CN114815014B - 一种聚焦涡旋光束的超透镜及超透镜阵列 - Google Patents

一种聚焦涡旋光束的超透镜及超透镜阵列 Download PDF

Info

Publication number
CN114815014B
CN114815014B CN202210319982.5A CN202210319982A CN114815014B CN 114815014 B CN114815014 B CN 114815014B CN 202210319982 A CN202210319982 A CN 202210319982A CN 114815014 B CN114815014 B CN 114815014B
Authority
CN
China
Prior art keywords
superlens
substrate
unit structure
vortex
axis direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210319982.5A
Other languages
English (en)
Other versions
CN114815014A (zh
Inventor
张金平
杨俊波
吴加贵
袁欢
王泽豪
邓阳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National University of Defense Technology
Original Assignee
National University of Defense Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National University of Defense Technology filed Critical National University of Defense Technology
Priority to CN202210319982.5A priority Critical patent/CN114815014B/zh
Publication of CN114815014A publication Critical patent/CN114815014A/zh
Application granted granted Critical
Publication of CN114815014B publication Critical patent/CN114815014B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/02Simple or compound lenses with non-spherical faces
    • G02B3/08Simple or compound lenses with non-spherical faces with discontinuous faces, e.g. Fresnel lens
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B2207/00Coding scheme for general features or characteristics of optical elements and systems of subclass G02B, but not including elements and systems which would be classified in G02B6/00 and subgroups
    • G02B2207/101Nanooptics

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

本发明提供了一种聚焦涡旋光束的超透镜,包括包括呈二维周期性分布单元结构,所述单元结构包括基底和位于基底表面的的纳米介质柱,所述基底和纳米介质柱为全介质材料;采用Pancharatnam‑Berry(P‑B)相位匹配单元结构的相位,本发明提供的聚焦涡旋光束的超透镜偏振转换效率高,数值孔径大,在粒子捕获、高通量光学光刻、高密度数据记录、焦平面阵列、雷达和通信系统提供了机会,都有很好的应用前景。

Description

一种聚焦涡旋光束的超透镜及超透镜阵列
技术领域
本发明属于光学成像技术领域,具体是涉及到一种聚焦涡旋光束的超透镜及超透镜阵列。
背景技术
紫外波长范围的光学器件被广泛的应用在光刻和医疗领域。紫外光学器件为了实现波前整形通常会加工成曲面,这就会导致加工成本提升,体积较大,并且在紫外线照射下容易老化,会缩短器件的寿命。
近年来关于超透镜的研究主要集中在可见光到近红外波段,但是关于紫外波段超透镜的研究相对较少,现在所报道的紫外超透镜的功能也比较简单,单元结构的偏振转换效率和超透镜的聚焦效率等参数都有待提高。
发明内容
本发明要解决的技术问题是提供一种偏振转换效率高,数值孔径大的聚焦涡旋光束的超透镜。
为了达到上述目的,本发明的技术方案如下,一种聚焦涡旋光束的超透镜,包括呈二维周期性分布单元结构,所述单元结构包括基底和位于基底表面的的纳米介质柱,所述基底和纳米介质柱为全介质材料。
单元结构的相位满足:
其中,f代表超透镜的焦距,(x,y)为超透镜平面上任意位置的坐标,λ为超透镜的入射波长,入射波长λ的范围为214.2-285.7nm,m表示涡旋光的拓扑荷数,单元结构与x轴的夹角为θ,单元结构的相位与θ需要满足/>
优选的,单元结构的周期Px=Py=0.15μm,基底厚度t=0.1μm,纳米介质柱沿z轴方向的高度h=0.4μm,沿x轴方向的长度是l=0.08μm,沿y轴方向的宽度是w=0.05μm,纳米介质柱的材料为氮化镓,基底的材料为二氧化硅。
优选的,所述聚焦涡旋光超透镜尺寸为15×15μm2,相位平面为100×100像素,透镜半径为R=7.5μm,焦距设置f为15μm。
优选的,所述拓扑荷m=2,所述入射波长λ=214.2或λ=248.3或λ=260或λ=285.7。
优选的,利用多个如权利要求2所述的聚焦涡旋光束的超透镜组成超透镜阵列,将不同拓扑荷数的涡旋光聚焦在同一个焦平面上。
优选的,由λ=214.2,m=-1的超透镜、λ=248.3,m=1的超透镜、λ=260,m=-2的超透镜及λ=285.7,m=2的超透镜组成2×2的超透镜阵列,所有超透镜的相位平面设置为100×100像素,焦距为15μm,透镜半径为7.5μm。
优选的,由m=1、m=2和m=3的超透镜组成3×3的超透镜阵列,所有超透镜的相位平面设置为120×120像素,焦距为10μm,透镜半径为9μm。
本发明的有益效果是,本发明提出了紫外波段的大数值孔径高传输效率的单焦点超透镜,能将右旋圆偏振光被转化为携带轨道角动量的光,并将涡旋光聚焦在特定的焦平面上,另外也提供了能够将不同轨道角动量的涡旋光聚焦在同一焦平面上的2×2,3×3的超透镜阵列;紫外波段的大数值孔径高传输效率的单焦点超透镜,在粒子捕获、高通量光学光刻、高密度数据记录、焦平面阵列、雷达和通信系统提供了机会,都有很好的应用前景;紫外波段的聚焦涡旋光束的超透镜在光学操纵,病毒和细胞的操控方面具有很大的应用潜力,此外紫外波段的聚焦涡旋光束的超透镜阵列也可以应用于波前调控,多像素探测器阵列等领域。
附图说明
图1为本发明其中一实施例的结构示意图,图1(a)为超透镜整体结构示意图,RCP光从基板入射,超透镜可以将光束转化为左圆偏振光,聚焦于特定的焦平面上;图1(b)为单元结构三维结构图,图1(c)为单元结构与x轴的夹角θ的示意图、图1(d)为氮化镓(GaN)纳米颗粒的俯视图。
图2(a)为超透镜的结构示意图,图2(b)为透镜截面沿x轴的相位分布。
图3(a)为波长为214.2nm聚焦涡旋光超透镜V214.2的相位分布;图3(b)为x-y平面的强度分布图;图3(c)为x-z平面的强度分布图;图3(d)为x、y方向上焦平面光斑最大半宽处的全宽(FWHM)为654.2nm。
图4(a)为超透镜V248.3的x-z方向的光场强度和焦平面的光场分布图;图4(b)为超透镜V248.3的相位分布;图4(c)为超透镜V248.3在x-z平面的强度分布图。
图5(a)为超透镜V260的x-z方向的光场强度和焦平面的光场分布图;图5(b)为超透镜V260的相位分布;图5(c)为超透镜V260在x-z平面的强度分布图。
图6(a)为超透镜V285.7的x-z方向的光场强度和焦平面的光场分布图;图6(b)为超透镜V285.7的相位分布;图6(c)为超透镜V285.7在x-z平面的强度分布图。
图7(a)为2×2聚焦涡旋光超透镜阵列结构图;图7(b)为2×2超透镜阵列的相位分布图。
图8(a)-(d)为波长分别为214.2、248.3、260、285.7nm时焦平面x-y方向的光场强度图。
图9(a)为3×3聚焦涡旋光超透镜阵列结构图;图9(b)为3×3超透镜阵列的相位分布图。
图10(a)-(d)波长分别为214.2、248.3、260、285.7nm时3×3超透镜阵列焦平面x-y方向的光场强度。
具体实施方式
下面结合附图和具体实施例,对本发明的技术方案作进一步具体的说明:
实施例一
请一并参阅图1-3,本实施例提供的聚焦涡旋光束的超透镜,包括呈二维周期性分布单元结构,所述单元结构包括基底和位于基底表面的的纳米介质柱。
当右旋圆偏振光从基底入射,超透镜可将光束转化左旋圆偏振光,为了实现偏振光的转化,需要使透镜的单元结构满足Pancharatnam-Berry(P-B)相位。设计入射波长为214.2nm,涡旋光拓扑荷为2的聚焦涡旋光束的超透镜V214.2。平面透镜的整体排布如图1(a)所示,该透镜的相位分布满足公式:
其中,f代表超透镜的焦距,(x,y)为超透镜平面上任意位置的坐标,λ为超透镜的入射波长,m表示涡旋光的拓扑荷数,单元结构与x轴的夹角为θ,单元结构的相位与θ需要满足/>
透镜的单元结构采用高度h=0.4μm的氮化镓放置在厚度t=0.1μm的二氧化硅基底上。超透镜的单元结构如图1(b)-(d)所示,在仿真软件中将矩形纳米柱的长的范围设置为0.06-0.12微米之间变化,纳米柱的宽设置为0.02-0.06之间变化,扫参的步长设置为0.01,分析三十五个数据的转化效率和相位分布,优化后单元结构的参数:纳米介质柱沿x轴的长l=0.08μm,沿y轴的宽度w=0.05μm,基板位正方形,单元结构的沿x轴的周期和沿y轴方向的周期均为0.15μm,即Px=Py=0.15μm。
仿真软件采用CST Studio Suite(Dassault Systèmes Simulia 2016),在仿真过程中,边界条件设置为完全开放边界,仿真时Mesh设置为5,单元结构的尺寸和单焦点透镜的尺寸一致,聚焦涡旋光束超透镜的尺寸为15×15μm2,透镜的相平面为100×100个像素点,超透镜的半径为R=7.5μm,焦距设置为15μm。图2(a)为入射波长=214.2nm,拓扑荷m=2的聚焦涡旋光超透镜的结构图;透镜截面沿x轴的相位分布如图2(b)所示,从图中可以看出透镜的相位满足0-2π的相位分布。由于亚超透镜单元结构只能在较小尺寸范围内实现近似连续的相位分布,实际设计的超透镜的相位分布不能双曲分布,这些误差是设计中在所难免的,较小尺寸的单元结构可以实现更好的相位分布,但是,如果周期过小,相邻单元结构之间会产生耦合。
图3(a)为波长为214.2nm聚焦涡旋光超透镜的相位分布,从图中可以看出透镜的相位满足0-2π的相位分布;图3(b)为x-y平面的强度分布图,超透镜可以将右旋圆偏振光转换并聚焦涡旋光,光束能够在一定的焦平面上聚焦成甜甜圈状的环形光圈;图3(c)为x-z平面的强度分布图,仿真得到的超透镜的焦距为11μm;图3(d)为x、y方向上焦平面光斑最大半宽处的全宽(FWHM)为654.2nm。
本实施例通过优化GaN材料来实现紫外超透镜,氮化镓的带隙约为3.4eV且具透明窗口为100nm-600nm。本章节中设计的GaN超透镜和超透镜阵列与近年来发表的其他紫外超透镜相比具有一些独特的特点。结果如表1所示。
表1不同材料超透镜在紫外波段的性能比较
当波长为250nm时,Si3N4制备的紫外超透镜的半宽宽为206nm,数值孔径(NA)值为0.75,转换效率为96%,略高于其他材料的转换效率;当波长为260nm时,MgO制备的紫外超透镜FWHM为182nm,NA为0.8;当波长为375nm时,由AlN组成的超透镜FWHM约为620nm,NA为0.196nm;本实施例使用的GaN,超透镜的FWHM为117nm,NA高达0.83。
与表1中的其他结果相比,FWHM值最小,同NA值最大。NA较大FWHM较小的透镜焦斑非常有利于光镊场产生大梯度力,如捕获细胞、小颗粒等。此外,具有较大NA的超透镜可以用作轻型摄像机,并可用于捕捉超冷原子和分子。
本实施例提供的工作在紫外波段的聚焦涡旋光束的超透镜,采用Pancharatnam-Berry(P-B)相位匹配单元结构的相位,该超透镜可以将右旋圆偏振光转换携带轨道角动量的涡旋光,同时聚焦涡旋光,透镜的数值孔径最高达0.83,半高宽为117.2nm,单元结构的转化效率为94.33%,偏振转换效率定义为入射的圆偏振光的光功率与转换为反圆偏振光的光功率之比,大数值孔径的单焦点超透镜可应用于紫外波段细胞以及病毒的操控;由于传统的涡旋光发生器通常体积庞大,导致器件的集成度较低,由于人们对器件的集成性的要求越来越高,单一功能的超透镜已经无法满足需求,超透镜和涡旋光束发生器的结合可以极大的缩小光学元件的尺寸,在光摄方面具有很好的应用前景,能极大的提高光学器件的集成度。
实施例二
本实施例与实施例一的技术方案基本相同,不同之处在于:入射波长λ=248.3。
设计入射波长为248.3nm、涡旋光拓扑荷为2的聚焦涡旋光束的超透镜V248.3,超透镜V248.3的FWHM为914,单元结构的平均转换效率分别为92.4%。
图4(a)为超透镜V248.3的x-z方向的光场强度和焦平面的光场分布图;图4(b)为超透镜V248.3的相位分布,可以看出透镜的相位满足0-2π的相位分布;图4(c)为超透镜V248.3在x-z平面的强度分布图,仿真得到的超透镜的焦距为14.85μm。
实施例三
本实施例与实施例一的技术方案基本相同,不同之处在于:入射波长λ=260。
设计入射波长为260nm、涡旋光拓扑荷为2的聚焦涡旋光束的超透镜V260,超透镜V260的FWHM为928,单元结构的平均转换效率分别为76%。
图5(a)为超透镜V260的x-z方向的光场强度和焦平面的光场分布图;图5(b)为超透镜V260的相位分布,可以看出透镜的相位满足0-2π的相位分布;图5(c)为超透镜V260在x-z平面的强度分布图,仿真得到的超透镜的焦距为14.73μm。
可以应用于紫外波段对特定细胞和病毒的操控,在光摄方面具有很好的应用前景。
实施例四
本实施例与实施例一的技术方案基本相同,不同之处在于:入射波长λ=285.7。
设计入射波长为285.7nm、涡旋光拓扑荷为2的聚焦涡旋光束的超透镜V285.7,超透镜V285.7的FWHM为894,单元结构的平均转换效率分别为70%。
图6(a)为超透镜V285.7的x-z方向的光场强度和焦平面的光场分布图;图6(b)为超透镜V285.7的相位分布,可以看出透镜的相位满足0-2π的相位分布;图6(c)为超透镜V285.7在x-z平面的强度分布图,仿真得到的超透镜的焦距为14.5μm。
聚焦涡旋光超透镜的焦距随着入射波长的增加而减小,在紫外范围内实现了涡旋光的聚焦,可广泛应用于颗粒操作、细胞操作和病毒操作。
实施例五
本发明还提供一种聚焦涡旋光束的超透镜的超透镜阵列,设计了波长为214.2、248.3、260和285.7nm的2×2超透镜阵列,超透镜阵列可以将不同拓扑荷的涡旋光聚焦在同一的焦平面上。聚焦涡旋光超透镜阵列的结构如图7(a)所示,超透镜阵列上涡旋光拓扑荷的排布方式为的左上l=-1,右上l=1,左下l=-2,右下l=2。图7(b)为超透镜阵列的相位分布。从图中可以看出,透镜的相位满足0-2π的相位分布。相位平面设置为100×100像素,焦距为15μm,透镜半径为7.5μm。
图8为不同拓扑荷聚焦涡旋光超透镜阵列的仿真计算结果。图8(a)-(d)为波长分别为214.2、248.3、260、285.7nm时焦平面x-y方向的光场强度图。三种波长的超透镜阵列可以将右旋圆偏振光转换并同时聚焦涡旋光。该超透镜阵列可以将具有不同轨道角动量的涡旋光聚焦在同一平面上的不同焦点上处,在焦点上形成四个环形的甜甜圈状点。
该超透镜阵列在紫外波段能将不同的拓扑荷的涡旋光聚焦在同一焦平面的不同位置的超透镜阵列,大幅度的提高设计的灵活性和便利性。
实施例六
本实施例提供了一种3×3超透镜阵列,可以将不同拓扑荷数的涡旋光聚焦在同一个焦平面上。聚焦涡旋光超透镜阵列的结构如图9(a)所示。相位平面设置为120×120像素,焦距为10μm,透镜半径为9μm。超透镜可以将l=1、l=2和l=3的涡旋拓扑荷在距超透镜阵列10μm距离的焦平面上聚焦。图9(b)显示了超透镜阵列的相位分布,从图中可以看出,透镜的相位满足0-2π的相位分布。图10(a)-(d)为超透镜阵列波长分别为214.2、248.3、260、285.7nm时焦平面x-y方向的光场强度。在四个波长处的超透镜阵列可以将具有不同轨道角动量的涡旋光聚焦成一个环形点。所设计的超透镜阵列可以进一步扩展到波前控制、通信和多像素探测器阵列等多个领域。
以上实施例仅用于说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (4)

1.一种聚焦涡旋光束的超透镜,其特征在于,包括呈二维周期性分布单元结构,所述单元结构包括基底和位于基底表面的纳米介质柱,所述基底和纳米介质柱为全介质材料,
单元结构的相位满足:
其中,f代表超透镜的焦距,(x,y)为超透镜平面上任意位置的坐标,λ为超透镜的入射波长,入射波长λ的范围为214.2-285.7nm,m表示涡旋光的拓扑荷数,单元结构与x轴的夹角为,单元结构的相位/>与/>需要满足/>=2/>
单元结构的周期Px=Py=0.15μm,基底厚度t=0.1μm,纳米介质柱沿z轴方向的高度h=0.4μm,沿x轴方向的长度是l=0.08μm,沿y轴方向的宽度是w=0.05μm,纳米介质柱的材料为氮化镓,基底的材料为二氧化硅;
所述聚焦涡旋光超透镜尺寸为15×15μm2,相位平面为100×100像素,透镜半径为R=7.5μm,焦距设置f为15μm;
所述拓扑荷数m=2,所述入射波长λ=214.2或λ=248.3。
2.一种聚焦涡旋光束的超透镜的超透镜阵列,其特征在于:利用多个如权利要求1所述的聚焦涡旋光束的超透镜组成超透镜阵列,将不同拓扑荷数的涡旋光聚焦在同一个焦平面上。
3.如权利要求2所述的聚焦涡旋光束的超透镜的超透镜阵列,其特征在于:由λ=214.2,m=-1的超透镜、λ=248.3,m=1的超透镜、λ=260,m=-2的超透镜及λ=285.7,m=2的超透镜组成2×2的超透镜阵列,所有超透镜的相位平面设置为100×100像素,焦距为15μm,透镜半径为7.5μm,每个超透镜的单元结构的周期Px=Py=0.15μm,基底厚度t=0.1μm,纳米介质柱沿z轴方向的高度h=0.4μm,沿x轴方向的长度是l=0.08μm,沿y轴方向的宽度是w=0.05μm,纳米介质柱的材料为氮化镓,基底的材料为二氧化硅。
4.如权利要求2所述的聚焦涡旋光束的超透镜的超透镜阵列,其特征在于:由m=1、m=2和m=3的超透镜组成3×3的超透镜阵列,所有超透镜的相位平面设置为120×120像素,焦距为10μm,透镜半径为9μm,每个超透镜的单元结构的周期Px=Py=0.15μm,基底厚度t=0.1μm,纳米介质柱沿z轴方向的高度h=0.4μm,沿x轴方向的长度是l=0.08μm,沿y轴方向的宽度是w=0.05μm,纳米介质柱的材料为氮化镓,基底的材料为二氧化硅。
CN202210319982.5A 2022-03-29 2022-03-29 一种聚焦涡旋光束的超透镜及超透镜阵列 Active CN114815014B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210319982.5A CN114815014B (zh) 2022-03-29 2022-03-29 一种聚焦涡旋光束的超透镜及超透镜阵列

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210319982.5A CN114815014B (zh) 2022-03-29 2022-03-29 一种聚焦涡旋光束的超透镜及超透镜阵列

Publications (2)

Publication Number Publication Date
CN114815014A CN114815014A (zh) 2022-07-29
CN114815014B true CN114815014B (zh) 2024-05-28

Family

ID=82530222

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210319982.5A Active CN114815014B (zh) 2022-03-29 2022-03-29 一种聚焦涡旋光束的超透镜及超透镜阵列

Country Status (1)

Country Link
CN (1) CN114815014B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115349806B (zh) * 2022-08-04 2024-05-07 精微视达医疗科技(苏州)有限公司 一种基于超透镜的超细胆胰管光学探头
CN115437046B (zh) * 2022-08-26 2024-06-11 西安电子科技大学 一种费马螺旋排布纳米介质柱的超透镜

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105826692A (zh) * 2016-05-26 2016-08-03 哈尔滨工业大学 基于超表面产生具有汇聚效果的涡旋波束的透镜及方法
CN109061780A (zh) * 2018-09-11 2018-12-21 鲁东大学 一种双波长同轴独立聚焦的超表面透镜
CN109884738A (zh) * 2019-01-08 2019-06-14 华南师范大学 一种高效率超表面涡旋聚焦透镜
CN112909566A (zh) * 2021-01-20 2021-06-04 成都第三象限未来科技有限公司 一种多功能涡旋叠加态发生器
CN113687458A (zh) * 2021-08-24 2021-11-23 中国计量大学 基于纳米筛超表面的远场多通道涡旋光束生成器
CN114019593A (zh) * 2021-11-17 2022-02-08 中国人民解放军国防科技大学 一种超透镜阵列及其设计方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105826692A (zh) * 2016-05-26 2016-08-03 哈尔滨工业大学 基于超表面产生具有汇聚效果的涡旋波束的透镜及方法
CN109061780A (zh) * 2018-09-11 2018-12-21 鲁东大学 一种双波长同轴独立聚焦的超表面透镜
CN109884738A (zh) * 2019-01-08 2019-06-14 华南师范大学 一种高效率超表面涡旋聚焦透镜
CN112909566A (zh) * 2021-01-20 2021-06-04 成都第三象限未来科技有限公司 一种多功能涡旋叠加态发生器
CN113687458A (zh) * 2021-08-24 2021-11-23 中国计量大学 基于纳米筛超表面的远场多通道涡旋光束生成器
CN114019593A (zh) * 2021-11-17 2022-02-08 中国人民解放军国防科技大学 一种超透镜阵列及其设计方法

Also Published As

Publication number Publication date
CN114815014A (zh) 2022-07-29

Similar Documents

Publication Publication Date Title
CN114815014B (zh) 一种聚焦涡旋光束的超透镜及超透镜阵列
WO2020073303A1 (zh) 基于介质超表面的偏振发生器及其设计方法
CN111007587B (zh) 一种全介质、宽带偏振与相位调控超表面及远场超分辨聚焦器件
CN109085667A (zh) 一种超表面消色差线偏光透镜
CN106199997B (zh) 一种大视场超分辨成像器件
KR102239427B1 (ko) 메타물질로 만든 구성요소를 포함하는 광학 다이오드
CN112147721A (zh) 偏振阶数可调且可连续变焦的柱矢量光束透镜及构造方法
CN111175862B (zh) 一种全介质平场扫描超分辨平面透镜
KR102133912B1 (ko) 회전체 미러를 사용한 x선 집광시스템의 광학설계방법 및 x선 집광시스템
CN113258428A (zh) 一种利用超透镜对面发射激光器进行多维度光场调控的方法
JP6276391B2 (ja) プラズモン格子構造と結合したテーパ光導波路
Zhang et al. Planar metasurface-based concentrators for solar energy harvest: from theory to engineering
CN101398493A (zh) 振幅型波带片光子筛
US5237170A (en) Method and apparatus for non-imaging concentration and projection of electromagnetic radiation
Zhang et al. Design of an all-dielectric long-wave infrared wide-angle metalens
CN109491097B (zh) 一种基于晶体旋光性产生轴对称矢量光束的方法
Shalaginov et al. A single-layer panoramic metalens with> 170 {\deg} diffraction-limited field of view
CN108897075B (zh) 一种基于硅球及光子晶体负折射效应的亚波长成像器件
Atwater Bending light to our will
CN114397716A (zh) 一种波长和偏振态同时复用的双完美涡旋光束超表面发生器
CN105182544A (zh) 单轴对称微螺旋锥器件
CN1418322A (zh) 超高分辨率成像装置
CN114690435A (zh) 一种基于自旋解耦超表面波带片的矢量波束产生方法
JP2008137104A (ja) 光ピンセットの方法および装置
Elwi et al. Fresnel lenses based on nano shell-silver coated silica array for solar cells applications

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant