CN114814704A - Error compensation method for standard voltage transformer - Google Patents
Error compensation method for standard voltage transformer Download PDFInfo
- Publication number
- CN114814704A CN114814704A CN202210413643.3A CN202210413643A CN114814704A CN 114814704 A CN114814704 A CN 114814704A CN 202210413643 A CN202210413643 A CN 202210413643A CN 114814704 A CN114814704 A CN 114814704A
- Authority
- CN
- China
- Prior art keywords
- error
- voltage
- signal
- value
- voltage transformer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 18
- 238000006243 chemical reaction Methods 0.000 claims abstract description 27
- 238000002955 isolation Methods 0.000 claims abstract description 23
- 238000007667 floating Methods 0.000 claims abstract description 14
- 230000010363 phase shift Effects 0.000 claims abstract description 7
- 230000005284 excitation Effects 0.000 claims description 11
- 238000005070 sampling Methods 0.000 claims description 7
- 238000004804 winding Methods 0.000 description 6
- 238000005259 measurement Methods 0.000 description 5
- 238000012937 correction Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000001914 filtration Methods 0.000 description 2
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 description 2
- 101100440985 Danio rerio crad gene Proteins 0.000 description 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- 101100440987 Mus musculus Cracd gene Proteins 0.000 description 1
- 101100467905 Mus musculus Rdh16 gene Proteins 0.000 description 1
- 101150095130 URAD gene Proteins 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 230000009191 jumping Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000009469 supplementation Effects 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R35/00—Testing or calibrating of apparatus covered by the other groups of this subclass
- G01R35/02—Testing or calibrating of apparatus covered by the other groups of this subclass of auxiliary devices, e.g. of instrument transformers according to prescribed transformation ratio, phase angle, or wattage rating
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Measurement Of Current Or Voltage (AREA)
Abstract
Description
技术领域technical field
本发明涉及标准电压互感器技术领域,特别指一种标准电压互感器误差补偿方法。The invention relates to the technical field of standard voltage transformers, in particular to an error compensation method for standard voltage transformers.
背景技术Background technique
电压互感器和变压器类似,用于变换线路上的电压。但是变压器变换电压的目的是输送电能,而电压互感器变换电压的目的是用来测量线路的电压。A voltage transformer is similar to a transformer and is used to transform the voltage on the line. But the purpose of the transformer to transform the voltage is to transmit electrical energy, and the purpose of the voltage transformer to transform the voltage is to measure the voltage of the line.
由于电磁式电压互感器存在励磁电流,且一次绕组存在电阻和漏抗,从而励磁电流在阻抗上产生了电压降,因而不可避免的导致电压互感器存在空载误差;又因为,当二次绕组接有负荷时,二次绕组中产生负载电流,为了保持磁通不变,一次绕组中也将增加一个负载电流分量,且由于二次绕组同样存在电阻和漏抗,所以负载电流同样的在一、二次绕组的内阻抗上产生电压降,从而形成了电压互感器的负载误差。Because the electromagnetic voltage transformer has excitation current, and the primary winding has resistance and leakage reactance, the excitation current produces a voltage drop on the impedance, which inevitably leads to no-load error in the voltage transformer; and because when the secondary winding has a no-load error When a load is connected, a load current is generated in the secondary winding. In order to keep the magnetic flux unchanged, a load current component will also be added to the primary winding, and since the secondary winding also has resistance and leakage reactance, the load current is the same as , A voltage drop is generated on the internal impedance of the secondary winding, thus forming the load error of the voltage transformer.
电压互感器误差,又称为电压互感器比例误差,包括比值差和相位差,其中比值差又称为比差,是由于实际电压比与额定电压比不相等造成的,一般用百分数(%)表示;而相位差又称为角差,是指一次电压与二次电压相量的相位差,一般用分(′)或厘弧(crad)表示。电压互感器的误差可用复数ε=f+jδ表示,其中,f称为比差,δ称为角差。Voltage transformer error, also known as voltage transformer proportional error, includes ratio difference and phase difference, of which the ratio difference is also called ratio difference, which is caused by the fact that the actual voltage ratio is not equal to the rated voltage ratio, generally used as a percentage (%) The phase difference, also known as the angular difference, refers to the phase difference between the primary voltage and the secondary voltage phasor, generally expressed in minutes (') or centi arcs (crad). The error of the voltage transformer can be represented by a complex number ε=f+jδ, where f is called the ratio difference, and δ is called the angular difference.
由于电磁式电压互感器的铁芯的励磁电流存在非线性,10kV以上单级电压互感器的误差通常难以突破0.01级~0.02级,传统上可通过双级结构补偿法进一步降低电压互感器的非线性误差,但在高电压等级的互感器中,绝缘、屏蔽结构等都带来挑战。而且,对于同一电压等级的互感器,也将不可避免的带来体积和重量的增加,同时提高了经济成本。Due to the nonlinear excitation current of the iron core of the electromagnetic voltage transformer, the error of a single-stage voltage transformer above 10kV is usually difficult to break through 0.01 to 0.02. Traditionally, the two-stage structural compensation method can be used to further reduce the non-linearity of the voltage transformer. Linearity error, but in transformers with high voltage levels, insulation, shielding structures, etc. all bring challenges. Moreover, for the transformer of the same voltage level, the volume and weight will inevitably increase, and the economic cost will be increased at the same time.
因此,如可提供一种标准电压互感器误差补偿方法,实现在不改变原有电压互感器结构的基础上,有效提升电压互感器的准确度等级,将极大地满足用户对于标准电压互感器的准确度要求。Therefore, if a standard voltage transformer error compensation method can be provided to effectively improve the accuracy level of the voltage transformer without changing the original voltage transformer structure, it will greatly satisfy the user's requirements for standard voltage transformers. accuracy requirements.
发明内容SUMMARY OF THE INVENTION
本发明要解决的技术问题,在于提供一种标准电压互感器误差补偿方法,实现提升电压互感器的准确度等级。The technical problem to be solved by the present invention is to provide a standard voltage transformer error compensation method, so as to improve the accuracy level of the voltage transformer.
本发明提供了一种标准电压互感器误差补偿方法,包括如下步骤:The invention provides a standard voltage transformer error compensation method, comprising the following steps:
步骤S10、通过RS232接口或显示屏向单片机输入标准电压互感器在不同工作电压和不同负载电流下的误差值,单片机将接收的所述误差值存储至存储模块中的误差表内;Step S10, input the error value of the standard voltage transformer under different working voltages and different load currents to the single-chip microcomputer through the RS232 interface or the display screen, and the single-chip computer stores the received error value in the error table in the storage module;
步骤S20、输入电压通过第一双级隔离电压互感器和滤波放大电路后,输入到双通道AD信号采集模块,同时经移相电路分离出同相分量信号和正交分量信号,作为误差信号的同相分量和正交分量的参考基准信号;Step S20, after the input voltage passes through the first two-stage isolation voltage transformer and the filter amplifying circuit, it is input to the two-channel AD signal acquisition module, and at the same time, the in-phase component signal and the quadrature component signal are separated by the phase-shift circuit as the in-phase component of the error signal. reference reference signals for the component and quadrature components;
步骤S30、输入电流通过采样电阻和滤波电路后,输入到双通道AD信号采集模块;Step S30, the input current is input to the dual-channel AD signal acquisition module after passing through the sampling resistor and the filter circuit;
步骤S40、单片机通过双通道AD信号采集模块得到电压值和电流值,基于所述电压值和电流值获取误差系数,并生成第一数模转换芯片和第二数模转换芯片的数字控制量,用于控制误差信号的同相分量和正交分量的大小;Step S40, the single-chip microcomputer obtains the voltage value and the current value through the dual-channel AD signal acquisition module, obtains the error coefficient based on the voltage value and the current value, and generates the digital control quantities of the first digital-to-analog conversion chip and the second digital-to-analog conversion chip, Used to control the magnitude of the in-phase component and the quadrature component of the error signal;
步骤S50、加法电路把第一数模转换芯片输出的误差信号同相分量和第二数模转换芯片输出的误差信号正交分量,合成为一路误差电压信号;Step S50, the summing circuit synthesizes the in-phase component of the error signal output by the first digital-to-analog conversion chip and the quadrature component of the error signal output by the second digital-to-analog conversion chip into an error voltage signal;
步骤S60、加法电路输出的所述误差电压信号经滤波电路、放大电路和第二双级隔离电压互感器输出后,生成与输入电压、输入电流相对应的浮地误差补偿信号。Step S60: After the error voltage signal output by the adding circuit is output by the filter circuit, the amplifier circuit and the second two-stage isolation voltage transformer, a floating error compensation signal corresponding to the input voltage and input current is generated.
进一步地,所述步骤S40中,所述误差系数包括幅值系数以及相位系数。Further, in the step S40, the error coefficient includes an amplitude coefficient and a phase coefficient.
进一步地,所述步骤S40中,所述基于所述电压值和电流值获取误差系数具体为:Further, in the step S40, the obtaining of the error coefficient based on the voltage value and the current value is specifically:
分别将所述电压值和电流值比对存储模块中预设的误差表,基于所述误差表查找对应的误差值。The voltage value and the current value are respectively compared with a preset error table in the storage module, and a corresponding error value is searched based on the error table.
进一步地,所述步骤S40中,所述基于所述电压值和电流值获取误差系数具体为:Further, in the step S40, the obtaining of the error coefficient based on the voltage value and the current value is specifically:
将所述电压值和电流值输入预设的误差函数解析式计算误差值。Input the voltage value and the current value into a preset error function analytical formula to calculate the error value.
进一步地,所述步骤S40中,所述基于所述电压值和电流值获取误差系数具体为:Further, in the step S40, the obtaining of the error coefficient based on the voltage value and the current value is specifically:
将所述电压值和电流值输入预设的励磁电流函数解析式计算误差解析式后,再得到相应的误差值。After inputting the voltage value and the current value into the preset excitation current function analytical formula to calculate the error analytical formula, the corresponding error value is obtained.
本发明的优点在于:The advantages of the present invention are:
由于每个标准电压互感器出厂时的误差曲线是基本确定的参数,而且相对比较稳定,误差值主要与当前工作电压和负载电流有关。因此,通过设置存储模块存储标准电压互感器的误差表或误差函数解析式,单片机实时分别采集电压输入通道中电压互感器的二次电压信号和电流输入通道中电压互感器的负载电流信号,根据当前工作电压和负载电流,可得到对应的误差系数,基于误差系数生成对应的电压互感器误差信号,并通过误差电压信号隔离模块输出对应的浮地误差补偿电压信号,即可根据电压互感器的误差值生成对应的电压互感器误差浮地信号,以对电压互感器的输出进行补偿,实现了在不改变电压互感器原有结构的基础上,极大地提升了电压互感器的准确度等级。Since the error curve of each standard voltage transformer when it leaves the factory is a basically determined parameter, and it is relatively stable, the error value is mainly related to the current working voltage and load current. Therefore, by setting the storage module to store the error table of the standard voltage transformer or the analytical formula of the error function, the single-chip microcomputer separately collects the secondary voltage signal of the voltage transformer in the voltage input channel and the load current signal of the voltage transformer in the current input channel in real time. The corresponding error coefficient can be obtained from the current working voltage and load current. Based on the error coefficient, the corresponding voltage transformer error signal is generated, and the corresponding floating error compensation voltage signal is output through the error voltage signal isolation module. The error value generates the corresponding voltage transformer error floating signal to compensate the output of the voltage transformer, which greatly improves the accuracy level of the voltage transformer without changing the original structure of the voltage transformer.
附图说明Description of drawings
下面参照附图结合实施例对本发明作进一步的说明。The present invention will be further described below with reference to the accompanying drawings and embodiments.
图1是本发明一种标准电压互感器误差补偿装置的电路原理框图。FIG. 1 is a circuit principle block diagram of a standard voltage transformer error compensation device of the present invention.
图2是本发明一种标准电压互感器误差补偿装置的电路示意图。FIG. 2 is a schematic circuit diagram of a standard voltage transformer error compensation device of the present invention.
图3是本发明一种标准电压互感器误差补偿方法的流程图。FIG. 3 is a flow chart of a standard voltage transformer error compensation method of the present invention.
图4是本发明存储误差系数的流程示意图。FIG. 4 is a schematic flowchart of the present invention for storing error coefficients.
图5是本发明读取误差系数的流程示意图。FIG. 5 is a schematic flow chart of reading the error coefficient according to the present invention.
图6是本发明使用状态的接线示意图。FIG. 6 is a schematic diagram of the wiring of the present invention in a use state.
标记说明:Tag Description:
100-一种标准电压互感器误差补偿装置,1-电压输入通道,2-电流输入通道,3-MCU控制模块,4-移相电路,5-第一数模转换芯片,6-第二数模转换芯片,7-加法电路,8-误差电压信号隔离模块,9-显示屏,10-电源模块,11-第一双级隔离电压互感器,12-滤波放大电路,21-采样电阻,22-第一滤波电路,31-单片机,32-双通道AD信号采集模块,33-存储模块,34-RS232接口,81-第二滤波电路,82-放大电路,83-第二双级隔离电压互感器。100-a standard voltage transformer error compensation device, 1-voltage input channel, 2-current input channel, 3-MCU control module, 4-phase shift circuit, 5-first digital-to-analog conversion chip, 6-second digital Analog conversion chip, 7-adding circuit, 8-error voltage signal isolation module, 9-display screen, 10-power supply module, 11-first dual-stage isolation voltage transformer, 12-filter amplifier circuit, 21-sampling resistor, 22 -The first filter circuit, 31-MCU, 32-Dual channel AD signal acquisition module, 33-Storage module, 34-RS232 interface, 81-The second filter circuit, 82-Amplification circuit, 83-The second two-stage isolation voltage mutual inductance device.
具体实施方式Detailed ways
本申请实施例中的技术方案,总体思路如下:设置存储模块33存储标准单级电压互感器的误差表,分别比较单片机31实时采集的电压信号和电流信号与预设值的误差值,利用误差值和误差表查询对应的误差系数,基于误差系数生成对应的电压互感器误差浮地信号,最后基于电压互感器误差浮地信号输出对应的补偿误差电压信号,,进而对标准单级电压互感器的输出进行补偿,实现在不改变电压互感器原有结构的基础上,提升标准单级电压互感器的准确度。The general idea of the technical solutions in the embodiments of the present application is as follows: the storage module 33 is set to store the error table of the standard single-stage voltage transformer, the error values of the voltage signal and the current signal collected in real time by the single-chip microcomputer 31 and the preset value are compared respectively, and the error value is used. Query the corresponding error coefficient from the value and error table, generate the corresponding voltage transformer error floating signal based on the error coefficient, and finally output the corresponding compensation error voltage signal based on the voltage transformer error floating signal, and then use the standard single-stage voltage transformer. The output of the voltage transformer is compensated, and the accuracy of the standard single-stage voltage transformer is improved without changing the original structure of the voltage transformer.
请参照图1至图6所示,本发明需使用如下一种标准电压互感器误差补偿装置100,包括:Please refer to FIG. 1 to FIG. 6 , the present invention needs to use the following standard voltage transformer
一电压输入通道1,用于接入待补偿电压互感器(未图示)的输出电压;A
一电流输入通道2,用于接入待补偿电压互感器的负载电流;A
一MCU控制模块3,输入端与所述电压输入通道1以及电流输入通道2的输出端连接,用于采集所述电压输入通道1输出的电压信号以及电流输入通道2输出的电流信号,并控制所述误差补偿装置100的工作;An
一移相电路4,输入端与所述电压输入通道1的输出端连接,用于对输入的电压信号进行移相;a phase-
一第一数模转换芯片5,输入端与所述电压输入通道1的输出端连接,数字控制端与所述MCU控制模块3连接,用于对输入的电压信号进行模数转换;A first digital-to-analog conversion chip 5, the input terminal is connected to the output terminal of the
一第二数模转换芯片6,输入端与所述移相电路4连接,数字控制端与所述MCU控制模块3连接,用于对输入的电压信号进行模数转换;A second digital-to-analog conversion chip 6, the input terminal is connected to the
一加法电路7,输入端与所述第一数模转换芯片5以及第二数模转换芯片6的输出端连接,用于叠加所述第一数模转换芯片5以及第二数模转换芯片6输出的电压信号;An adding
一误差电压信号隔离模块8,输入端与所述加法电路7的输出端连接,用于将误差电压信号隔离处理后,生产浮地误差电压信号;an error voltage
一显示屏9,与所述MCU控制模块3连接,用于操作所述误差补偿装置100,设定误差系数;A display screen 9, connected to the
一电源模块10,分别与所述MCU控制模块3、误差电压信号隔离模块8以及显示屏9连接,用于给所述误差补偿装置100供电。A
所述电压输入通道1包括:The
一第一双级隔离电压互感器11,输入信号为待补偿电压互感器的输出电压;a first two-stage
一滤波放大电路12,输入端与所述第一双级隔离电压互感器11的二次输出电压端连接,输出端与所述MCU控制模块3、移相电路4以及第一数模转换芯片5连接,用于对输入的电压信号进行滤波和放大。A
所述电流输入通道2包括:The
一采样电阻21;a
一第一滤波电路22,输入端与所述采样电阻21的两端连接,输出端与所述MCU控制模块3连接,用于对输入的电流信号进行滤波。A
所述MCU控制模块3包括:The
一单片机31,分别与所述第一数模转换芯片5、第二数模转换芯片6、显示屏9以及电源模块10连接,用于控制所述误差补偿装置100的工作,在具体实施时,只要从现有技术中选择能实现此功能的单片机即可,并不限于何种型号,例如ST公司的STM32F103系列的单片机,且控制程序是本领域技术人员所熟知的,这是本领域技术人员不需要付出创造性劳动即可获得的;A single chip 31 is connected to the first digital-to-analog conversion chip 5, the second digital-to-analog conversion chip 6, the display screen 9 and the
一双通道AD信号采集模块32,一端与所述单片机31连接,另一端与所述电压输入通道1以及电流输入通道2连接,采样时间间隔设置为1秒;A dual-channel AD signal acquisition module 32, one end is connected to the single-chip microcomputer 31, the other end is connected to the
一存储模块33,与所述单片机31连接,用于存储误差表;a storage module 33, connected to the single-chip microcomputer 31, for storing the error table;
一RS232接口34,与所述单片机31连接,用于所述误差补偿装置100与外界进行通信。An RS232 interface 34 is connected to the single-chip microcomputer 31 for the
所述误差电压信号隔离模块8包括:The error voltage
一第二滤波电路81,输入端与所述加法电路7的输出端连接;a
一放大电路82,输入端与所述第二滤波电路81的输出端连接,用于对输出的电压信号进行补偿;an amplifying
一第二双级隔离电压互感器83,一次侧的高端与所述放大电路82的输出端以及第二滤波电路81的输入端连接,一次侧的低端接地;所述第二双级隔离电压互感器83的输出电压为与第一双级隔离电压互感器11的输入电压的比值,当输入电压、输入电流不变时,所述第二双级隔离电压互感器83的输出电压恒定不变,当需要不同相位和幅值时,调节同相和正交分量值即可。A second double-stage
本发明一种标准电压互感器误差补偿方法的较佳实施例,包括如下步骤:A preferred embodiment of a standard voltage transformer error compensation method of the present invention includes the following steps:
步骤S10、通过RS232接口或显示屏向单片机输入标准电压互感器在不同工作电压和不同负载电流下的误差值(包括比差和角差),单片机将接收的所述误差值存储至存储模块中的误差表内;Step S10, input the error value (including ratio difference and angle difference) of the standard voltage transformer under different working voltages and different load currents to the single-chip microcomputer through the RS232 interface or the display screen, and the single-chip computer stores the received error value in the storage module. in the error table;
步骤S20、输入电压通过第一双级隔离电压互感器和滤波放大电路后,输入到双通道AD信号采集模块,同时经移相电路分离出同相分量信号和正交分量信号,作为误差信号的同相分量和正交分量的参考基准信号;Step S20, after the input voltage passes through the first two-stage isolation voltage transformer and the filter amplifying circuit, it is input to the two-channel AD signal acquisition module, and at the same time, the in-phase component signal and the quadrature component signal are separated by the phase-shift circuit as the in-phase component of the error signal. reference reference signals for the component and quadrature components;
步骤S30、输入电流通过采样电阻和滤波电路后,输入到双通道AD信号采集模块;Step S30, the input current is input to the dual-channel AD signal acquisition module after passing through the sampling resistor and the filter circuit;
步骤S40、单片机通过双通道AD信号采集模块得到电压值和电流值,基于所述电压值和电流值获取误差系数,并生成第一数模转换芯片和第二数模转换芯片的数字控制量,用于控制误差信号的同相分量和正交分量的大小;所述误差系数即输出信号相对于输入信号的幅值系数和相位系数;Step S40, the single-chip microcomputer obtains the voltage value and the current value through the dual-channel AD signal acquisition module, obtains the error coefficient based on the voltage value and the current value, and generates the digital control quantities of the first digital-to-analog conversion chip and the second digital-to-analog conversion chip, It is used to control the size of the in-phase component and the quadrature component of the error signal; the error coefficient is the amplitude coefficient and phase coefficient of the output signal relative to the input signal;
所述误差系数根据不同的输入电压和输入电流细分为500组数据;输入电压范围为100V或100/√3V的10%~130%,每5(±2.5)个百分点保存一个电压数据,最大保存25个包的数据;输入电流范围为0~100mA,每5(±2.5)mA保存一组电流数据,最多保存20个包的数据,电压和电流横向和纵向对应共500组数据。The error coefficient is subdivided into 500 sets of data according to different input voltages and input currents; the input voltage range is 10% to 130% of 100V or 100/√3V, and a voltage data is saved every 5 (±2.5) percentage points, and the maximum Save 25 packets of data; the input current range is 0 ~ 100mA, save a group of current data every 5 (± 2.5) mA, save up to 20 packets of data, voltage and current horizontal and vertical corresponding to a total of 500 sets of data.
步骤S50、加法电路把第一数模转换芯片输出的误差信号同相分量和第二数模转换芯片输出的误差信号正交分量,合成为一路误差电压信号;Step S50, the summing circuit synthesizes the in-phase component of the error signal output by the first digital-to-analog conversion chip and the quadrature component of the error signal output by the second digital-to-analog conversion chip into an error voltage signal;
步骤S60、加法电路输出的所述误差电压信号经滤波电路、放大电路和第二双级隔离电压互感器输出后,生成与输入电压、输入电流相对应的浮地误差补偿信号。Step S60: After the error voltage signal output by the adding circuit is output by the filter circuit, the amplifier circuit and the second two-stage isolation voltage transformer, a floating error compensation signal corresponding to the input voltage and input current is generated.
所述步骤S40中,所述误差系数包括幅值系数以及相位系数。In the step S40, the error coefficient includes an amplitude coefficient and a phase coefficient.
所述幅值系数和相位系数的单位分别为1×10-6和1微弧度,分辨率为1×10-6;第一双级隔离电压互感器的输入电压:0~200V;电流电压转换模块的输入电流:0~100mA;第二双级隔离电压互感器的输出电压:0~0.1V,最大误差±0.2%。The units of the amplitude coefficient and the phase coefficient are 1×10 -6 and 1 microradian respectively, and the resolution is 1×10 -6 ; the input voltage of the first double-stage isolation voltage transformer: 0~200V; the current-voltage conversion The input current of the module: 0~100mA; the output voltage of the second double-stage isolation voltage transformer: 0~0.1V, the maximum error is ±0.2%.
所述步骤S40中,所述基于所述电压值和电流值获取误差系数具体为:In the step S40, the obtaining of the error coefficient based on the voltage value and the current value is specifically:
分别将所述电压值和电流值比对存储模块中预设的误差表,基于所述误差表查找对应的误差值。The voltage value and the current value are respectively compared with a preset error table in the storage module, and a corresponding error value is searched based on the error table.
所述步骤S40中,所述基于所述电压值和电流值获取误差系数具体为:In the step S40, the obtaining of the error coefficient based on the voltage value and the current value is specifically:
将所述电压值和电流值输入预设的误差函数解析式计算误差值,所述误差函数解析式的公式为ε(V,I)。存储模块可存储多个电压互感器的误差函数,并对应到不同编号的电压互感器,即同一标准电压互感器误差补偿装置可配套多台标准电压互感器使用。Input the voltage value and the current value into a preset error function analytical formula to calculate the error value, and the formula of the error function analytical formula is ε(V, I). The storage module can store the error functions of multiple voltage transformers and correspond to voltage transformers with different numbers, that is, the same standard voltage transformer error compensation device can be used with multiple standard voltage transformers.
本发明的实验验证过程如下:The experimental verification process of the present invention is as follows:
(1)电压接入A、X接线柱(电压输入通道);(1) The voltage is connected to the A and X terminals (voltage input channel);
(2)电流接入I+、I-接线柱(电流输入通道);(2) The current is connected to the I+ and I- terminals (current input channel);
(3)调节电压百分表,点击修改按钮,根据百分表的大小和电流的大小,设置0~1000PPM之间任意值,点击保存,等待2秒钟数据即保存到固定地址,当下次到同样大小电压和电流下时,保存的对应数据将调出;(3) Adjust the voltage dial indicator, click the modify button, set any value between 0 and 1000PPM according to the size of the dial indicator and the size of the current, click save, wait for 2 seconds, the data will be saved to a fixed address, when the next time it arrives Under the same voltage and current, the saved corresponding data will be recalled;
(4)百分表从10%~130%保存间隔为每5(±2.5)个百分点保存一个数据,最大保存25个包的数据;电流从0~100mA保存间隔为每5(±2.5)mA保存一组数据最多保存20个包的数据,电压和电流横向和纵向对应共500组数据;(4) The dial indicator saves one data every 5 (±2.5) percentage points from 10% to 130%, and saves a maximum of 25 packets of data; the current saves from 0 to 100 mA at every 5 (±2.5) mA Save a set of data Save up to 20 packets of data, voltage and current horizontal and vertical corresponding to a total of 500 sets of data;
(5)浮地误差电压信号从U+、U-接线柱输出;(5) The floating error voltage signal is output from the U+ and U- terminals;
(6)补偿后的电压互感器的输出端,相应地转换为a'0、x'0。(6) The output terminal of the voltage transformer after compensation is correspondingly converted into a' 0 , x' 0 .
实验用互感器为两台电压等级10kV的双级电压互感器(#1:型号:HJS158,编号:1708051;#2:型号:HJS,编号:8209),准确度等级0.01级。The experimental transformers are two double-stage voltage transformers with a voltage level of 10kV (#1: model: HJS158, serial number: 1708051; #2: model: HJS, serial number: 8209), with an accuracy level of 0.01.
高端测差模式,直接比较测量:High-end differential mode, direct comparison measurements:
两台10kV电压互感器通过高端测差模式,直接比较测量,误差测量数据如下表所示:The two 10kV voltage transformers are directly compared and measured through the high-end difference measurement mode. The error measurement data is shown in the following table:
电压互感器级联误差信号生成模块后,比较测量(高端测差):After the voltage transformer cascades the error signal generation module, the comparison measurement (high-end difference measurement):
电压互感器级联误差信号生成模块接线示意图,互感器二次输出连接到模块的电压接入A、X接线柱,电流输入从电压互感器的二次输出的低端串联接入,如图6所示。级联后,互感器的输出端转换为a'0、x'0。The wiring diagram of the voltage transformer cascade error signal generation module, the secondary output of the transformer is connected to the voltage access A and X terminals of the module, and the current input is connected in series from the low end of the secondary output of the voltage transformer, as shown in Figure 6 shown. After cascading, the output of the transformer is converted to a' 0 , x' 0 .
注:互感器校验仪的误差读数中正交分量单位为分,而误差模块中正交分量的单位为urad,应做一次单位变换。Note: The unit of the quadrature component in the error reading of the transformer calibrator is minutes, while the unit of the quadrature component in the error module is urad, which should be converted once.
(1)接线方式一,#2互感器比例输出级联误差模块(相对于对比例输出进行线性修正)(1)
#2互感器比例输出接到模块的电压接入A、X接线柱;电流接线柱(I+、I-)悬空;误差信号输出U+连接#2互感器比例输出高端,误差信号输出U-连接校验仪测差输入端K;校验仪供电连接#2互感器的励磁输出;校验仪测差输入端D连接#1互感器的比例输出高端;#1互感器的比例输出低端与#2互感器的比例输出低端短接。The proportional output of the
修正前后实验数据对比:Comparison of experimental data before and after correction:
接线方式一,#2互感器励磁输出级联误差模块(相对于对励磁输出进行线性修正)
#2互感器互感器励磁输出接到模块的电压接入A、X接线柱;电流接线柱(I+、I-)悬空;误差信号输出U+连接#2互感器励磁输出高端,误差信号输出U-连接校验仪测差输入端K;校验仪供电连接#2互感器的励磁输出;校验仪测差输入端D连接#1互感器的比例输出高端;#1互感器的比例输出低端与#2互感器的比例输出低端短接。#2 Transformer The transformer excitation output is connected to the voltage of the module and connected to the A and X terminals; the current terminals (I+, I-) are suspended; the error signal output U+ is connected to the high end of the #2 transformer excitation output, and the error signal output U- Connect the differential input terminal K of the calibrator; the power supply of the calibrator is connected to the excitation output of the #2 mutual inductor; the differential measuring input terminal D of the calibrator is connected to the high end of the proportional output of the #1 mutual inductor; the low end of the proportional output of the #1 mutual inductor Short to the low side of the proportional output of the #2 transformer.
修正前后实验数据对比:Comparison of experimental data before and after correction:
注:补充后读数出现跳动的原因分析:(1)实验环境的接地不是很好,地信号有干扰;(2)误差模块输出信号应用屏蔽线,降低干扰;(3)高压电源存在一定的干扰,即互感器输出的二次信号不是干净的正弦信号。Note: Analysis of the reasons for the jumping reading after supplementation: (1) The grounding of the experimental environment is not very good, and the ground signal has interference; (2) The output signal of the error module should be shielded to reduce the interference; (3) There is a certain amount of interference in the high-voltage power supply , that is, the secondary signal output by the transformer is not a clean sinusoidal signal.
综上所述,本发明的优点在于:To sum up, the advantages of the present invention are:
由于每个标准电压互感器出厂时的误差曲线是基本确定的参数,而且相对比较稳定,误差值主要与当前工作电压和负载电流有关。因此,通过设置存储模块存储标准电压互感器的误差表或误差函数解析式,单片机实时分别采集电压输入通道中电压互感器的二次电压信号和电流输入通道中电压互感器的负载电流信号,根据当前工作电压和负载电流,可得到对应的误差系数,基于误差系数生成对应的电压互感器误差信号,并通过误差电压信号隔离模块输出对应的浮地误差补偿电压信号,即可根据电压互感器的误差值生成对应的电压互感器误差浮地信号,以对电压互感器的输出进行补偿,实现了在不改变电压互感器原有结构的基础上,极大地提升了电压互感器的准确度等级。Since the error curve of each standard voltage transformer when it leaves the factory is a basically determined parameter, and it is relatively stable, the error value is mainly related to the current working voltage and load current. Therefore, by setting the storage module to store the error table of the standard voltage transformer or the analytical formula of the error function, the single-chip microcomputer separately collects the secondary voltage signal of the voltage transformer in the voltage input channel and the load current signal of the voltage transformer in the current input channel in real time. The corresponding error coefficient can be obtained from the current working voltage and load current. Based on the error coefficient, the corresponding voltage transformer error signal is generated, and the corresponding floating error compensation voltage signal is output through the error voltage signal isolation module. The error value generates the corresponding voltage transformer error floating signal to compensate the output of the voltage transformer, which greatly improves the accuracy level of the voltage transformer without changing the original structure of the voltage transformer.
虽然以上描述了本发明的具体实施方式,但是熟悉本技术领域的技术人员应当理解,我们所描述的具体的实施例只是说明性的,而不是用于对本发明的范围的限定,熟悉本领域的技术人员在依照本发明的精神所作的等效的修饰以及变化,都应当涵盖在本发明的权利要求所保护的范围内。Although the specific embodiments of the present invention have been described above, those skilled in the art should understand that the specific embodiments we describe are only illustrative, rather than used to limit the scope of the present invention. Equivalent modifications and changes made by a skilled person in accordance with the spirit of the present invention should be included within the scope of protection of the claims of the present invention.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210413643.3A CN114814704B (en) | 2022-04-15 | 2022-04-15 | A standard voltage transformer error compensation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210413643.3A CN114814704B (en) | 2022-04-15 | 2022-04-15 | A standard voltage transformer error compensation method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114814704A true CN114814704A (en) | 2022-07-29 |
CN114814704B CN114814704B (en) | 2024-08-02 |
Family
ID=82506401
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210413643.3A Active CN114814704B (en) | 2022-04-15 | 2022-04-15 | A standard voltage transformer error compensation method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114814704B (en) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2746912A1 (en) * | 1977-10-19 | 1979-04-26 | Messwandler Bau Gmbh | DEVICE FOR TESTING MEASURING TRANSFORMERS FOR THE INDEPENDENT DETERMINATION OF THE AMOUNT ERROR AND THE MISCELLANEOUS OF A CURRENT OR VOLTAGE TRANSFORMER |
CN1430069A (en) * | 2002-12-31 | 2003-07-16 | 武汉华电国电高压科技发展有限公司 | Method and device for testing current ratio staudard high-correctness current transformer |
US20170356939A1 (en) * | 2016-06-14 | 2017-12-14 | Jonathan Ephraim David Hurwitz | Method of and apparatus for learning the phase error or timing delays within a current transducer and power measurement apparatus including current transducer error correction |
CN108776245A (en) * | 2018-04-09 | 2018-11-09 | 国网四川省电力公司电力科学研究院 | It is a kind of can a variety of principle mutual-inductor testers of automatic calibration calibrating installation |
KR102296618B1 (en) * | 2021-02-25 | 2021-09-01 | 송상훈 | Ratio Error And Phase displacement Error Tester For Portable Current Transformer |
CN114035142A (en) * | 2021-04-16 | 2022-02-11 | 湖南师范大学 | Electric energy meter error compensation method and system based on segmented Lagrange interpolation |
CN217468179U (en) * | 2022-04-15 | 2022-09-20 | 中国计量科学研究院 | A standard voltage transformer error compensation device |
-
2022
- 2022-04-15 CN CN202210413643.3A patent/CN114814704B/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2746912A1 (en) * | 1977-10-19 | 1979-04-26 | Messwandler Bau Gmbh | DEVICE FOR TESTING MEASURING TRANSFORMERS FOR THE INDEPENDENT DETERMINATION OF THE AMOUNT ERROR AND THE MISCELLANEOUS OF A CURRENT OR VOLTAGE TRANSFORMER |
CN1430069A (en) * | 2002-12-31 | 2003-07-16 | 武汉华电国电高压科技发展有限公司 | Method and device for testing current ratio staudard high-correctness current transformer |
US20170356939A1 (en) * | 2016-06-14 | 2017-12-14 | Jonathan Ephraim David Hurwitz | Method of and apparatus for learning the phase error or timing delays within a current transducer and power measurement apparatus including current transducer error correction |
CN108776245A (en) * | 2018-04-09 | 2018-11-09 | 国网四川省电力公司电力科学研究院 | It is a kind of can a variety of principle mutual-inductor testers of automatic calibration calibrating installation |
KR102296618B1 (en) * | 2021-02-25 | 2021-09-01 | 송상훈 | Ratio Error And Phase displacement Error Tester For Portable Current Transformer |
CN114035142A (en) * | 2021-04-16 | 2022-02-11 | 湖南师范大学 | Electric energy meter error compensation method and system based on segmented Lagrange interpolation |
CN217468179U (en) * | 2022-04-15 | 2022-09-20 | 中国计量科学研究院 | A standard voltage transformer error compensation device |
Non-Patent Citations (1)
Title |
---|
何娜;宗超;陈贤顺;黄嘉鹏;叶子阳;蒋卫;: "一种全自动、全性能互感器校验仪整检装置的设计与实现", 电测与仪表, no. 11 * |
Also Published As
Publication number | Publication date |
---|---|
CN114814704B (en) | 2024-08-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101846699A (en) | Electrical parameter measuring device, system and method | |
CN105607031A (en) | High-voltage electric energy meter calibrating device | |
CN104101785B (en) | A kind of four-end method high level condensance measurement apparatus and its measuring method | |
CN202837406U (en) | DC power supply output impedance measuring device | |
CN101339234A (en) | Portable CVT Error Measuring Method and Device | |
CN106199118B (en) | Capacitor voltage-dividing type zero sequence voltage transformer with power output | |
CN105785135A (en) | Frequency conversion ground impedometer | |
CN114019297B (en) | A high-frequency transient characteristic signal generation device for distribution lines and its control method | |
CN217468179U (en) | A standard voltage transformer error compensation device | |
CN109581272A (en) | A kind of direct current energy meter detection system | |
CN116047172A (en) | Power filter insertion loss on-line test computing system | |
CN102445583B (en) | Voltage signal monitoring device of power energy quality monitoring device and circuit as well as application thereof | |
CN106443561A (en) | Overall inspection method and apparatus for electric energy metering devices of 35kV or below | |
CN108181600B (en) | Capacitive voltage transformer test device | |
CN201364382Y (en) | Testing device used for relay protection device of zinc oxide lightning arrester | |
CN105372614A (en) | Electronic type automatic zero-setting method and device | |
CN205539204U (en) | Frequency conversion earth impedance measuring apparatu | |
CN109782062A (en) | A method for optimizing the harmonic measurement characteristics of a Rogowski coil type electronic current transformer | |
CN113341202B (en) | A method and system for detecting the accuracy of arc suppression coil capacitance current measurement | |
CN111965413B (en) | Current measuring method | |
CN114814704A (en) | Error compensation method for standard voltage transformer | |
CN101872006B (en) | Periodic non-sinusoidal wave reference of electronic voltage transformer with voltage booster | |
CN2901529Y (en) | Electronic voltage mutual inductor | |
CN103197153A (en) | Vector-triangle-based measuring circuit and vector-triangle-based measuring method for capacitance inductance parameters | |
CN106405465A (en) | Voltage transformer measurement error checking method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |