CN114807681A - Low-internal-consumption large-magnetostriction alloy and preparation method thereof - Google Patents

Low-internal-consumption large-magnetostriction alloy and preparation method thereof Download PDF

Info

Publication number
CN114807681A
CN114807681A CN202210250100.4A CN202210250100A CN114807681A CN 114807681 A CN114807681 A CN 114807681A CN 202210250100 A CN202210250100 A CN 202210250100A CN 114807681 A CN114807681 A CN 114807681A
Authority
CN
China
Prior art keywords
alloy
percent
heat treatment
magnetostriction
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210250100.4A
Other languages
Chinese (zh)
Other versions
CN114807681B (en
Inventor
王宏
张十庆
张登友
李方
白雨松
何钦生
赵振
张瑞彦
刘海定
丁渝红
王建新
赵安中
谭军
赵彦
王东哲
王陆洲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing Materials Research Institute Co Ltd
Original Assignee
Chongqing Materials Research Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing Materials Research Institute Co Ltd filed Critical Chongqing Materials Research Institute Co Ltd
Priority to CN202210250100.4A priority Critical patent/CN114807681B/en
Publication of CN114807681A publication Critical patent/CN114807681A/en
Application granted granted Critical
Publication of CN114807681B publication Critical patent/CN114807681B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/058Alloys based on nickel or cobalt based on nickel with chromium without Mo and W
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/023Alloys based on nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/03Making non-ferrous alloys by melting using master alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/10Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F3/00Electrolytic etching or polishing
    • C25F3/16Polishing
    • C25F3/22Polishing of heavy metals

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

The invention relates to a low-internal-consumption large-magnetostriction alloy and a preparation method thereof, wherein the material comprises the following components in percentage by weight: c: 0.02-0.05%, B: 0.007-0.015%, Ca: 0.002-0.01%, Mo: 0.10 to 0.99%, Nb: 1.0-2.0%, Ti: 3.1-4.0%, Al: 0.1-0.3%, Ni: 55.01-70.00%, and the balance Fe and inevitable impurities. The low-internal-consumption and large-magnetostriction alloy disclosed by the invention is simple and feasible in preparation method, low in internal consumption of the alloy and large in magnetostriction coefficient, effectively reduces the attenuation of elastic waves in a magnetostriction material, is applied to a magnetostriction sensor, and solves the technical problems of high signal attenuation, poor signal remote transmission performance and the like of the magnetostriction sensor produced in the prior art.

Description

Low-internal-consumption large-magnetostriction alloy and preparation method thereof
Technical Field
The invention relates to an alloy, in particular to a magnetostrictive alloy material with low internal consumption and a preparation method thereof.
Background
The magnetostrictive material is a novel intelligent functional material which is rapidly developed in the sixty-seven years of the last century, has the function of converting electromagnetic energy and mechanical energy, is an important energy and information conversion functional material, and has wide application in the engineering fields of displacement measurement and control technology, ocean detection and development technology, micro-displacement driving, vibration reduction and prevention, noise reduction and prevention systems, intelligent wings, robots, automation technology, fuel injection technology microsensors, micro-vibrators, micromotors and the like. The magnetostrictive sensor prepared from the magnetostrictive material plays an increasingly important role in national economy and industrial production as a strategic material for improving the national high-tech comprehensive competitiveness in the 21 st century. Precision components such as magnetostrictive displacement sensors are increasingly developing towards large-range, high-precision and high-sensitivity directions, which puts higher requirements on the internal consumption and magnetostrictive performance of magnetostrictive alloys for precision components.
Internal losses, i.e. Q -1 And the value represents the attenuation degree of the energy of the harmonic oscillator in one vibration period. Under the same parameter condition, the saturation magnetostriction value lambda of the device s The larger the value, the larger the amplitude that can be maintained, which is more beneficial to improving the sensitivity of the device and reducing the noise level. When precise components such as a magnetostrictive displacement sensor work, signals generated by magnetostrictive materials in the magnetostrictive displacement sensor need to be transmitted for a long distance, and when the frequency temperature coefficient Q of the magnetostrictive materials -1 When the value is large, the elastic wave signal in the device can be greatly attenuated along with the change of the distance, so that the device can not work normally. Therefore, the magnetostrictive material must have a large λ at the same time s Value and low Q -1 The reliability and stability of the device can be ensured.
Among the several classes of magnetostrictive alloy materials available, Q of the material -1 The value is generally large, and the use requirement of a high-precision remote transmission sensor is difficult to meet. Q of most FeNi-based magnetostrictive material -1 The value is generally 3X 10 -3 ~5×10 -4 Q of FeCo, FeGa and FeAl-based highly magnetostrictive material -1 Values generally higher than 1X 10 -3 . Although the rare earth giant magnetostrictive material has an ultrahigh saturated magnetostrictive coefficient, the rare earth giant magnetostrictive material is large in brittleness, cannot be easily processed into a filament with a size required by a sensor, and cannot transmit signals caused by magnetostriction for a long distance due to excessive internal consumption. Having a small Q -1 Elastic alloys with values such as 3J33 are typically 1X 10 -4 ~4×10 -5 But the saturation magnetostriction coefficient is close to zero, and the magnetostriction effect is not generated. Therefore, there is a need to develop a magnetostriction film having a large magnetostriction property and a lower internal lossThe telescopic material is used for meeting the use requirement of high-precision components.
Disclosure of Invention
The invention aims to provide a magnetostrictive material with low internal consumption and large magnetostrictive coefficient and a manufacturing method thereof, which solve the problems of low sensitivity and poor remote transmission performance of a sensor caused by the fact that the conventional magnetostrictive material cannot have low internal consumption and large magnetostrictive coefficient. The material has a saturated magnetostriction coefficient lambda s of not less than 20 x 10 -6 Internal loss of Q -1 ≤1×10 -4 /° c, and has good processability.
The technical scheme of the invention is as follows:
the magnetostrictive alloy with low internal loss comprises the following components in percentage by weight: c: 0.02-0.05%, B: 0.007-0.015%, Ca: 0.002-0.01%, Mo: 0.10 to 0.99%, Nb: 1.0-2.0%, Ti: 3.1-4.0%, Al: 0.1-0.3%, Co: 1-2%, Ni: 55.01-70.00%, and the balance Fe and inevitable impurities.
The better technical scheme is that the alloy comprises the following components in percentage by weight: c: 0.03-0.05%, B: 0.007-0.009%, Ca: 0.002-0.004%, Mo: 0.60 to 0.93%, Nb: 1.3-1.6%, Ti: 3.2-3.5%, Al: 0.1 to 0.3%, Co: 1-2%, Ni: 55.1 to 60.00 percent, and the balance of Fe and inevitable impurities.
The impurities comprise the following components in percentage by weight: less than or equal to 0.002 percent of O, less than or equal to 0.1 percent of Si, less than or equal to 0.1 percent of Mn, less than or equal to 0.01 percent of S, less than or equal to 0.01 percent of P and less than or equal to 0.01 percent of Cr.
The preparation method of the alloy comprises the following steps:
1) taking the raw materials according to the proportion, carrying out vacuum melting, casting the raw materials into an electrode bar at 1500 ℃, and carrying out electroslag remelting after finishing to obtain an alloy steel ingot;
2) step 1), carrying out diffusion annealing on the alloy steel ingot at 1190-1210 ℃ for 2-8h to obtain a billet;
3) hot rolling:
step 2), hot rolling the billet at 900-1140 ℃ to roll the billet into a wire;
4) and (3) heat treatment:
step 3) continuously heat-treating the wire under the protection of hydrogen to obtain an alloy wire;
5) drawing
Step 4), drawing and reducing the alloy wire subjected to heat treatment to enable the size of the wire to be equal to that of the alloy wire
Figure BDA0003546365920000031
6) Electrolytic polishing and aging heat treatment
The method is characterized in that: step 3) the diameter of the wire is
Figure BDA0003546365920000032
The continuous heat treatment method in the step 4) comprises the following steps: (980-1070) and +/-5 ℃ for 0.5-2 hours.
And 5) performing electrolytic polishing on the reduced-diameter alloy wire rod obtained in the step 5), and then performing aging heat treatment in vacuum.
Polishing in the step 6), wherein the take-up speed is 0.05M/s, and the electrolyte is 5-15% of NaNO 3 +5~15%NaCl+H 2 And (4) O solution.
And 6) carrying out aging heat treatment, wherein the heat treatment system is 630-690 ℃, the temperature is kept for 3-5 hours, and the furnace cooling is carried out.
In the alloy of the present invention:
ni and Fe are used as basic elements of an austenite structure matrix formed by the alloy, have large magnetostriction performance and play a role in obtaining good cold and hot processing performance. Ni is effectively precipitated when alloying elements such as Ti, Al and Ni 3 The (TiAl) intermetallic compound strengthens the alloy, and precipitated phases are mutually wound and staggered with dislocations in a matrix, so that the movement of the dislocations is hindered, and the alloy has low internal consumption.
Mo and Nb initiate the action of the solid solution strengthening alloy, and a trace amount of C forms a fine carbide strengthening alloy with Ti, Nb, and the like.
Co can enter Ni 3 The (TiAl) intermetallic compound further strengthens the alloy, reduces the internal consumption of the alloy, and can also improve the Curie point of the alloy, thereby improving the service temperature of the alloy.
B. Ca strengthens the grain boundary and improves the alloy processability. The impurity elements such as O, S, Si, P, Cr, Mn, etc. are too high to adversely affect the internal loss and magnetostrictive property of the alloy, and are therefore strictly limited.
The properties of the alloy depend on the alloy components and also depend on the structure of the alloy, and the structure of the alloy is determined by the processes of smelting, hot rolling, cold working, heat treatment and the like of the alloy.
According to the invention, the purity of the alloy can be improved by vacuum induction melting and slag remelting, and the comprehensive performance of the alloy is improved; the diffusion annealing can reduce or eliminate cast dendrite segregation and avoid the formation of strip structure defects in the subsequent processing process of the alloy; uniform and fine grain structure can be obtained by hot rolling; through the cold drawing processing with large deformation, the positions with a large amount of precipitated phase nucleation in the alloy are ensured, the precipitated phases are finer and are uniformly dispersed, and the internal consumption of the alloy can be remarkably reduced while the alloy strengthening is promoted. By electrolytic polishing, the surface quality of the alloy material can be effectively improved, and the internal consumption of the alloy is further reduced; finally, an aging heat treatment process is adopted to precipitate intermetallic compound in the alloy in a dispersion way to strengthen the alloy.
The invention has the beneficial effects that:
1. the preparation method of the low-internal-consumption large-magnetostriction alloy is simple and convenient, short in preparation flow and low in preparation cost, and can be used for completing preparation through the working procedures of smelting, hot rolling, heat treatment, drawing and the like.
2. Through reasonable optimization design of alloy chemical components, the effects of all elements in the alloy are fully exerted, and the magnetostrictive alloy with low internal consumption and large magnetostrictive coefficient is prepared by combining the processes of vacuum induction melting, forging, hot rolling, heat treatment, drawing, electrolytic polishing and the like, so that the requirement of high-precision components on the alloy with low internal consumption and large magnetostrictive coefficient is met.
3. Applicants' experiments prove that the alloy of the invention has the saturated magnetostriction coefficient lambdas which is 22 multiplied by 10 -6 Internal loss Q -1 =8.9~9.3×10 -5 The alloy has very low internal loss and large saturated magnetostriction coefficient, effectively reduces the attenuation of signals in the magnetostriction material, and solves the problem of the magnetostriction material produced in the prior artFast signal attenuation, poor signal remote transmission performance and the like. Can be widely applied to various high-precision instruments and meters.
The preparation method of the low internal consumption large magnetostrictive alloy is simple and easy to implement, and the applicant tests and verifies that the saturated magnetostrictive coefficient lambdas of the low internal consumption large magnetostrictive alloy is 24-22 multiplied by 10 -6 Internal loss Q -1 =9.3-8.9×10 -5 The alloy has low internal consumption and large magnetostriction coefficient, effectively reduces the attenuation of elastic waves in the magnetostriction material, is applied to a magnetostriction sensor, and solves the technical problems of high signal attenuation, poor signal remote transmission performance and the like of the magnetostriction sensor produced in the prior art.
Drawings
FIG. 1 is a graph of the magnetostriction coefficient of the magnetostriction alloy material with low internal loss and large magnetostriction. DETAILED DESCRIPTION OF EMBODIMENT (S) OF INVENTION
The technical solution of the present invention is further illustrated and described by the following detailed description.
Example 1
The preparation method of the low-internal-consumption large-magnetostriction alloy material comprises the following steps of preparing a copper-containing aluminum net for lightning protection from aluminum foil:
(1) pure nickel, pure iron, pure niobium and other raw materials are mixed according to the proportion of C: 0.03%, B: 0.008%, Ca: 0.003%, Mo: 0.69%, Nb: 1.6%, Ti: 3.4%, Al: 0.15%, Co: 1.63%, Ni: 55.1 percent and the balance of Fe are proportioned, vacuum induction smelted and cast into an electrode bar at 1500 ℃, and the electrode bar is subjected to electroslag remelting after surface finishing: electrode bar is slowly inserted into slag in molten state (slag ratio: CaF) 2 60%;Al 2 O 3 15.0 percent; 15% of CaO; 10% of MgO; ) After the arc is started, the voltage is regulated to be 42V and the current is regulated to be 3750A, and then the material melting is started. And (3) performing hot feeding shrinkage for 4 times before remelting, cooling the steel ingot in a crystallizer for 40 minutes after the hot feeding shrinkage is finished, and demolding to obtain the low-internal-consumption large-magnetostriction alloy electroslag ingot with the phi of 155 mm.
2) Carrying out diffusion annealing on the alloy steel ingot obtained in the step 1) at 1190 ℃ for 7 h;
3) hot rolling:
hot rolling the square billet obtained in the step 2) at 900-1140 ℃ to obtain the finished product
Figure BDA0003546365920000061
A wire rod;
4): and (3) heat treatment:
and (3) placing the hot-rolled wire rod in the hydrogen protection continuous heat treatment furnace, and preserving heat for 2 hours at 990 +/-5 ℃ to obtain the magnetostrictive alloy wire rod with excellent deformability.
5) Drawing
Drawing and reducing the alloy wire subjected to the heat treatment in the step 4) to prepare a wire with a required size, wherein the typical size is
Figure BDA0003546365920000062
6) Electrolytic polishing
Performing electrolytic polishing on the wire rod (low internal consumption large magnetostriction alloy wire rod) subjected to drawing and reducing by using direct current, wherein the polishing and take-up speed is 0.05M/s, and the electrolyte is 8% of NaNO 3 +7%NaCl+H 2 And (4) O solution.
7) Aging heat treatment
And (3) placing the low-internal-consumption large-magnetostriction alloy wire not in step 6) in a vacuum heat treatment furnace for aging heat treatment, wherein the heat treatment system is that the temperature is kept at 650 ℃ for 4 hours, and the wire is cooled along with the furnace to obtain the low-internal-consumption large-magnetostriction alloy (wire).
Measuring the saturation magnetostriction coefficient of the alloy by adopting a resistance strain effect; measuring and calculating the internal loss of the alloy by adopting a peak width method according to the GB/T15006 standard, wherein the saturated magnetostriction coefficient lambdas of the magnetostriction alloy with low internal loss and large magnetostriction prepared by adopting the method is 22 multiplied by 10 -6 Internal loss Q -1 =8.9×10 -5 /℃。
Example 2
Pure nickel, pure iron, pure niobium and other raw materials are mixed according to the proportion of C: 0.05%, B: 0.007%, Ca: 0.004%, Mo: 0.83%, Nb: 1.5%, Ti: 3.3%, Al: 0.11%, Co: 1.35%, Ni: 56.0 percent and the balance of Fe are proportioned, mixed, smelted in a vacuum induction mode, cast into an electrode bar at 1500 ℃, and subjected to electroslag remelting after the surface of the electrode bar is finished. The magnetostrictive alloy material with low internal consumption is prepared by the method of the embodiment 1.
Measuring the saturation magnetostriction coefficient of the alloy by adopting a resistance strain effect; and measuring and calculating the internal consumption of the alloy by adopting a peak width method according to the GB/T15006 standard. The saturation magnetostriction coefficient lambdas of the obtained low internal consumption giant magnetostriction alloy is 24 multiplied by 10 -6 Internal loss Q -1 =9.1×10 -5 /℃。
Example 3
Pure nickel, pure iron, pure niobium and other raw materials are mixed according to the proportion of C: 0.04%, B: 0.009%, Ca: 0.002%, Mo: 0.91%, Nb: 1.3%, Ti: 3.2%, Al: 0.17%, Co: 1.04%, Ni: 59.0 percent and the balance of Fe are proportioned, mixed, smelted by vacuum induction and cast into an electrode bar at 1500 ℃, and the electrode bar is subjected to electroslag remelting after surface finishing. The magnetostrictive alloy material with low internal consumption is prepared by the method of the embodiment 1.
Measuring the saturation magnetostriction coefficient of the alloy by adopting a resistance strain effect; and measuring and calculating the internal consumption of the alloy by adopting a peak width method according to the GB/T15006 standard. The saturation magnetostriction coefficient lambdas of the obtained low internal loss giant magnetostriction alloy is 22 multiplied by 10 -6 Internal loss Q -1 =9.3×10 -5 /℃。
Example 4
Pure nickel, pure iron, pure niobium and other raw materials are mixed according to the proportion of C: 0.035%, B: 0.008%, Ca: 0.003%, Mo: 0.64%, Nb: 1.45%, Ti: 3.37%, Al: 0.13%, Co: 1.29%, Ni: 56.8 percent and the balance of Fe are proportioned, mixed, smelted in a vacuum induction mode, cast into an electrode bar at 1500 ℃, and subjected to electroslag remelting after the surface of the electrode bar is finished. The magnetostrictive alloy material with low internal consumption is prepared by the method of the embodiment 1.
Measuring the saturation magnetostriction coefficient of the alloy by adopting a resistance strain effect; and measuring and calculating the internal consumption of the alloy by adopting a peak width method according to the GB/T15006 standard. The saturation magnetostriction coefficient lambdas of the obtained low internal loss giant magnetostriction alloy is 23 × 10 -6 Internal loss Q -1 =8.9×10 -5 /℃。
The above description is only a preferred embodiment of the present invention, and therefore should not be taken as limiting the scope of the invention, which is defined by the appended claims.

Claims (9)

1. The magnetostrictive alloy with low internal loss is characterized by comprising the following components in percentage by weight: c: 0.02-0.05%, B: 0.007-0.015%, Ca: 0.002-0.01%, Mo: 0.10 to 0.99%, Nb: 1.0-2.0%, Ti: 3.1-4.0%, Al: 0.1-0.3%, Co: 1-2%, Ni: 55.01-70.00%, and the balance Fe and inevitable impurities.
2. The alloy of claim 1, wherein the alloy comprises the following components in weight percent: c: 0.03-0.05%, B: 0.007-0.009%, Ca: 0.002-0.004%, Mo: 0.60 to 0.93%, Nb: 1.3-1.6%, Ti: 3.2-3.5%, Al: 0.1-0.3%, Co: 1.0-1.8%, Ni: 55.1 to 60.00 percent, and the balance of Fe and inevitable impurities.
3. The alloy of claim 1 or 2, wherein the impurities comprise, in weight percent: less than or equal to 0.002 percent of O, less than or equal to 0.1 percent of Si, less than or equal to 0.1 percent of Mn, less than or equal to 0.01 percent of S, less than or equal to 0.01 percent of P and less than or equal to 0.01 percent of Cr.
4. A method of making the alloy of claim 1, comprising the steps of:
1) taking the raw materials according to the proportion of claim 1 or 2, vacuum melting, casting into an electrode bar at 1500 ℃, and remelting electroslag after finishing to obtain an alloy steel ingot;
2) step 1), carrying out diffusion annealing on the alloy steel ingot at 1190-1210 ℃ for 2-8h to obtain a billet;
3) hot rolling:
step 2), hot rolling the billet at 900-1140 ℃ to roll the billet into a wire;
4) and (3) heat treatment:
step 3) continuously heat-treating the wire under the protection of hydrogen to obtain an alloy wire;
5) drawing
Step 4), drawing and reducing the alloy wire subjected to heat treatment until the size of the wire is
Figure FDA0003546365910000011
6) Electrolytic polishing and aging heat treatment.
5. The method according to claim 4, wherein: step 3) the diameter of the wire is
Figure FDA0003546365910000021
6. The method according to claim 4, wherein: the continuous heat treatment method in the step 4) comprises the following steps: (980-1070) and +/-5 ℃ for 0.5-2 hours.
7. The method according to claim 4, wherein: and 5) performing electrolytic polishing on the reduced-diameter alloy wire rod obtained in the step 5), and then performing aging heat treatment in vacuum.
8. The method according to claim 4, wherein: the polishing in the step 6) has the take-up speed of 0.05M/s and the electrolyte of 5-15 percent NaNO 3 +5~15%NaCl+H 2 And (4) O solution.
9. The method according to claim 4, wherein: and 6) carrying out aging heat treatment, wherein the heat treatment system is 630-690 ℃, the temperature is kept for 3-5 hours, and the furnace cooling is carried out.
CN202210250100.4A 2022-03-14 2022-03-14 Low-internal-consumption large-magnetostriction alloy and preparation method thereof Active CN114807681B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210250100.4A CN114807681B (en) 2022-03-14 2022-03-14 Low-internal-consumption large-magnetostriction alloy and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210250100.4A CN114807681B (en) 2022-03-14 2022-03-14 Low-internal-consumption large-magnetostriction alloy and preparation method thereof

Publications (2)

Publication Number Publication Date
CN114807681A true CN114807681A (en) 2022-07-29
CN114807681B CN114807681B (en) 2022-11-04

Family

ID=82529840

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210250100.4A Active CN114807681B (en) 2022-03-14 2022-03-14 Low-internal-consumption large-magnetostriction alloy and preparation method thereof

Country Status (1)

Country Link
CN (1) CN114807681B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4566917A (en) * 1980-03-25 1986-01-28 Allied Corporation Low magnetostriction amorphous metal alloys
CN102867608A (en) * 2012-08-29 2013-01-09 苏州宝越新材料科技有限公司 FeNi-based amorphous soft magnetic alloy and preparation method of soft magnetic alloy
CN103556071A (en) * 2013-11-21 2014-02-05 重庆材料研究院有限公司 High temperature radiation resistant magnetostriction alloy
CN103556005A (en) * 2013-11-21 2014-02-05 重庆材料研究院有限公司 High temperature FeNiCo magnetostriction alloy as well as preparation method thereof
CN104946955A (en) * 2015-06-26 2015-09-30 西安理工大学 Fe-Ni metal-based magnetostrictive material and preparation method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4566917A (en) * 1980-03-25 1986-01-28 Allied Corporation Low magnetostriction amorphous metal alloys
CN102867608A (en) * 2012-08-29 2013-01-09 苏州宝越新材料科技有限公司 FeNi-based amorphous soft magnetic alloy and preparation method of soft magnetic alloy
CN103556071A (en) * 2013-11-21 2014-02-05 重庆材料研究院有限公司 High temperature radiation resistant magnetostriction alloy
CN103556005A (en) * 2013-11-21 2014-02-05 重庆材料研究院有限公司 High temperature FeNiCo magnetostriction alloy as well as preparation method thereof
CN104946955A (en) * 2015-06-26 2015-09-30 西安理工大学 Fe-Ni metal-based magnetostrictive material and preparation method thereof

Also Published As

Publication number Publication date
CN114807681B (en) 2022-11-04

Similar Documents

Publication Publication Date Title
US8795449B2 (en) Magnetostrictive material and preparation method thereof
CN106868379A (en) A kind of high-entropy alloy with big magnetostriction coefficient and preparation method thereof
US20090039714A1 (en) Magnetostrictive FeGa Alloys
CN104328325B (en) Iron-nickel-based low-delaying constant-elastic alloy used in diaphragm capsule sensor and preparation method thereof
CN113265565B (en) Iron-nickel soft magnetic alloy with high magnetic conductivity and high magnetic induction and preparation method thereof
US11851735B2 (en) High-strength and ductile multicomponent precision resistance alloys and fabrication methods thereof
CN105861935B (en) Excellent Fe 36Ni invar alloy materials of a kind of thermoplasticity and preparation method thereof
CN112760565B (en) Fe-Ni-Mo alloy for buzzer and preparation method thereof
CN109609844B (en) Method for improving high silicon steel plate blank thermal deformation plasticity by adding heavy rare earth yttrium element
CN114807681B (en) Low-internal-consumption large-magnetostriction alloy and preparation method thereof
CN101465406B (en) High-performance polycrystal texture Fe-Ga-based magnetic deformation slice material and preparation method thereof
CN114507823B (en) Ultrahigh-strength non-magnetic high manganese steel and preparation method thereof
CN102176507A (en) Preparation method of FeGaYB lamellate magnetostriction material
CN111705255B (en) high-Q-value low-frequency temperature coefficient constant-elasticity alloy and preparation method thereof
CN107841686B (en) The Fe-Ga-Al base strip alloy material and its manufacture craft of giant magnetostrictive driver performance and application
CN111235491A (en) High-strength high-plasticity shape memory steel and preparation method thereof
JPS5891121A (en) Production of high-tensile hot-rolled steel plate having high magnetic flux density
CN113621891B (en) Polycrystalline FeNiCoAlNbV hyperelastic alloy and preparation method thereof
JPH04116141A (en) High-hardness and low-permeability nonmagnetic functional alloy and its production
JP2955438B2 (en) Stainless steel for superconducting material conduit
JPH08269547A (en) Production of stainless steel plate excellent in cryogenic characteristic after superconducting material forming heat treatment
CN111074175A (en) FeAl4 bar and production process thereof
CN116970867A (en) High manganese steel with high strength and high damping and preparation method thereof
CN113897559A (en) High-saturation-magnetic-induction low-loss soft magnetic alloy and production method thereof
CN113564465A (en) Forging FeCo alloy with stretching and impact toughness and preparation method thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant