zh) 一种dfig与sssc协调电力系统广域阻尼控制方法
CN109599889B (zh) 基于模糊自抗扰的不平衡电压下的穿越控制方法、系统
Jabal Laafou et al. Dynamic Modeling and Improved Control of a Grid‐Connected DFIG Used in Wind Energy Conversion Systems
CN114844126B (zh) 基于分布式模型预测控制的dfig有功功率控制方法
Pathak et al. Fractional‐order nonlinear PID controller based maximum power extraction method for a direct‐driven wind energy system
CN109755968B (zh) 一种双馈风电机组的神经网络保性能虚拟同步控制方法
Chetouani et al. Design of Optimal Backstepping Control for a Wind Power Plant System Using the Adaptive Weighted Particle Swarm Optimization.
Sun et al. MPPT adaptive controller of DC-based DFIG in resistances uncertainty
Mousavi et al. Observer-based high-order sliding mode control of DFIG-based wind energy conversion systems subjected to sensor faults
Mosayyebi et al. Speed control of a DFIG-based wind turbine using a new generation of ADRC
CN114759575A (zh) 一种虚拟同步双馈风机次同步振荡抑制方法及系统
CN111654039A (zh) 判断双馈风电并网系统次/超同步振荡稳定性的方法及系统
CN117332678A (zh) 基于粒子群算法的双馈风机无功支撑能力计算方法及设备
Mosayyebi et al. Fault ride-through capability improvement in a DFIG-based wind turbine using modified ADRC
Qiao et al. Computational intelligence for control of wind turbine generators
CN116865331A (zh) 一种基于动态矩阵预测控制的虚拟直流电机低电压穿越方法
Chetouani et al. Hybrid control using adaptive particle swarm optimization and integral backstepping control of grid-connected doubly fed induction generator
CN113541190B (zh) 用于双馈风电场低电压穿越的模型预测转子电流控制方法
Wu et al. Backstepping terminal sliding mode control of DFIG for maximal wind energy captured

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant