CN114819412A - 基于指导式可行解修正遗传算法的多换电站配置优化方法 - Google Patents

基于指导式可行解修正遗传算法的多换电站配置优化方法 Download PDF

Info

Publication number
CN114819412A
CN114819412A CN202210715646.2A CN202210715646A CN114819412A CN 114819412 A CN114819412 A CN 114819412A CN 202210715646 A CN202210715646 A CN 202210715646A CN 114819412 A CN114819412 A CN 114819412A
Authority
CN
China
Prior art keywords
load
station
power
correction
feasible solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210715646.2A
Other languages
English (en)
Other versions
CN114819412B (zh
Inventor
吴昊
张龙
李霞
吴迪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen University
Original Assignee
Shenzhen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen University filed Critical Shenzhen University
Priority to CN202210715646.2A priority Critical patent/CN114819412B/zh
Publication of CN114819412A publication Critical patent/CN114819412A/zh
Application granted granted Critical
Publication of CN114819412B publication Critical patent/CN114819412B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/80Exchanging energy storage elements, e.g. removable batteries
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/12Computing arrangements based on biological models using genetic models
    • G06N3/126Evolutionary algorithms, e.g. genetic algorithms or genetic programming
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Systems or methods specially adapted for specific business sectors, e.g. utilities or tourism
    • G06Q50/06Electricity, gas or water supply
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications

Abstract

本发明属于新能源汽车领域,具体涉及基于指导式可行解修正遗传算法的多换电站配置优化方法。该方法包括:建立多换电站配置优化模型,定义最佳综合负载以及目标函数;根据所述目标函数进行构建指导因子为修正算法提供指导,基于所述修正算法提出基于指导式可行解修正遗传算法;基于指导式可行解修正的遗传算法对多个换电站电池数量的优化,确定最优的适应度值,得到最终算法的性能与多换电站配置优化结果。本发明可以优化各个换电站中的电池数量进而缓解换电站资源的浪费以及换电站服务效率低下的问题,可以使不满足约束的个体向好的方向进行调整,利于解决个体基因和为定值的优化问题。

Description

基于指导式可行解修正遗传算法的多换电站配置优化方法
技术领域
本发明属于新能源汽车领域,涉及一种面向新能源汽车多换电站配置优化的指导式可行解修正遗传算法,具体涉及一种基于指导式可行解修正遗传算法的多换电站配置优化方法。
背景技术
在我国新能源汽车产业高速发展的重要时期,为其制定合理、优化、智能的电能补充方案是一个亟待解决的问题。换电站作为传统充电站的替代和补充模式,可在数分钟内完成对电量补充,缓解充电时间长、里程焦虑、停车占位等问题。换电站模式已在国内外有所尝试,但出于商业模式、接受度、建设及营运成本等方面考虑,从需求调度、电池管理、盈利模式、选址定容等环节均处在探索阶段。
换电站中电池的数量决定着换电站的运营成本与服务质量,电池数量较少会造成用户排队的等待时间较长,电池数量较多会造成电池资源的浪费,所以对换电站的配置亟需进行优化。
目前新能源汽车换电站虽然已经广泛应用,但现有的换电站在建设初期,对于换电站储备电池数量的设置,采用了固定的方式,即尚未充分考虑该电池数量是否可以满足未来换电站的服务情况。另外,对于现有换电站,尚无决策优化方法可以对换电站的电池数量进行动态调整,来最大化换电站的运营收入,并减少对车主的服务影响。考虑到未来新能源汽车产业的持续发展,在不增加换电站运营成本的情况下,如何提高换电站的服务水平和运营收入,制定面向多换电站配置优化的模型,以及对该模型求解算法的研究具有重要的实际意义和研究价值。
发明内容
为了对现有换电站进行优化,本发明构建了一种多换电站配置优化模型。为了对该模型求解,本发明提出了一种基于指导式可行解修正遗传算法。按照本发明分析方法对现有换电站可以进行配置优化,同时提出了一种基于指导式可行解修正的遗传算法。
本发明采用以下技术方案实现:
一种基于指导式可行解修正遗传算法的多换电站配置优化方法,包括以下步骤:
建立多换电站配置优化模型,根据所述多换电站配置优化模型定义最佳综合负载以及定义多换电站配置优化模型的目标函数;
根据所述目标函数进行构建指导因子,所述指导因子为修正算法提供指导,基于所述修正算法提出基于指导式可行解修正遗传算法;
基于指导式可行解修正的遗传算法对多个换电站电池数量的优化,确定最优的适应度值,得到最终算法的性能与多换电站配置优化结果。
作为本发明的进一步方案,所述最佳综合负载表征换电站的运营情况以及用户的服务满意度,最佳综合负载
Figure 375126DEST_PATH_IMAGE001
作为本发明的进一步方案,所述基于指导式可行解修正遗传算法的多换电站配置优化方法还包括保留负载,所述保留负载为
Figure 989778DEST_PATH_IMAGE002
,所述保留负载用于满足额外的交换需求。
作为本发明的进一步方案,所述目标函数用于通过改变各个换电站中电池的数量使多个换电站的综合负载趋于最佳综合负载,在优化过程中保持多个换电站总的电池数量不变;所述换电站配置优化模型的目标函数F为:
Figure DEST_PATH_IMAGE003
式中,
Figure 742226DEST_PATH_IMAGE004
是换电站s中电池的数量;
Figure DEST_PATH_IMAGE005
是最佳综合负载;
Figure 553056DEST_PATH_IMAGE006
是换电站s中电池数量为
Figure 697730DEST_PATH_IMAGE004
时的综合负载;
Figure DEST_PATH_IMAGE007
是换电站的总数量;
Figure 935813DEST_PATH_IMAGE008
是在
Figure DEST_PATH_IMAGE009
个换电站中原有电池的总数量。
作为本发明的进一步方案,多换电站配置优化目标函数
Figure 6186DEST_PATH_IMAGE010
的计算步骤包括:
步骤11)计算换电站s中电池数量为
Figure DEST_PATH_IMAGE011
时的综合负载
Figure 355127DEST_PATH_IMAGE012
步骤12)计算综合负载
Figure 869154DEST_PATH_IMAGE012
与最佳综合负载
Figure 278139DEST_PATH_IMAGE005
差值的绝对值;
步骤13)计算步骤12)中的绝对值与最佳综合负载
Figure 362769DEST_PATH_IMAGE005
的比值,1减去该比值即可得到换电站s的负载优化函数;
步骤14)计算所有换电站的负载优化函数,并求累加和,最后求平均即可得到多换电站配置优化目标函数
Figure DEST_PATH_IMAGE013
作为本发明的进一步方案,所述指导因子
Figure 518332DEST_PATH_IMAGE014
的定义为:
Figure DEST_PATH_IMAGE015
式中,
Figure 11499DEST_PATH_IMAGE016
是换电站s的综合负载;
Figure DEST_PATH_IMAGE017
是电池数量增加或减少1之后换电站s的综合负载;
Figure 591385DEST_PATH_IMAGE018
是最佳负载,最佳负取值为
Figure DEST_PATH_IMAGE019
作为本发明的进一步方案,所述指导因子
Figure 612912DEST_PATH_IMAGE020
的计算步骤包括:
步骤21)计算换电站s的综合负载
Figure 116705DEST_PATH_IMAGE016
与最佳综合负载
Figure 339745DEST_PATH_IMAGE021
差值的绝对值;
步骤22)计算换电站s电池数量变化后的综合负载
Figure 903582DEST_PATH_IMAGE017
与最佳综合负载
Figure 212072DEST_PATH_IMAGE022
差值的绝对值;
步骤23)计算步骤21)中绝对值与步骤22)中绝对值的差值即可得到指导因子
Figure 706507DEST_PATH_IMAGE014
作为本发明的进一步方案,所述修正算法包括修正步骤和伪代码,修正算法的修正步骤包括:
步骤31)判断交叉或变异后的个体是否满足约束条件,若满足,该个体即为遗传到下一代的个体;否则进入步骤32);
步骤32)判断个体是否大于约束条件,若个体大于约束条件,进入步骤33);否则进入步骤34);
步骤33)计算个体每个基因的综合负载
Figure 800365DEST_PATH_IMAGE016
,将个体各个基因均减1,把3赋值给小于3的基因,计算其每个基因的综合负载
Figure DEST_PATH_IMAGE023
与指导因子
Figure 724984DEST_PATH_IMAGE020
,选取
Figure 520770DEST_PATH_IMAGE024
最大值对应的索引,对相应的基因减少1并返回步骤31);
步骤34)计算个体每个基因的综合负载
Figure 366366DEST_PATH_IMAGE016
,将个体各个基因均加1,把15赋值给大于15的基因,计算其负载
Figure 563998DEST_PATH_IMAGE023
与指导因子
Figure 469638DEST_PATH_IMAGE020
,选取
Figure 752720DEST_PATH_IMAGE020
最大值对应的索引,对相应的基因增加1并返回步骤31)。
作为本发明的进一步方案,所述指导式可行解修正遗传算法中遗传操作采用锦标赛选择策略、两点交叉策略、单点变异策略,所述修正算法对交叉或者变异后的个体进行指导式调整以满足约束;
所述锦标赛选择策略:指每次从种群中取出一定数量的个体,取出的个体放回抽样,然后选择最佳个体进入子代种群,重复操作,直到新的种群规模达到原来的种群规模;
所述两点交叉策略:指在个体染色体中随机设置了两个交叉点,然后再进行部分基因交换;
所述单点变异策略:指对相应的基因值采用取值范围内的其他随机值代替。
作为本发明的进一步方案,选择最佳个体进入子代种群的方法,包括:
步骤41)确定每次选择的个体数量n;
步骤42)从种群中随机选择n个个体,根据每个个体的适应度值,选择其中适应度值最好的个体进入下一代种群;
步骤43)重复步骤42)NP次,重复次数为种群的大,直到新的种群规模达到原来的种群规模。
本发明提供的技术方案,具有如下有益效果:
本发明通过构建多换电站配置优化模型,在不增加成本的情况下可以优化各个换电站中的电池数量,进而缓解换电站资源的浪费以及换电站服务效率低下的问题;本发明定义了指导因子,为修正个体提供了指导,可以使不满足约束的个体向好的方向进行调整;本发明还提出了修正算法并将其与遗传算法结合,利于解决个体基因和为定值的优化问题。
附图说明
附图用来提供对本发明的进一步理解,并且构成说明书的一部分,与本发明的实施例一起用于解释本发明,并不构成对本发明的限制。在附图中:
图1为本发明的一种基于指导式可行解修正遗传算法的多换电站配置优化方法的流程图。
图2为本发明一个实施例中基于指导式可行解修正遗传算法的多换电站配置优化方法中交叉示意图。
图3为本发明一个实施例的基于指导式可行解修正遗传算法的多换电站配置优化方法中变异示意图。
图4为本发明一个实施例的基于指导式可行解修正遗传算法的多换电站配置优化方法中修正算法的图例示意图。
图5为本发明一个实施例的基于指导式可行解修正遗传算法的多换电站配置优化方法中算法的收敛性示意图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
本发明提供了一种面向新能源汽车多换电站配置优化的指导式可行解修正遗传算法该方法包括如下步骤:
步骤一:建立多换电站配置优化模型;该步骤包括以下子步骤:
步骤11):定义最佳综合负载,最佳综合负载决定着换电站的运营情况以及用户的服务满意度。当最佳综合负载较低时,虽然用户的换电请求都可以满足,但是存在大量电池处于冗余状态,造成资源的浪费;当最佳综合负载较高时,虽然电池能够充分的利用,但是大量用户的换电请求无法得到满足,造成用户的服务满意度较低。综上所述,本发明最佳综合负载
Figure DEST_PATH_IMAGE025
,保留负载
Figure 586028DEST_PATH_IMAGE026
用于满足额外的交换需求。
步骤12):定义多换电站配置优化模型的目标函数。该目标函数目的是通过改变各个换电站中电池的数量使多个换电站的综合负载尽可能接近最佳综合负载,并且在优化过程中保持多个换电站总的电池数量不变。
步骤二:提出基于指导式可行解修正遗传算法。该步骤包括以下子步骤:
步骤21):定义指导因子为修正算法提供指导。指导因子根据目标函数进行构建,目的是使不满足约束的个体向好的方向进行调整。
步骤22):提出修正算法:包括修正步骤和修正算法的伪代码。修正步骤详细的说明了个体的修正过程,主要通过指导因子
Figure DEST_PATH_IMAGE027
对基因进行相应的调整;修正算法伪代码提供了修正算法的代码步骤。
步骤23):基于修正算法提出基于指导式可行解修正遗传算法。遗传操作主要采用了锦标赛选择策略、两点交叉策略、单点变异策略,考虑到个体要满足约束,故提出了修正算法对交叉或者变异后的个体进行指导式调整使其满足约束。
步骤三:得到最终多换电站配置优化结果。
下面结合具体实施例对本发明的技术方案作进一步的说明:
参阅图1所示,图1为本发明提供的一种基于指导式可行解修正遗传算法的多换电站配置优化方法的流程图。本发明提供的一种基于指导式可行解修正遗传算法的多换电站配置优化方法,该方法包括如下步骤:
步骤S10、建立多换电站配置优化模型,根据所述多换电站配置优化模型定义最佳综合负载以及定义多换电站配置优化模型的目标函数;
步骤S20、根据所述目标函数进行构建指导因子,所述指导因子为修正算法提供指导,基于所述修正算法提出基于指导式可行解修正遗传算法;
步骤S30、基于指导式可行解修正的遗传算法对多个换电站电池数量的优化,确定最优的适应度值,得到最终算法的性能与多换电站配置优化结果。
在本申请的一些实施例中,建立多换电站配置优化模型时,定义最佳综合负载。最佳综合负载决定着换电站的运营情况以及用户的服务满意度。当最佳综合负载较低时,虽然用户的换电请求都可以满足,但是存在大量电池处于冗余状态,造成资源的浪费;当最佳综合负载较高时,虽然电池能够充分的利用,但是大量用户的换电请求无法得到满足,造成用户的服务满意度较低。在本申请的实施例中,本发明最佳综合负载
Figure 779112DEST_PATH_IMAGE028
,保留负载
Figure DEST_PATH_IMAGE029
用于满足额外的交换需求。
在本申请的一些实施例中,定义多换电站配置优化模型的目标函数。该目标函数目的是通过改变各个换电站中电池的数量使多个换电站的综合负载尽可能接近最佳综合负载,并且在优化过程中保持多个换电站总的电池数量不变。多换电站配置优化模型的目标函数F定义包括:
Figure 42603DEST_PATH_IMAGE030
式中,
Figure DEST_PATH_IMAGE031
是换电站s中电池的数量;
Figure 485086DEST_PATH_IMAGE032
是最佳综合负载;
Figure 127944DEST_PATH_IMAGE033
是换电站s中电池数量为
Figure 300169DEST_PATH_IMAGE031
时的综合负载;
Figure DEST_PATH_IMAGE034
是换电站的总数量;
Figure 734561DEST_PATH_IMAGE008
是在
Figure 477389DEST_PATH_IMAGE035
个换电站中原有电池的总数量。
其中,多换电站配置优化目标函数
Figure 717746DEST_PATH_IMAGE036
的计算步骤包括:
步骤11)计算换电站s中电池数量为
Figure 679231DEST_PATH_IMAGE031
时的综合负载
Figure DEST_PATH_IMAGE037
步骤12)计算综合负载
Figure 284524DEST_PATH_IMAGE037
与最佳综合负载
Figure 780228DEST_PATH_IMAGE032
差值的绝对值;
步骤13)计算步骤12)中的绝对值与最佳综合负载
Figure 558697DEST_PATH_IMAGE032
的比值,1减去该比值即可得到换电站s的负载优化函数;
步骤14)计算所有换电站的负载优化函数,并求累加和,最后求平均即可得到多换电站配置优化目标函数
Figure 456246DEST_PATH_IMAGE038
在本申请的一些实施例中,提出基于指导式可行解修正遗传算法时,包括定义指导因子为修正算法提供指导。指导因子根据目标函数进行构建,目的是使不满足约束的个体向好的方向进行调整。指导因子
Figure 294757DEST_PATH_IMAGE039
定义包括:
Figure 12178DEST_PATH_IMAGE015
式中
Figure 534950DEST_PATH_IMAGE040
是换电站s的综合负载;
Figure 536273DEST_PATH_IMAGE041
是电池数量增加或减少1之后换电站s的综合负载;
Figure 483370DEST_PATH_IMAGE042
是最佳负载,在这里取值为
Figure 688086DEST_PATH_IMAGE043
所述指导因子
Figure 11620DEST_PATH_IMAGE044
的计算步骤包括:
步骤21)计算换电站s的综合负载
Figure 887957DEST_PATH_IMAGE045
与最佳综合负载
Figure 5955DEST_PATH_IMAGE046
差值的绝对值;
步骤22)计算换电站s电池数量变化后的综合负载
Figure 697967DEST_PATH_IMAGE047
与最佳综合负载
Figure 887509DEST_PATH_IMAGE048
差值的绝对值;
步骤23)计算步骤21)中绝对值与步骤22)中绝对值的差值即可得到指导因子
Figure 348577DEST_PATH_IMAGE049
在本申请的一些实施例中,提出修正算法:包括修正步骤和修正算法的伪代码。修正算法用于对交叉操作或者变异操作后的个体进行调整。修正步骤详细的说明了个体的修正过程,主要通过指导因子
Figure 699793DEST_PATH_IMAGE050
对基因进行相应的调整;修正算法伪代码提供了修正算法的代码步骤;并通过一个示例介绍修正算法。
在本申请的实施例中,所述修正算法的修正步骤包括:
步骤31)判断交叉或变异后的个体是否满足约束条件,若满足,该个体即为遗传到下一代的个体;否则进入步骤32);
步骤32)判断个体是否大于约束条件,若个体大于约束条件,进入步骤33);否则进入步骤34);
步骤33)计算个体每个基因的综合负载
Figure 879102DEST_PATH_IMAGE045
,将个体各个基因均减1,把3赋值给小于3的基因,计算其每个基因的综合负载
Figure 547368DEST_PATH_IMAGE047
与指导因子
Figure 112210DEST_PATH_IMAGE051
,选取
Figure 650639DEST_PATH_IMAGE052
最大值对应的索引,对相应的基因减少1并返回步骤31);
步骤34)计算个体每个基因的综合负载
Figure 300932DEST_PATH_IMAGE045
,将个体各个基因均加1,把15赋值给大于15的基因,计算其负载
Figure 583009DEST_PATH_IMAGE047
与指导因子
Figure 2358DEST_PATH_IMAGE051
,选取
Figure 711688DEST_PATH_IMAGE051
最大值对应的索引,对相应的基因增加1并返回步骤31)。
其中,修正算法的伪代码包括:
输入:交叉或变异后的个体:sol;在
Figure 784030DEST_PATH_IMAGE053
个换电站中原有电池的总数量:
Figure 853487DEST_PATH_IMAGE054
;最佳负载:
Figure 143654DEST_PATH_IMAGE055
输出:修正后满足约束的个体:sol
Figure 273152DEST_PATH_IMAGE056
基因总和不等于
Figure 648770DEST_PATH_IMAGE057
Figure 459600DEST_PATH_IMAGE058
基因总和大于
Figure 856471DEST_PATH_IMAGE059
Figure 907604DEST_PATH_IMAGE060
Figure 19785DEST_PATH_IMAGE061
Figure 181776DEST_PATH_IMAGE062
Figure 695803DEST_PATH_IMAGE063
Figure 652258DEST_PATH_IMAGE064
Figure 251735DEST_PATH_IMAGE065
的最大值在G中的索引
Figure 401438DEST_PATH_IMAGE066
Figure 520704DEST_PATH_IMAGE067
Figure 162907DEST_PATH_IMAGE068
Figure 734833DEST_PATH_IMAGE063
Figure 487895DEST_PATH_IMAGE069
Figure 727246DEST_PATH_IMAGE070
的最大值在G中的索引
Figure 540350DEST_PATH_IMAGE071
在本申请的实施例中,该算法的一个修正例子如图4所示。该例子从表2前5个换电站优化的过程中选取,其中父代的一条染色体为[7,15,6,8,11],经过交叉操作后的染色体为[7,14,10,8,11],该染色体基因的总和变为50,父代染色体的基因总和与其相差-3,即需要对该染色体的基因总和减少3;计算该染色体各个基因的综合负载
Figure 599573DEST_PATH_IMAGE016
,将该染色体各个基因均减1,把3赋值给小于3的基因,即[6,13,9,7,10],计算其各个基因的综合负载
Figure 159255DEST_PATH_IMAGE072
,根据公式计算指导因子
Figure 253113DEST_PATH_IMAGE073
,即[0.11,0.02,-0.16,-0.99,-0.04],由
Figure 237118DEST_PATH_IMAGE073
可知第一个为其最大值;故第一次的指导修正是对第一个基因减少1;之后经过计算指导因子
Figure 970588DEST_PATH_IMAGE073
,均对染色体的第二个基因减少1,总共经过三次指导修正,最终得到修正后遗传到下一代的染色体[6,12,10,8,11]。对于经过变异操作后的染色体其指导修正步骤相同。
在本申请的实施例中,基于修正算法提出基于指导式可行解修正遗传算法。遗传操作主要采用了锦标赛选择策略、两点交叉策略、单点变异策略,考虑到个体要满足约束,故提出了修正算法对交叉或者变异后的个体进行指导式调整使其满足约束。
1)获取种群。在这里随机产生NP个可行解作为第一代种群,可行解产生的方法为:先随机产生一组数,这组数中元素的个数与换电站数量保持一致,而且这组数的大小均不小于3不大于15,当这组数的和满足约束条件(和等于要优化换电站的总电池数量)时即为可行解,一直产生NP个可行解即可得到第一代种群。
2)计算适应度。将多换电站配置优化目标函数
Figure 816184DEST_PATH_IMAGE038
作为遗传算法的适应度函数,适应度函数越大代表个体的适应度越强,遗传到下一代的可能性就越大。
适应度函数
Figure 13816DEST_PATH_IMAGE074
包括所示:
Figure 919455DEST_PATH_IMAGE075
3)选择操作。选择操作采用了锦标赛选择策略:每次从种群中取出一定数量的个体(放回抽样),然后选择其中最好的一个进入子代种群。重复该操作,直到新的种群规模达到原来的种群规模。几元锦标赛就是一次性在总体中取出几个个体,然后在这些个体中取出最优的个体放入保留到下一代种群中。具体的操作步骤包括:
步骤41)确定每次选择的个体数量n;
步骤42)从种群中随机选择n个个体,根据每个个体的适应度值,选择其中适应度值最好的个体进入下一代种群;
步骤43)重复步骤42)NP次,重复次数为种群的大,直到新的种群规模达到原来的种群规模。
4)交叉操作。交叉操作采用了两点交叉策略,两点交叉是指在个体染色体中随机设置了两个交叉点,然后再进行部分基因交换。交叉操作示意图如图2所示,两点交叉的具体操作过程是:
①在相互配对的两个个体编码串中随机设置两个交叉点;
②交换两个个体在所设定的两个交叉点之间的部分染色体。
5)变异操作。变异操作采用了对相应的基因值用取值范围内的其他随机值代替的措施。变异操作示意图如图3所示(取值范围为[1,9])。
在本申请的一些实施例中,得到最终算法的性能与多换电站配置优化结果。
对于多个换电站电池数量的优化,不仅要满足电池的数量最多不超过15块,最少不超过3块,而且总的电池数量也要保持不变。
对于11座换电站电池数量的优化,其算法的收敛性如图5所示,其中每次迭代的适应度值通过计算50次的平均值获得。基于指导式可行解修正的遗传算法可以找到最大的适应度值(0.8659),而且收敛的速度很快,一般在四代即可收敛,说明了所提出的算法的有效性。
在本申请的实施例中,对11座换电站的电池数量进行了优化,为了去除偶然性,该算法被重复运行了50次,并且每次运行时保持算法的初始种群一致,记录了每次的最佳适应度值、收敛时的代数以及运行时间,并且用标准差来衡量算法的鲁棒性。11个换电站配置优化的算法效果见表1以及11个换电站配置优化结果见表2所示。
Figure 199608DEST_PATH_IMAGE076
Figure 848895DEST_PATH_IMAGE077
从表1可以看出算法对11座换电站的优化效果。对于11座换电站配置的优化,由于其满足约束条件的可行解的数量达到几百亿以上,所以采用了遗传算法进行求解。所提出的指导式可行解修正遗传算法能找到较优解,而且稳定行很好,算法的收敛速度就快,其算法的平均收敛时的代数基本在4代就可以收敛。
从表2可以看出,一些存在电池冗余的换电站(负载较低)优化之后解决了因电池冗余而造成的资源浪费的问题;一些存在用户等待时间较长问题的换电站(负载较高)也得到了缓解。
综上所述,本发明通过构建多换电站配置优化模型,在不增加成本的情况下可以优化各个换电站中的电池数量,进而缓解换电站资源的浪费以及换电站服务效率低下的问题;本发明定义了指导因子,为修正个体提供了指导,可以使不满足约束的个体向好的方向进行调整;本发明还提出了修正算法并将其与遗传算法结合,利于解决个体基因和为定值的优化问题。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种基于指导式可行解修正遗传算法的多换电站配置优化方法,其特征在于,包括:
建立多换电站配置优化模型,根据所述多换电站配置优化模型定义最佳综合负载以及定义多换电站配置优化模型的目标函数;
根据所述目标函数进行构建指导因子,所述指导因子为修正算法提供指导,基于所述修正算法提出基于指导式可行解修正遗传算法;
基于指导式可行解修正的遗传算法对多个换电站电池数量的优化,确定最优的适应度值,得到最终算法的性能与多换电站配置优化结果。
2.如权利要求1所述的基于指导式可行解修正遗传算法的多换电站配置优化方法,其特征在于:所述最佳综合负载表征换电站的运营情况以及用户的服务满意度,最佳综合负载
Figure 555354DEST_PATH_IMAGE001
3.如权利要求2所述的基于指导式可行解修正遗传算法的多换电站配置优化方法,其特征在于:所述基于指导式可行解修正遗传算法的多换电站配置优化方法还包括保留负载,所述保留负载为
Figure 810755DEST_PATH_IMAGE002
,所述保留负载用于满足额外的交换需求。
4.如权利要求1所述的基于指导式可行解修正遗传算法的多换电站配置优化方法,其特征在于:所述目标函数用于通过改变各个换电站中电池的数量使多个换电站的综合负载趋于最佳综合负载,在优化过程中保持多个换电站总的电池数量不变;所述换电站配置优化模型的目标函数F为:
Figure 74246DEST_PATH_IMAGE003
式中,
Figure 595357DEST_PATH_IMAGE004
是换电站s中电池的数量;
Figure 972637DEST_PATH_IMAGE005
是最佳综合负载;
Figure 144861DEST_PATH_IMAGE006
是换电站s中电池数量为
Figure 579253DEST_PATH_IMAGE007
时的综合负载;
Figure 587661DEST_PATH_IMAGE008
是换电站的总数量;
Figure 765701DEST_PATH_IMAGE009
是在
Figure 812940DEST_PATH_IMAGE010
个换电站中原有电池的总数量。
5.如权利要求4所述的基于指导式可行解修正遗传算法的多换电站配置优化方法,其特征在于:多换电站配置优化目标函数
Figure 418233DEST_PATH_IMAGE011
的计算步骤包括:
步骤11)计算换电站s中电池数量为
Figure 648357DEST_PATH_IMAGE007
时的综合负载
Figure 692406DEST_PATH_IMAGE006
步骤12)计算综合负载
Figure 324375DEST_PATH_IMAGE006
与最佳综合负载
Figure 162887DEST_PATH_IMAGE012
差值的绝对值;
步骤13)计算步骤12)中的绝对值与最佳综合负载
Figure 145887DEST_PATH_IMAGE012
的比值,1减去该比值即可得到换电站s的负载优化函数;
步骤14)计算所有换电站的负载优化函数,并求累加和,最后求平均即可得到多换电站配置优化目标函数
Figure 730976DEST_PATH_IMAGE013
6.如权利要求5所述的基于指导式可行解修正遗传算法的多换电站配置优化方法,其特征在于:所述指导因子
Figure 217452DEST_PATH_IMAGE014
的定义为:
Figure 430128DEST_PATH_IMAGE015
式中,
Figure 884112DEST_PATH_IMAGE016
是换电站s的综合负载;
Figure 755116DEST_PATH_IMAGE017
是电池数量增加或减少1之后换电站s的综合负载;
Figure 548629DEST_PATH_IMAGE018
是最佳负载,最佳负取值为
Figure 991593DEST_PATH_IMAGE019
7.如权利要求6所述的基于指导式可行解修正遗传算法的多换电站配置优化方法,其特征在于:所述指导因子
Figure 418026DEST_PATH_IMAGE020
的计算步骤包括:
步骤21)计算换电站s的综合负载
Figure 607568DEST_PATH_IMAGE021
与最佳综合负载
Figure 68636DEST_PATH_IMAGE022
差值的绝对值;
步骤22)计算换电站s电池数量变化后的综合负载
Figure 419852DEST_PATH_IMAGE023
与最佳综合负载
Figure 599160DEST_PATH_IMAGE024
差值的绝对值;
步骤23)计算步骤21)中绝对值与步骤22)中绝对值的差值即可得到指导因子
Figure 264497DEST_PATH_IMAGE025
8.如权利要求6所述的基于指导式可行解修正遗传算法的多换电站配置优化方法,其特征在于:所述修正算法的修正步骤包括:
步骤31)判断交叉或变异后的个体是否满足约束条件,若满足,该个体即为遗传到下一代的个体;否则进入步骤32);
步骤32)判断个体是否大于约束条件,若个体大于约束条件,进入步骤33);否则进入步骤34);
步骤33)计算个体每个基因的综合负载
Figure 832269DEST_PATH_IMAGE021
,将个体各个基因均减1,把3赋值给小于3的基因,计算其每个基因的综合负载
Figure 370698DEST_PATH_IMAGE023
与指导因子
Figure 20991DEST_PATH_IMAGE026
,选取
Figure 303067DEST_PATH_IMAGE027
最大值对应的索引,对相应的基因减少1并返回步骤31);
步骤34)计算个体每个基因的综合负载
Figure 987996DEST_PATH_IMAGE021
,将个体各个基因均加1,把15赋值给大于15的基因,计算其负载
Figure 431746DEST_PATH_IMAGE023
与指导因子
Figure 834915DEST_PATH_IMAGE026
,选取
Figure 655103DEST_PATH_IMAGE026
最大值对应的索引,对相应的基因增加1并返回步骤31)。
9.如权利要求1所述的基于指导式可行解修正遗传算法的多换电站配置优化方法,其特征在于:所述指导式可行解修正遗传算法中遗传操作采用锦标赛选择策略、两点交叉策略、单点变异策略,所述修正算法对交叉或者变异后的个体进行指导式调整以满足约束;
所述锦标赛选择策略:指每次从种群中取出一定数量的个体,取出的个体放回抽样,然后选择最佳个体进入子代种群,重复操作,直到新的种群规模达到原来的种群规模;
所述两点交叉策略:指在个体染色体中随机设置了两个交叉点,然后再进行部分基因交换;
所述单点变异策略:指对相应的基因值采用取值范围内的其他随机值代替。
10.如权利要求9所述的基于指导式可行解修正遗传算法的多换电站配置优化方法,其特征在于:选择最佳个体进入子代种群的方法,包括:
步骤41)确定每次选择的个体数量n;
步骤42)从种群中随机选择n个个体,根据每个个体的适应度值,选择其中适应度值最好的个体进入下一代种群;
步骤43)重复步骤42)NP次,重复次数为种群的大,直到新的种群规模达到原来的种群规模。
CN202210715646.2A 2022-06-23 2022-06-23 基于指导式可行解修正遗传算法的多换电站配置优化方法 Active CN114819412B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210715646.2A CN114819412B (zh) 2022-06-23 2022-06-23 基于指导式可行解修正遗传算法的多换电站配置优化方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210715646.2A CN114819412B (zh) 2022-06-23 2022-06-23 基于指导式可行解修正遗传算法的多换电站配置优化方法

Publications (2)

Publication Number Publication Date
CN114819412A true CN114819412A (zh) 2022-07-29
CN114819412B CN114819412B (zh) 2022-09-09

Family

ID=82520843

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210715646.2A Active CN114819412B (zh) 2022-06-23 2022-06-23 基于指导式可行解修正遗传算法的多换电站配置优化方法

Country Status (1)

Country Link
CN (1) CN114819412B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114987262A (zh) * 2022-08-03 2022-09-02 深圳大学 一种基于多类型电池的换电站动态充电排程方法及系统

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102915472A (zh) * 2012-10-30 2013-02-06 南京软核科技有限公司 基于基因修复混沌遗传算法的配电网综合优化规划方法
CN103241130A (zh) * 2013-04-10 2013-08-14 华中科技大学 一种电动公交车充换电站的能量管理方法及系统
US20130278213A1 (en) * 2012-04-23 2013-10-24 State Grid Corporation Of China Integrated battery dispatching system with centralized charging and centralized allocation
CN105244941A (zh) * 2015-09-28 2016-01-13 国网山东省电力公司济南供电公司 基于线性潮流模型求解的电动汽车充换电站有序充电方法
CN110084443A (zh) * 2019-05-23 2019-08-02 哈尔滨工业大学 一种基于qpso优化算法的换电站运行优化模型分析方法
CN112163884A (zh) * 2020-09-29 2021-01-01 北京工商大学 基于改进的鲸鱼算法的电动汽车充电站选址建模方法
CN112200367A (zh) * 2020-10-09 2021-01-08 河北工业大学 一种支持充放电策略的电动汽车配送路径优化方法
CN113536209A (zh) * 2021-09-17 2021-10-22 深圳大学 换电站定容分析方法、系统、计算机设备及存储介质
CN114118536A (zh) * 2021-11-08 2022-03-01 国网重庆市电力公司营销服务中心 集中充电站与电池换电站的规划方法及其规划装置和芯片
CN114418193A (zh) * 2021-12-29 2022-04-29 天津大学 一种面向办公建筑的电动汽车充电设施优化配置方法
CN114548564A (zh) * 2022-02-24 2022-05-27 深圳大学 电池配送路径优化方法、装置、计算机设备及存储介质

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130278213A1 (en) * 2012-04-23 2013-10-24 State Grid Corporation Of China Integrated battery dispatching system with centralized charging and centralized allocation
CN102915472A (zh) * 2012-10-30 2013-02-06 南京软核科技有限公司 基于基因修复混沌遗传算法的配电网综合优化规划方法
CN103241130A (zh) * 2013-04-10 2013-08-14 华中科技大学 一种电动公交车充换电站的能量管理方法及系统
CN105244941A (zh) * 2015-09-28 2016-01-13 国网山东省电力公司济南供电公司 基于线性潮流模型求解的电动汽车充换电站有序充电方法
CN110084443A (zh) * 2019-05-23 2019-08-02 哈尔滨工业大学 一种基于qpso优化算法的换电站运行优化模型分析方法
CN112163884A (zh) * 2020-09-29 2021-01-01 北京工商大学 基于改进的鲸鱼算法的电动汽车充电站选址建模方法
CN112200367A (zh) * 2020-10-09 2021-01-08 河北工业大学 一种支持充放电策略的电动汽车配送路径优化方法
CN113536209A (zh) * 2021-09-17 2021-10-22 深圳大学 换电站定容分析方法、系统、计算机设备及存储介质
CN114118536A (zh) * 2021-11-08 2022-03-01 国网重庆市电力公司营销服务中心 集中充电站与电池换电站的规划方法及其规划装置和芯片
CN114418193A (zh) * 2021-12-29 2022-04-29 天津大学 一种面向办公建筑的电动汽车充电设施优化配置方法
CN114548564A (zh) * 2022-02-24 2022-05-27 深圳大学 电池配送路径优化方法、装置、计算机设备及存储介质

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JIE YANG,ETC: "Optimal dispatching strategy for shared battery station of electric vehicle by divisional battery control", 《IEEE ACCESS ( VOLUME: 7)》 *
刘新萌 等: "面向多站融合的储能容量优化配置模型及方法", 《供用电》 *
赵涛 等: "自动化集装箱码头AGV调度与换电双层模型求解", 《大连理工大学学报》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114987262A (zh) * 2022-08-03 2022-09-02 深圳大学 一种基于多类型电池的换电站动态充电排程方法及系统
CN114987262B (zh) * 2022-08-03 2022-10-28 深圳大学 一种基于多类型电池的换电站动态充电排程方法及系统

Also Published As

Publication number Publication date
CN114819412B (zh) 2022-09-09

Similar Documents

Publication Publication Date Title
Salinas et al. Multi-objective optimal energy consumption scheduling in smart grids
CN113394817A (zh) 一种风光水火储系统的多能容量优化配置方法
CN106230020B (zh) 一种微电网下考虑分布式电源消纳的电动汽车互动响应控制方法
CN105811409B (zh) 一种含电动汽车混合储能系统的微网多目标运行调度方法
Yang et al. Optimal dispatching strategy for shared battery station of electric vehicle by divisional battery control
CN114819412B (zh) 基于指导式可行解修正遗传算法的多换电站配置优化方法
CN114336702A (zh) 基于双层随机规划的风光储场站群功率分配协同优化方法
Zhang et al. Joint planning of distributed PV stations and EV charging stations in the distribution systems based on chance-constrained programming
CN115117931A (zh) 考虑电动汽车灵活性和光伏接入的配电网规划方法及系统
CN115829114A (zh) 一种多目标优化的能源管理方法、装置及存储介质
CN113326467B (zh) 基于多重不确定性的多站融合综合能源系统多目标优化方法、存储介质及优化系统
CN117013552A (zh) 一种电力交通耦合网协同运行策略
CN110635486B (zh) 一种计及配电网络约束条件的负荷调频优化调度方法
Wang et al. Charging path optimization for wireless rechargeable sensor network
CN115848196A (zh) 基于动态需求和新能源消纳的电动汽车有序充电引导方法
CN113488990B (zh) 基于改进的蝙蝠算法的微电网优化调度方法
CN113052498B (zh) 基于综合能源系统的电转气两阶段转化装置调度方法
CN115293495A (zh) 一种基于动态参与因子的调度指令分解方法和能源控制器
CN114462854A (zh) 含新能源和电动汽车并网的分层调度方法及其系统
CN111199311A (zh) 一种居民区充电设施功率优化方法
CN112069676A (zh) 一种含清洁能源的微电网能量管理方法
CN111290853A (zh) 一种基于自适应改进遗传算法的云数据中心调度方法
CN114056184B (zh) 一种降成本增寿命的复合电池能量控制方法
CN113991654B (zh) 一种能源互联网混合能量系统及其调度方法
CN116826864B (zh) 新能源接入港口配电网运行方式的多层优化方法及系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant