CN114807935A - 一种镁合金复合材料及其制备方法 - Google Patents

一种镁合金复合材料及其制备方法 Download PDF

Info

Publication number
CN114807935A
CN114807935A CN202210344717.2A CN202210344717A CN114807935A CN 114807935 A CN114807935 A CN 114807935A CN 202210344717 A CN202210344717 A CN 202210344717A CN 114807935 A CN114807935 A CN 114807935A
Authority
CN
China
Prior art keywords
magnesium alloy
composite material
electrodeposition
alloy composite
nickel plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210344717.2A
Other languages
English (en)
Other versions
CN114807935B (zh
Inventor
彭珍珍
汪殿龙
梁志敏
王立伟
赵恒虎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hebei University of Science and Technology
Original Assignee
Hebei University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hebei University of Science and Technology filed Critical Hebei University of Science and Technology
Priority to CN202210344717.2A priority Critical patent/CN114807935B/zh
Publication of CN114807935A publication Critical patent/CN114807935A/zh
Application granted granted Critical
Publication of CN114807935B publication Critical patent/CN114807935B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/021Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material including at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1635Composition of the substrate
    • C23C18/1637Composition of the substrate metallic substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1646Characteristics of the product obtained
    • C23C18/165Multilayered product
    • C23C18/1653Two or more layers with at least one layer obtained by electroless plating and one layer obtained by electroplating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1689After-treatment
    • C23C18/1692Heat-treatment
    • C23C18/1696Control of atmosphere
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/32Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
    • C23C18/34Coating with nickel, cobalt or mixtures thereof with phosphorus or boron using reducing agents
    • C23C18/36Coating with nickel, cobalt or mixtures thereof with phosphorus or boron using reducing agents using hypophosphites
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/023Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • C25D5/50After-treatment of electroplated surfaces by heat-treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Treatment Of Metals (AREA)

Abstract

本发明公开了一种镁合金复合材料及其制备方法,该镁合金复合材料的制备方法包括如下步骤:镁合金经表面预处理后,依次在镀镍液中进行化学镀镍、在电沉积液中进行电沉积、热处理,即得镁合金复合材料;其中,所述电沉积液为含有至少五种以上的金属盐溶液,每种金属离子浓度相同,且各金属离子的浓度为0.1~100mM,电沉积的电位为‑0.2~‑1.0V,所述电沉积的温度为0~15℃。本发明提供的镁合金复合材料的制备方法可显著提高镁合金基体与镍层、高熵合金层三者之间的结合力,提高镁合金复合材料的抗腐蚀性能。

Description

一种镁合金复合材料及其制备方法
技术领域
本发明涉及复合材料技术领域,尤其涉及一种镁合金复合材料及其制备方法。
背景技术
镁合金因具有密度小,比强度高,比刚度高,导热性好,电磁屏蔽性好,易于加工等优点,被广泛应用于电子产品、航空航天、轨道交通等领域。但是,镁合金电极电位低、耐蚀性能差的特性,使得镁合金的零构件在服役过程中易发生腐蚀和磨损失效,这一问题长期以来严重制约着镁合金的应用。
针对上述问题,现有技术中大多是通过在镁合金表面构建涂层以改善其抗腐蚀性能,其中,高熵合金是由五种或五种以上等量或大约等量金属形成的合金,是近年来发展的一种新型合金材料,其具有优异的比强度比、抗断裂能力、抗拉强度、抗腐蚀及抗氧化特性,是理想的涂层材料。
但是,高熵合金涂层的研究多以钢铁为基体,以熔覆、热喷涂等高温工艺为手段,熔覆和热喷涂等工艺会造成镁合金氧化、烧蚀,涂层界面处产生气孔、夹杂、裂纹,并不适用于镁合金表面高熵合金涂层的制备。而高能球磨、磁控溅射、电弧离子镀、粉末真空气雾化等方法,存在涂层不均匀,涂层与基体结合性差,易脱落,或者是涂层厚度较薄(仅2-8μm),达不到耐腐蚀的目的。
发明内容
鉴于此,本发明提供一种镁合金复合材料及其制备方法,该镁合金复合材料的制备方法采用化学镀和电沉积相结合的方式,结合对电沉积的参数进行限定,可显著提高制得的高熵合金层的均匀性和致密性,提高镁合金基体与镍层、高熵合金层的结合性,进而提高镁合金的耐腐蚀和耐磨损性能。
为达到上述发明目的,本发明实施例采用了如下的技术方案:
一种镁合金复合材料的制备方法,包括如下步骤:
镁合金经表面预处理后,依次在镀镍液中进行化学镀镍、在电沉积液中进行电沉积、热处理,即得镁合金复合材料;
其中,所述电沉积液为含有至少五种以上的金属盐溶液,每种金属离子浓度相同,且各金属离子的浓度为0.1~100mM,电沉积的电位为-0.2~-1.0V,所述电沉积的温度为0~15℃。
本发明提供的镁合金复合材料的制备方法,通过先在镁合金表面化学镀镍得到表面具有镍层的镁合金,然后在含有至少五种以上的金属盐溶液的电沉积液中进行电沉积得到在镁合金的表面依次生长镍层、高熵合金层的复合材料,结合热处理步骤,可显著提高镁合金基体与镍层、高熵合金层三者之间的结合力,通过进一步对电沉积步骤的电沉积液中各离子浓度进行限定(各离子浓度是相同且浓度均较低),结合限定较低的电位和电沉积温度,得到的高熵合金层具有高度的均匀性,有效发挥高熵合金层优异的抗断裂、抗拉强度、抗腐蚀及抗氧化等特性,且高熵合金层的厚度可根据实际的需要进行调节,为镁合金复合材料的进一步广泛应用提供了保障。
可选的,所述电沉积的时间为1~30min。
可选的,所述电沉积液中的金属盐为过渡金属的硫酸盐、醋酸盐、草酸盐等中的任一种,过渡金属可选自Cu、Zn、Fe、Co、Cr、Se、Ti、Mn和Ni等。
可选的,所述热处理的温度为300~500℃,保温时间为1~3h。
可选的,所述热处理步骤的升温速率为1~10℃/min。
可选的,所述热处理步骤在惰性气体氛围中进行,所述惰性气体为Ar与H2的混合气体,所述Ar与H2的体积比为9:1。
可选的,所述镀镍液含有以下原料:1~100g/L NiSO4·6H2O,1~100g/LCH3COONa,1~100g/L NaH2PO2·H2O,1~100g/L NH4HF2,1~100mL/L HF,1~100mL/L NH3·H2O,所述镀镍液的pH为5~7.5。
可选的,所述化学镀镍的温度为50~95℃,时间为1~20min。
可选的,所述预处理包括打磨、去油污和酸洗,所述酸洗采用的酸洗液包括10~500g/L CrO3,10~500mL/L HNO3
本发明还提供了上述的镁合金复合材料的制备方法制得的镁合金复合材料,所述镁合金复合材料包括镁合金基体,以及在所述镁合金基体表面依次生长的镍层和高熵合金层。
该镁合金复合材料中镍层和高熵合金层的厚度可根据实际的需要,通过调整化学镀镍和电沉积的时间来调节。优选的,镍层厚度小于1μm,高熵合金层的厚度为5~100μm。
附图说明
图1为本发明实施例1制得的镁合金复合材料表面高熵合金层中各金属的EDS图;
图2为本发明对比例1制得的镁合金复合材料表面高熵合金层中各金属的EDS图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
高熵合金是由五种或五种以上等量或大约等量的金属形成的合金,因其优异的特性,使其成为理想的涂层材料,在用于改善镁合金的耐腐蚀性能方面应用尤其广泛,但是要想利用高熵合金的优异性能来改善镁合金的缺陷,就必须要在镁合金表面形成高熵合金涂层,需要等量或者是大约等量的五种或五种以上金属必须是均匀分布的,否则不能形成高熵合金层,也就不能改善镁合金的耐腐蚀性能,因此如何有效地在镁合金的表面形成高熵合金层一直是业内研究的难点和重点。
现有技术中并没有能够在镁合金表面形成有效的高熵合金层的方法,熔覆和热喷涂等工艺会造成镁合金氧化、烧蚀,导致涂层界面处产生气孔、夹杂、裂纹,导致镁合金的力学、防腐蚀等性能变差;高能球磨、磁控溅射、电弧离子镀、粉末真空气雾化等方法,存在高熵合金涂层不均匀,与基体结合性差,易脱落,或者是涂层厚度较薄(不能改善镁合金易腐蚀的缺点)等问题;而常规的电镀、电沉积等方式所得到的涂层,往往各金属的分布不均匀,也就是不能有效地形成高熵合金层。因此,目前研究的重点大多是在高能球磨、磁控溅射、电弧离子镀、粉末真空气雾化等方法的基础上做改进,但是效果并不理想。
本发明的发明人经多年深入研究意外发现,通过采用镀镍、电沉积和热处理相结合的工艺,尤其是对电沉积时各金属离子的浓度、电沉积温度及电沉积的电位进行限定,在尽可能低的温度、金属离子浓度和电沉积电位条件下,能够得到高熵合金层,且高熵合金层与镍层、镁合金基体之间的结合力好,镍层与高熵合金层的厚度可根据实际需要进行调整,最终得到的镁合金复合材料具有优异的耐腐蚀性能。分析原因,有可能是由于在低温及金属离子的浓度尽可能稀的电沉积液,结合尽可能低的电沉积的电位的条件下,各金属离子和水的配位数目接近,金属离子之间相互作用可以忽略,使得构成高熵合金的各金属离子在电场作用下有相近的迁移速率,进而形成各金属均匀分布的高熵合金层。
现有的任一种类型的镁合金(尺寸也不受限)均能满足本发明技术方案的实施,为方便比较,以下各实施例及对比例中均采用AZ91镁合金。
实施例1
本实施例提供一种镁合金复合材料,其制备方法如下:
表面预处理
酸洗液的制备:室温下,将CrO3和HNO3与水混合均匀,得到每升含120gCrO3,100mLHNO3的酸洗液,备用;
取AZ91镁合金样品(尺寸为20×20×4mm),将该镁合金表面用400-2000目(该规格范围内的砂纸均能满足本发明技术方案的实施,本实施例中采用400目)碳化硅砂纸打磨光滑以去除表面氧化皮,随后将去除表面氧化皮的镁合金依次浸没在去离子水和乙醇中各超声清洗15min,去除表面油污,然后在室温条件下干燥,干燥后的镁合金放入上述酸洗液中清洗35s(室温);
化学镀镍
镀镍液的制备:在75-85℃下,将NiSO4·6H2O、CH3COONa、NaH2PO2·H2O、NH4HF2和HF溶于水中,混合均匀,用NH3·H2O调节体系pH=6.5,得到镀镍液,75-85℃下保存,备用;每升该镀镍液中含有15gNiSO4·6H2O、15gCH3COONa、16gNaH2PO2·H2O、5gNH4HF2、20mLHF。
将表面预处理步骤得到的镁合金样品浸入上述备用的镀镍液中,在95℃下保持1min进行化学镀镍;
电沉积
电沉积液的制备:将CuSO4、ZnSO4、Fe2(SO4)3、CoSO4与NiSO4溶于水中,混合均匀,得到Cu2+、Zn2+、Fe3+、Co2+、Ni2+的浓度均为1mM的水溶液,备用;
将化学镀镍步骤得到的镁合金样品放入上述备用的电沉积液中,然后采用化学镀镍后的镁合金样品作为工作电极,与铂片对电极、饱和甘汞参比电极一起组成标准三电极玻璃池,控制电沉积电位为-1.0V,于10℃下电沉积10min后,将电沉积后的镁合金样品依次浸入去离子水和无水乙醇中,并在超声波辅助下冲洗,最后在空气中干燥;
热处理
将电沉积步骤中干燥后的镁合金样品放入石英管中,在Ar:H2=9:1(V/V)的惰性混合气氛中,以1℃/min的升温速率升温到350℃,保温5h,得表面依次生长镍层和高熵合金层的镁合金复合材料。
经检测,该镁合金复合材料的镍层厚度约0.5μm,高熵合金层厚度约23μm。
实施例2
本实施例提供一种镁合金复合材料,其制备方法如下:
表面预处理
酸洗液的制备:室温下,将CrO3和HNO3与水混合均匀,得到每升含200gCrO3,120mLHNO3的酸洗液,备用;
取AZ91镁合金样品(尺寸为20×20×4mm),将该镁合金表面用2000目碳化硅砂纸打磨光滑以去除表面氧化皮,随后将去除表面氧化皮的镁合金依次浸没在去离子水和乙醇中各超声清洗15min,去除表面油污,然后在室温条件下干燥,干燥后的镁合金放入上述酸洗液中清洗35s(室温);
化学镀镍
镀镍液的制备:在75-85℃下,将NiSO4·6H2O、CH3COONa、NaH2PO2·H2O、NH4 HF2和HF溶于水中,混合均匀,用NH3·H2O调节体系pH=7.5,得到镀镍液,75-85℃下保存,备用;每升该镀镍液中含有20gNiSO4·6H2O、16gCH3COONa、18gNaH2PO2·H2O、12gNH4HF2、10mLHF。
将表面预处理步骤得到的镁合金样品浸入上述备用的镀镍液中,在75℃下保持10min进行化学镀镍;
电沉积
电沉积液的制备:将CuSO4、ZnSO4、Fe2(SO4)3、CoSO4与NiSO4溶于水中,混合均匀,得到Cu2+、Zn2+、Fe3+、Co2+、Ni2+的浓度均为0.1mM的水溶液,备用;
将化学镀镍步骤得到的镁合金样品放入上述备用的电沉积液中,然后采用化学镀镍后的镁合金样品作为工作电极,与铂片对电极、饱和甘汞参比电极一起组成标准三电极玻璃池,控制电沉积电位为-0.2V,于15℃下电沉积1min后,将电沉积后的镁合金样品依次浸入去离子水和无水乙醇中,并在超声波辅助下冲洗,最后在空气中干燥;
热处理
将电沉积步骤中干燥后的镁合金样品放入石英管中,在Ar:H2=9:1(V/V)的惰性混合气氛中,以10℃/min的升温速率升温到400℃,保温2h,得表面依次生长镍层和高熵合金层的镁合金复合材料。
经检测,该镁合金复合材料的镍层厚度约0.6μm,高熵合金层厚度约6μm。
实施例3
本实施例提供一种镁合金复合材料,其制备方法如下:
表面预处理
酸洗液的制备:室温下,将CrO3和HNO3与水混合均匀,得到每升含300gCrO3,200mLHNO3的酸洗液,备用;
取AZ91镁合金样品(尺寸为20×20×4mm),将该镁合金表面用1000目碳化硅砂纸打磨光滑以去除表面氧化皮,随后将去除表面氧化皮的镁合金依次浸没在去离子水和乙醇中各超声清洗15min,去除表面油污,然后在室温条件下干燥,干燥后的镁合金放入上述酸洗液中清洗35s(室温);
化学镀镍
镀镍液的制备:在75-85℃下,将NiSO4·6H2O、CH3COONa、NaH2PO2·H2O、NH4HF2和HF溶于水中,混合均匀,用NH3·H2O调节体系pH=5.0,得到镀镍液,75-85℃下保存,备用;每升该镀镍液中含有30gNiSO4·6H2O、5gCH3COONa、5gNaH2PO2·H2O、5gNH4HF2、25mLHF。
将表面预处理步骤得到的镁合金样品浸入上述备用的镀镍液中,在50℃下保持20min进行化学镀镍;
电沉积
电沉积液的制备:将CuSO4、ZnSO4、Fe2(SO4)3、CoSO4与NiSO4溶于水中,混合均匀,得到Cu2+、Zn2+、Fe3+、Co2+、Ni2+的浓度均为100mM的水溶液,备用;
将化学镀镍步骤得到的镁合金样品放入上述备用的电沉积液中,然后采用化学镀镍后的镁合金样品作为工作电极,与铂片对电极、饱和甘汞参比电极一起组成标准三电极玻璃池,控制电沉积电位为-0.7V,于0℃下电沉积30min后,将电沉积后的镁合金样品依次浸入去离子水和无水乙醇中,并在超声波辅助下冲洗,最后在空气中干燥;
热处理
将电沉积步骤中干燥后的镁合金样品放入石英管中,在Ar:H2=9:1(V/V)的惰性混合气氛中,以5℃/min的升温速率升温到500℃,保温1h,得表面依次生长镍层和高熵合金层的镁合金复合材料。
经检测,该镁合金复合材料的镍层厚度约0.8μm,高熵合金层厚度约91μm。
实施例4
本实施例提供的镁合金复合材料的制备方法与实施例1相似,区别仅在于电沉积步骤的电沉积液中含有的各金属离子的浓度不同,本实施例中各金属离子的浓度均为50mM。
经检测,该镁合金复合材料的镍层厚度约0.5um,高熵合金层厚度约67μm。
实施例5
本实施例提供的镁合金复合材料的制备方法与实施例1相似,区别仅在于电沉积步骤的电沉积液中含有的金属种类不同,本实施例中电沉积液中金属盐为MnSO4、ZnSO4、Fe2(SO4)3、CoSO4与NiSO4
经检测,该镁合金复合材料的镍层厚度约0.5um,高熵合金层厚度约20μm。
实施例6
本实施例提供的镁合金复合材料的制备方法与实施例1相似,区别仅在于电沉积步骤的电沉积液中含有的各金属离子的浓度不同,本实施例中各金属离子的浓度均为10mM。
经检测,该镁合金复合材料的镍层厚度约0.5um,高熵合金层厚度约42μm。
对比例1
本对比例提供的镁合金复合材料的制备方法与实施例1相似,区别仅在于电沉积步骤的电沉积液中含有的各金属离子的浓度不同,本对比例中各金属离子的浓度均为1M。
经检测,该镁合金复合材料的镍层厚度约0.5um,高熵合金层厚度约113μm。
对比例2
本对比例提供的镁合金复合材料的制备方法与实施例1相似,区别仅在于电沉积步骤的电沉积电位不同,本对比例中电沉积电位为-1.5V。
经检测,该镁合金复合材料的镍层厚度约0.5um,高熵合金层厚度约48μm。
对比例3
本对比例提供的镁合金复合材料的制备方法与实施例1相似,区别仅在于电沉积步骤的电沉积温度不同,本对比例中电沉积温度为20℃。
经检测,该镁合金复合材料的镍层厚度约0.5um,高熵合金层厚度约51μm。
对比例4
本对比例提供的镁合金复合材料的制备方法与实施例1相似,区别仅在于电沉积步骤的电沉积液中含有的金属盐的个数不同,本对比例的电沉积液中含有的金属盐为Fe2(SO4)3、CoSO4和NiSO4。本对比例制得的镁合金复合材料中不含有高熵合金层。
经检测,该镁合金复合材料的镍层厚度约0.5um,高熵合金层厚度为约15um。
实验例1
针对实施例1和对比例1制得的镁合金复合材料表面的高熵合金层中各金属分别进行EDS测试,测试结果如图1和图2所示,从图1中可以看到,五种金属元素都均匀分布在基体上,实现在镍表面均匀生长,达到原子级别混溶,五种金属元素混乱程度大,熵值大,材料稳定性强,说明本发明提供的镁合金复合材料的表面形成了致密度高的高熵合金层。相比之下,图2中各金属元素点分布不均,表明各金属元素混合不均匀,混乱度小,熵值小,达不到高熵,材料稳定性弱,所述对比例提供的镁合金复合材料的表面没有形成高熵合金层。
实验例2
将各实施例及对比例制得的镁合金复合材料分别进行腐蚀电位和耐摩擦性能测试,具体的测试方法及测试结果如下所示。
腐蚀电位测试方法如下:选用Gamry电化学工作站对试样进行腐蚀电位测试,首先将待测样品浸入到腐蚀介质为3.5wt%的NaCl溶液中30min以稳定开路电位,然后采用待测样品作为工作电极,铂电极作为对电极,饱和甘汞电极(SCE)用作参比电极组成的三电极系统进行测量,测出材料的tafel电位极化曲线,利用直线外推法计算出腐蚀电位。
耐磨性测试方法如下:
耐磨性试验在M2000型磨损机上进行,磨损机的下滚轮材料为GCr15钢,硬度为HRC61,转速为200r/min,压力为300N。耐磨性采用称重法评定,在耐磨试验前,先用无水酒精把镁合金复合材料(简称试样)清洗干净,并用吹风机吹干,然后用电子天平测量试样质量M1(先后测3次,取平均值),预磨损3min后再次用无水酒精清洗干净,并用吹风机吹干后再次用电子天平测量试样质量M2(先后测3次,取平均值);继续磨损15min后,重复上述过程测得M3(先后测3次,取平均值),最终试样的磨损量M=M2-M3。
表1测试结果
腐蚀电位(V) 磨损量(g)
实施例1 0.75 5.9×10<sup>-5</sup>
实施例2 0.71 6.6×10<sup>-5</sup>
实施例3 0.32 7.8×10<sup>-4</sup>
实施例4 0.42 4.7×10<sup>-4</sup>
实施例5 0.70 6.6×10<sup>-5</sup>
实施例6 0.72 6.2×10<sup>-5</sup>
对比例1 -0.12 1.7×10<sup>-3</sup>
对比例2 -0.27 2.6×10<sup>-3</sup>
对比例3 -0.32 3.7×10<sup>-3</sup>
对比例4 -0.57 5.6×10<sup>-3</sup>
由上表中的数据可知,本发明提供的镁合金复合材料的制备方法制得的镁合金复合材料具有优异的腐蚀电位和较低的磨损量,而且,在电沉积液中各金属离子的浓度尽可能低、电沉积的电位和温度尽可能低的情况下,形成的高熵合金层性致密性更高,腐蚀电位更高,磨损量更低。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换或改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种镁合金复合材料的制备方法,其特征在于,包括如下步骤:
镁合金经表面预处理后,依次在镀镍液中进行化学镀镍、在电沉积液中进行电沉积、热处理,即得镁合金复合材料;
其中,所述电沉积液为含有至少五种以上的金属盐的混合溶液,每种金属离子浓度相同,且每种金属离子的浓度为0.1~100mM,所述电沉积的电位为-0.2~-1.0V,所述电沉积的温度为0~15℃。
2.如权利要求1所述的镁合金复合材料的制备方法,其特征在于,所述电沉积的时间为1~30min。
3.如权利要求1所述的镁合金复合材料的制备方法,其特征在于,所述电沉积液中的金属盐为过渡金属的硫酸盐、醋酸盐和草酸盐中的任一种。
4.如权利要求1所述的镁合金复合材料的制备方法,其特征在于,所述热处理的温度为300~500℃,保温时间为1~3h。
5.如权利要求1所述的镁合金复合材料的制备方法,其特征在于,所述热处理步骤的升温速率为1~10℃/min。
6.如权利要求1所述的镁合金复合材料的制备方法,其特征在于,所述热处理步骤在惰性气体氛围中进行,所述惰性气体为Ar与H2的混合气体,所述Ar与H2的体积比为9:1。
7.如权利要求1所述的镁合金复合材料的制备方法,其特征在于,所述镀镍液含有以下原料:1~100g/L NiSO4·6H2O,1~100g/L CH3COONa,1~100g/L NaH2PO2·H2O,1~100g/LNH4HF2,1~100mL/L HF,1~100mL/L NH3·H2O,所述镀镍液的pH为5~7.5。
8.如权利要求1所述的镁合金复合材料的制备方法,其特征在于,所述化学镀镍的温度为50~95℃,时间为1~20min。
9.如权利要求1~8任一项所述的镁合金复合材料的制备方法,其特征在于,所述预处理包括打磨、去油污和酸洗,所述酸洗采用的酸洗液包括10~500g/L CrO3,10~500mL/LHNO3
10.权利要求1-9任一项所述的镁合金复合材料的制备方法制得的镁合金复合材料,所述镁合金复合材料包括镁合金基体,以及在所述镁合金基体表面依次生长的镍层和高熵合金层。
CN202210344717.2A 2022-03-31 2022-03-31 一种镁合金复合材料及其制备方法 Active CN114807935B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210344717.2A CN114807935B (zh) 2022-03-31 2022-03-31 一种镁合金复合材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210344717.2A CN114807935B (zh) 2022-03-31 2022-03-31 一种镁合金复合材料及其制备方法

Publications (2)

Publication Number Publication Date
CN114807935A true CN114807935A (zh) 2022-07-29
CN114807935B CN114807935B (zh) 2023-11-17

Family

ID=82532176

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210344717.2A Active CN114807935B (zh) 2022-03-31 2022-03-31 一种镁合金复合材料及其制备方法

Country Status (1)

Country Link
CN (1) CN114807935B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110257682A (zh) * 2019-07-05 2019-09-20 昆明理工大学 一种高熵合金材料及其涂层的制备方法
CN110344040A (zh) * 2019-08-16 2019-10-18 哈尔滨工业大学 一种超轻的具有微点阵结构的高熵合金的制备方法
US20220081794A1 (en) * 2020-09-11 2022-03-17 University Of Cincinnati Electrochemical deposition of functionalized high entropy alloys

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110257682A (zh) * 2019-07-05 2019-09-20 昆明理工大学 一种高熵合金材料及其涂层的制备方法
CN110344040A (zh) * 2019-08-16 2019-10-18 哈尔滨工业大学 一种超轻的具有微点阵结构的高熵合金的制备方法
US20220081794A1 (en) * 2020-09-11 2022-03-17 University Of Cincinnati Electrochemical deposition of functionalized high entropy alloys

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
龙琼;胡素丽;李娟;伍剑明;黎应芬;伍玉娇;: "提高镁合金耐蚀性的最新研究进展", 电镀与涂饰, no. 15, pages 72 - 77 *

Also Published As

Publication number Publication date
CN114807935B (zh) 2023-11-17

Similar Documents

Publication Publication Date Title
EP0393169B1 (en) Method for plating on titanium
CN110724992B (zh) 在铝合金表面制备耐腐蚀超疏水膜层的方法
CN102851719B (zh) 一种锆基非晶合金复合材料及其制备方法
CN108570703A (zh) 基于钨片表面纳米化的钨/铜层状复合材料制备方法
Shoghi et al. Pretreatment-free Ni− P plating on magnesium alloy at low temperatures
CN101226800A (zh) 一种用于烧结型钕铁硼永磁材料的表面处理方法
CN104073849B (zh) 一种烧结钕铁硼磁体表面电镀镍钨磷的工艺
WO2022206588A1 (zh) 一种焊接接头防护涂层的制备方法及其应用
CN114807935B (zh) 一种镁合金复合材料及其制备方法
Mehdipour et al. Influence of glycine additive on corrosion and wear performance of electroplated trivalent chromium coating
Huang et al. Microstructural characterization and film-forming mechanism of a phosphate chemical conversion ceramic coating prepared on the surface of 2A12 aluminum alloy
CN108914192A (zh) 一种不锈钢亚光处理工艺
CN115142055A (zh) 一种疏水化学转化成膜液及铝合金表面处理方法
CN112680753B (zh) 一种超疏水镁合金的制备方法
Lee et al. Performance improvement of phosphate coating on carbon steel by cathodic electrochemical method
CN113789505A (zh) 一种Ni-P-(sol)Al2O3纳米复合涂层的制备方法
CN109504996B (zh) 一种用于钢铁表面dlc复合氧化膜制备的阴极微弧氧化溶液和方法
CN113005498A (zh) 一种自润滑锆基非晶合金及其制备方法和应用
Guo et al. Study of filiform corrosion inhibition by a compact plasma electrolytic oxidation film on a AZ31 Mg alloy
TWI835152B (zh) 不銹鋼表面製備陶瓷膜的製作方法
Deng et al. Eco-friendly and facile method of superhydrophobic surface fabricating on 304 stainless steel substrates with fluorine-free agents
CN114990537B (zh) 一种铝合金表面磷化处理方法
CN109576752B (zh) 一种等离子体电解硼碳氮三元共渗方法
Cetin et al. Nickel and Gold Coatings of Germanium and Kovar Substrates
CN116641110A (zh) 一种耐磨耐蚀中熵合金复合防护涂层及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant