CN114807550B - 一种高强塑性层状核用双相不锈钢及其制备方法 - Google Patents

一种高强塑性层状核用双相不锈钢及其制备方法 Download PDF

Info

Publication number
CN114807550B
CN114807550B CN202210608874.XA CN202210608874A CN114807550B CN 114807550 B CN114807550 B CN 114807550B CN 202210608874 A CN202210608874 A CN 202210608874A CN 114807550 B CN114807550 B CN 114807550B
Authority
CN
China
Prior art keywords
alloy
stainless steel
duplex stainless
phase
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210608874.XA
Other languages
English (en)
Other versions
CN114807550A (zh
Inventor
张金钰
高少华
刘帅洋
刘刚
孙军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Jiaotong University
Original Assignee
Xian Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Jiaotong University filed Critical Xian Jiaotong University
Priority to CN202210608874.XA priority Critical patent/CN114807550B/zh
Publication of CN114807550A publication Critical patent/CN114807550A/zh
Application granted granted Critical
Publication of CN114807550B publication Critical patent/CN114807550B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • C21D1/28Normalising
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

本发明公开了一种高强塑性层状核用双相不锈钢及其制备方法,将两相区层状不锈钢加热至750℃‑850℃之间进行1h的短时保温,空冷至室温,得到α相和稳定性很高的γ相;与传统方法相比,以本发明制备的双相钢强度提升30%到大约920MPa的同时,塑性较传统方法提高40%以上。随后,将上述合金冷轧50%,轧制变形后进行1150℃的固溶处理,用水进行快速冷却,冷却水的温度为室温,随后进行轧制时效。以此方法制备的双相钢强度较固溶态提升大约150%。

Description

一种高强塑性层状核用双相不锈钢及其制备方法
技术领域
本发明属于金属材料领域,涉及一种高强塑性层状核用双相不锈钢及其制备方法。
背景技术
全世界有400多个正在运行的核反应堆,提供了约13%的世界电力。核电已经被证明是一种可靠、环境可持续且有成本效益的大型电力来源。在这些条件下,燃料热导率的下降迅速推动燃料温度升高,导致Zr合金包层在700℃至1100℃的温度下爆裂。全世界都在想进一步提高正常和瞬态运行条件下轻水反应堆的可靠性、经济性和安全性。目前,ZinkleS.J.et.al在Journal of Nuclear Materials,2014,448(1):374-9.一文中提出探索耐事故燃料的三种一般策略:一是优化当前最先进的锆合金包层包括使用涂层技术,进而提高包层的抗氧化性;其二,通过替代现有的铀基氧化物燃料颗粒,采用高密度和高导热性燃料;第三,则是采用抗氧化的高性能包层替换锆合金包层。
此外,Terrani K.A.,Zinkle S.J.et.al的Journal of Nuclear Materials,2014, 448(1):420-35一文表明与现有的锆合金相比,高性能不锈钢等抗氧化结构合金在较宽的温度范围内具有提高强度和抗氧化性的潜力。早期的商业反应堆成功地在压水反应堆中使用了奥氏体不锈钢包层,而由于应力腐蚀开裂问题,它们在沸水反应堆中的性能较差。Journal of Nuclear Materials,2013,440(1):420-7. 总结了在冷却液损失事故(LOCAs)的情况下,目前有两种主要类型的高温抗氧化合金。一种是Kanthal APMT铁素体合金,其标称成分为Fe–22wt.%Cr– 5Al–3Mo,该合金中包括各种Cr和Al以及氧化物分散强化(ODS)变体,在高温下具有更高的抗蠕变性。另外一种是标准的商用奥氏体310不锈钢:Fe–25wt.%Cr–20Ni–2Mn。以标准锆合金为基准,这两种铁基合金在1200℃高温水蒸气氧化反应中,展现出了较好的抗氧化性。Materials and Corrosion,2009, 60(11):876-81.一文表明,合金必须包含至少3.2wt.%的Al才能在高温下形成保护性氧化层。因而,Fe-13Cr-4.5Al-Y被选择作为基础合金成分,通过添加微合金,例如Mo,Nb,C和Si,用于进一步开发。Gussev M.N.,Field K.G., Yamamoto Y.在2017年发表的Materials&Design,2017,129表明当前最符合核电站用FeCrAl合金的组成应该是Fe-(10~18)Cr-(2~ 6)Al-2Mo-1Nb-0.2Si-0.05Y(wt.%)。
对于力学性能来说,铁素体合金相对奥氏体来说具有较高的屈服强度,通过在铁素体合金中加入Ni元素可以有效改变合金的微观组织,Ni是奥氏体稳定元素,Ni元素的富集使得奥氏体在冷却至室温时不会转变为马氏体(Materials Letters,1995,24(4):239-42.)。当添加的Ni含量从10wt.%变化到60wt.%时,合金从完全铁素体转变成完全的奥氏体相。虽然奥氏体的屈服强度和抗拉强度较低,但其表现出了较好的拉伸延展性和加工硬化能力,有利于过时效初级阶段的冲击韧性,但长时间的时效会导致金属间化合物的粗化,产生严重的脆化现象(Materials Science and Engineering:A,2005,398(1):367-72.)。尽管相间析出 (IP)现象在1970年代首次引起了科学家和钢铁开发商的注意(MetalScience Journal,1968,2(1):104-6.),JFE(日本)开发了一种强度为780MPa的含钛钼高强度低合金(HSLA)钢(ISIJ International,2004,44(11):1945-51.),远高于常规HSLA钢的550-600MPa水平。
目前,FeCrAl合金在核用材料中的强塑性和加工性能不能满足当下核包壳材料发展的要求,从而严重限制核技术的发展。在此基础上通过添加与Cr含量接近的Ni元素形成奥氏体/铁素体两相钢,通过两相含量的均衡,在不损失耐蚀性的前提下还能够在较大范围内对合金的强塑性进行调控,此外,Laves相和B2相在热处理过程中的粗化将对合金的塑性产生十分恶劣的影响,同时在异质基体上析出的各种形态(针状、球状)和尺寸的弥散相也会在很大程度影响合金的强塑性。
发明内容
针对现有技术中存在的问题,本发明的目的在于克服现有铁素体奥氏体双相钢强塑性制约关系及其制备方法的缺点,提供一种高强塑性异质层状结构双相钢及其制备方法,通过引入细小析出物的分散体,还可以实现抗蠕变性的重大改进,这为位错运动提供了有效的障碍,例如马氏体时效钢中的金属间析出物。该双相钢在显著提高强度的同时保持良好的塑性,并且制备方法相对简单。
本发明是通过以下技术方案来实现:
一种高强塑性层状核用双相不锈钢的制备方法,包括以下步骤:
步骤1、对合金进行热锻后冷却至温室;
步骤2、对步骤1得到合金在700℃-900℃进行正火处理;
步骤3、对步骤2得到合金进行冷轧后,在1100℃-1120℃进行固溶处理;
步骤4、对步骤3得到合金进行冷轧后,在550℃-700℃进行时效处理,得到双相不锈钢合金。
优选的,步骤1中将合金加热至1000℃-1100℃,然后保温3h-5h后进行热锻。
优选的,步骤2中正火处理的方法为,将合金在700℃-900℃保温1h后冷却至室温。
优选的,步骤2中所述冷却方式为空冷。
优选的,步骤3中所述固溶处理的方法为,将合金在1100℃-1120℃保温 10min,然后冷却至室温。
优选的,步骤3中所述冷却方式为水冷。
优选的,步骤4中所述时效处理的方法,将合金在550℃-700℃保温1-5h 后冷却至室温。
优选的,步骤4中所述冷却方式为空冷。
优选的,所述热轧和冷轧的下压量为50%。
一种高强塑性层状核用双相不锈钢,该双相不锈钢的组织包括微米级板条状α初生相与γ初生相、微米级相间Laves析出相和纳米级针状、球状晶内 B2相。
与现有技术相比,本发明具有以下有益的技术效果:
本发明提供的高强塑性异质结构锆合金的制备方法,在传统的轧制工艺之前,首先将热锻态双相钢在700℃-900℃的温度下进行保温使得合金元素在α相和γ相之间进行充分的再分配,根据合金相图,700℃-900℃下奥氏体含量较高,所得组织的塑性较好,有效抑制后续冷轧过程中的裂纹萌生。其次,将冷轧后的双相钢在1100℃-1120℃进行淬火并冷轧,将大量尺寸较大的析出相回溶到基体的同时细化两相片层,并引入大量位错。最后,将轧制后的试样在550℃ -700℃进行时效处理,有助于位错的湮灭和尺寸更小的沉淀相的析出。
本发明制备方法工艺流程简单,能够以便于操作的工艺得到具有层状异质结构的双相钢,异质变形能够为双相钢提供额外的背应力强化,能够在保持双相钢强度的同时提高塑性。与传统方法相比,采用本方法制备的双相钢塑性保持在20%的同时,屈服强度达到了奥氏体铁素体双相钢从未达到的1400MPa,较Cu掺杂细化沉淀颗粒的双相钢提升了250MPa。
附图说明
图1是本发明步骤2的双相钢中组织形貌分布的电镜照片。
图2是本发明步骤2的双相钢的拉伸工程应力-应变曲线图。
图3是本发明步骤3的双相钢中组织形貌分布的电镜照片。
图4是本发明步骤3的双相钢的拉伸工程应力-应变曲线图。
图5是本发明步骤5的双相钢中组织形貌分布的电镜照片。
图6是本发明步骤5的双相钢的拉伸工程应力-应变曲线图。
图7是本发明步骤7的奥氏体与铁素体中析出相分布的TEM电镜照片。
图8是本发明步骤7的双相钢的拉伸工程应力-应变曲线图。
图9是本发明热锻态与正火态FeCrNiAlNb合金室温拉伸曲线。
图10是本发明固溶态与时效态FeCrNiAlNb合金室温拉伸曲线。
具体实施方式
下面结合附图对本发明做进一步的详细说明,所述是对本发明的解释而不是限定。
一种高强塑性层状核用双相不锈钢的制备方法,包括以下步骤:
步骤1、将铸态FeNiCrAlNb合金加热至1000℃-1100℃之间然后保温3h-5h,该合金的内部形成α相和稳定性很高的γ相;
步骤2、对步骤1得到的合金加热至1000℃-1100℃后进行热锻,然后空冷至室温得到层状结构合金。
该步骤中热锻的下压量为50%。该步骤得到的层状结构合金组织形貌如图 1所示,微米级层状α、γ初生相、亚微米级球状相间Laves相均匀分布。经本发明工艺处理后的合金强度-塑性曲线如图2所示,显示出较好强度/塑性组合,抗拉强度达到了800MPa,均匀延伸率达14%。
步骤3、对步骤2得到的层状结构合金进行正火处理,空冷至室温得到晶粒尺寸较小的层状结构合金。
正火处理的方法为,将层状结构合金加热至700℃-900℃,保温1h。
本步骤得到的合金组织形貌如图3所示,微米级层状α、γ初生相、亚微米级块状相间Laves相均匀分布,奥氏体含量有所提升,固溶强化效果提升。经本发明工艺处理后的合金强度-塑性曲线如图4所示,显示出优异的强度/塑性组合,抗拉强度达到了1100MPa,均匀延伸率达18%。
步骤4、对步骤3得到的层状结构合金进行冷轧处理,得到进一步细化层状结构的板条状合金。
所述冷轧的下压量为50%。
步骤5、对步骤4得到合金进行固溶处理,然后水冷至室温得到固溶态层状结构双相不锈钢。
固溶处理的方法为,将合金加热至1100℃-1120℃后保温10min。
本步骤得到的合金组织形貌如图5所示,微米级层状α、γ初生相、亚微米级块状相间Laves相均匀分布。经本发明工艺处理后的合金强度-塑性曲线如图6所示,显示出优异的塑性,层状结构明显细化,在保持抗拉强度达到了1000MPa的同时,断裂延伸率达30%。
步骤6、对步骤5得到的合金进行冷轧处理,进一步细化层状结构的板条厚度。
所述冷轧下压量为50%。
步骤7、对步骤6得到的合金进行时效处理,空冷至室温得到双相不锈钢。
所述失效处理的方法为,将合金加热至550℃-700℃,保温1-5h后空冷至室温。
上述室温均为20~30℃。
上述方法制备的双相不锈钢的金相组织为均匀分布的层厚在5~10μm的铁素体奥氏体板条,同时大量不同尺寸不同形态的微米至纳米级析出相的耦合作用,使得该合金具有非常优异的综合力学性能。其层状结构之间含有尺寸分布较广的Laves相,铁素体内部存在纳米级球状B2相,奥氏体内部存在纳米级针状B2相。
该双相不锈钢包括微米级板条状α初生相与γ初生相、微米级相间Laves 析出相和纳米级针状、球状晶内B2相。本步骤得到的层时效态层状结构双相不锈钢的基体相中沉淀相形貌如图7所示,纳米级针状析出相与纳米级球状析出相分别在奥氏体与铁素体中形成,大幅提升了双相钢的屈服强度。经本发明工艺处理后的合金强度-塑性曲线如图8所示,显示出极高的强度/塑性组合,在保持屈服强度达到了1400MPa的同时,抗拉强度达到1550MPa,断裂延伸率达20%。
实施例1
一种高强塑性层状核用双相不锈钢的制备方法,包括以下步骤:
步骤1、将铸态FeNiCrAlNb合金加热至1000℃然后保温3h;
步骤2、对步骤1得到的合金加热至1000℃-1100℃后进行热锻,下压量为 50%,然后空冷至室温得到层状结构合金。
步骤3、对步骤2得到的层状结构合金加热至700℃并保温1h。
步骤4、对步骤3得到的层状结构合金进行冷轧处理,下压量为50%,得到进一步细化层状结构的板条状合金。
步骤5、对步骤4得到合金进行加热至1100℃保温10min,然后水冷至室温得到固溶态层状结构双相不锈钢。
步骤6、对步骤5得到的合金进行冷轧处理,冷轧下压量为50%,得到进一步细化层状结构的板条厚度。
步骤7、对步骤6得到的合金加热至550℃,保温2h后空冷至室温,得到双相不锈钢。
实施例2
一种高强塑性层状核用双相不锈钢的制备方法,包括以下步骤:
步骤1、将铸态FeNiCrAlNb合金加热至1050℃之间然后保温4h;
步骤2、对步骤1得到的合金加热至1000℃-1100℃后进行热锻,下压量为 50%,然后空冷至室温得到层状结构合金。
步骤3、对步骤2得到的层状结构合金加热至800℃并保温1h。
步骤4、对步骤3得到的层状结构合金进行冷轧处理,下压量为50%,得到进一步细化层状结构的板条状合金。
步骤5、对步骤4得到合金进行加热至1150℃保温10min,然后水冷至室温得到固溶态层状结构双相不锈钢。
步骤6、对步骤5得到的合金进行冷轧处理,冷轧下压量为50%,得到进一步细化层状结构的板条厚度。
步骤7、对步骤6得到的合金加热至650℃,保温2h后空冷至室温,得到双相不锈钢。
实施例3
一种高强塑性层状核用双相不锈钢的制备方法,包括以下步骤:
步骤1、将铸态FeNiCrAlNb合金加热至1100℃之间然后保温4h;
步骤2、对步骤1得到的合金加热至1000℃-1100℃后进行热锻,下压量为 50%,然后空冷至室温得到层状结构合金。
步骤3、对步骤2得到的层状结构合金加热至900℃并保温1h。
步骤4、对步骤3得到的层状结构合金进行冷轧处理,下压量为50%,得到进一步细化层状结构的板条状合金。
步骤5、对步骤4得到合金进行加热至1200℃保温10min,然后水冷至室温得到固溶态层状结构双相不锈钢。
步骤6、对步骤5得到的合金进行冷轧处理,冷轧下压量为50%,得到进一步细化层状结构的板条厚度。
步骤7、对步骤6得到的合金加热至700℃,保温5h后空冷至室温,得到双相不锈钢。
通过Cr、Al、Nb、C等元素的合金化和热机械加工可以在铁素体钢中形成相间纳米级析出物和团簇,提高合金的晶界强化、沉淀强化和团簇强化效应。 Ni是奥氏体稳定化元素,Cr、Al是铁素体稳定元素。为了获得显着的强化效果,析出物应该是细小的和高密度的,以便在塑性变形过程中严格限制位错的移动。
本发明公开了一种具有高强塑性层状结构的双相不锈钢的制备方法,将两相区层状不锈钢加热至750℃-850℃之间进行1h的短时保温,空冷至室温,得到α相和稳定性很高的γ相;与传统方法相比,以本发明制备的双相钢强度提升30%到大约920MPa的同时,塑性较传统方法提高40%以上。随后,将上述合金冷轧50%,轧制变形后进行1150℃的固溶处理,用水进行快速冷却,冷却水的温度为室温,随后进行轧制时效。以此方法制备的双相钢强度较固溶态提升大约150%,到1400MPa。同时,强塑积同固溶态基本保持一致,约为30GPa%。该方法能够得到所述层状结构双相不锈钢包括微米级板条状α初生相与γ初生相、微米级相间Laves析出相和纳米级针状、球状晶内B2相,大幅提高合金的屈服强度和应变硬化能力,从而得到高强度、大延伸率的双相钢。该双相钢制备工艺易操作、流程短,对设备要求低。
以上内容仅为说明本发明的技术思想,不能以此限定本发明的保护范围,凡是按照本发明提出的技术思想,在技术方案基础上所做的任何改动,均落入本发明权利要求书的保护范围之内。

Claims (10)

1.一种高强塑性层状核用双相不锈钢的制备方法,其特征在于,包括以下步骤:
步骤1、对合金进行热锻后冷却至温室;
步骤2、对步骤1得到合金在700℃-900℃进行正火处理;
步骤3、对步骤2得到合金进行冷轧后,在1100℃-1120℃进行固溶处理;
步骤4、对步骤3得到合金进行冷轧后,在550℃-700℃进行时效处理,得到双相不锈钢合金。
2.根据权利要求1所述的一种高强塑性层状核用双相不锈钢的制备方法,其特征在于,步骤1中将合金加热至1000℃-1100℃,然后保温3h-5h后进行热锻。
3.根据权利要求1所述的一种高强塑性层状核用双相不锈钢的制备方法,其特征在于,步骤2中正火处理的方法为,将合金在700℃-900℃保温1h后冷却至室温。
4.根据权利要求3所述的一种高强塑性层状核用双相不锈钢的制备方法,其特征在于,步骤2中所述冷却方式为空冷。
5.根据权利要求1所述的一种高强塑性层状核用双相不锈钢的制备方法,其特征在于,步骤3中所述固溶处理的方法为,将合金在1100℃-1120℃保温10min,然后冷却至室温。
6.根据权利要求5所述的一种高强塑性层状核用双相不锈钢的制备方法,其特征在于,步骤3中所述冷却方式为水冷。
7.根据权利要求1所述的一种高强塑性层状核用双相不锈钢的制备方法,其特征在于,步骤4中所述时效处理的方法,将合金在550℃-700℃保温1-5h后冷却至室温。
8.根据权利要求7所述的一种高强塑性层状核用双相不锈钢的制备方法,其特征在于,步骤4中所述冷却方式为空冷。
9.根据权利要求1所述的一种高强塑性层状核用双相不锈钢的制备方法,其特征在于,所述热锻和冷轧的下压量为50%。
10.一种权利要求1-9任一项所述制备方法制备的高强塑性层状核用双相不锈钢,其特征在于,该双相不锈钢的组织包括微米级板条状α初生相与γ初生相、微米级相间Laves析出相和纳米级针状、球状晶内B2相。
CN202210608874.XA 2022-05-31 2022-05-31 一种高强塑性层状核用双相不锈钢及其制备方法 Active CN114807550B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210608874.XA CN114807550B (zh) 2022-05-31 2022-05-31 一种高强塑性层状核用双相不锈钢及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210608874.XA CN114807550B (zh) 2022-05-31 2022-05-31 一种高强塑性层状核用双相不锈钢及其制备方法

Publications (2)

Publication Number Publication Date
CN114807550A CN114807550A (zh) 2022-07-29
CN114807550B true CN114807550B (zh) 2023-01-03

Family

ID=82519306

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210608874.XA Active CN114807550B (zh) 2022-05-31 2022-05-31 一种高强塑性层状核用双相不锈钢及其制备方法

Country Status (1)

Country Link
CN (1) CN114807550B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016108628A (ja) * 2014-12-09 2016-06-20 Jfeスチール株式会社 二相ステンレス鋼材の製造方法
CN107974642A (zh) * 2017-01-17 2018-05-01 上海落日新材料科技有限公司 一种刀具用沉淀硬化不锈钢及其制造方法
CN109440014A (zh) * 2019-01-14 2019-03-08 东北大学 一种低铬低镍双相不锈钢及其制备方法
CN112899444A (zh) * 2021-01-20 2021-06-04 东北大学 一种高强高韧铁素体-奥氏体双相不锈钢的热处理工艺

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017213781A1 (en) * 2016-06-06 2017-12-14 Exxonmobil Research And Engineering Company High strength cryogenic high manganese steels and methods of making the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016108628A (ja) * 2014-12-09 2016-06-20 Jfeスチール株式会社 二相ステンレス鋼材の製造方法
CN107974642A (zh) * 2017-01-17 2018-05-01 上海落日新材料科技有限公司 一种刀具用沉淀硬化不锈钢及其制造方法
CN109440014A (zh) * 2019-01-14 2019-03-08 东北大学 一种低铬低镍双相不锈钢及其制备方法
CN112899444A (zh) * 2021-01-20 2021-06-04 东北大学 一种高强高韧铁素体-奥氏体双相不锈钢的热处理工艺

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
超高强高韧化钢的研究进展和展望;罗海文等;《金属学报》;20200410(第04期);116-134 *

Also Published As

Publication number Publication date
CN114807550A (zh) 2022-07-29

Similar Documents

Publication Publication Date Title
CN109082591A (zh) 125ksi抗硫化氢应力腐蚀高强油套管用钢及其制备工艺
CN109628836B (zh) 一种高强度建筑结构用抗震耐火钢及其制备方法
CN100455692C (zh) 一种高强度耐候钢的生产方法
WO2021254028A1 (zh) 一种b2纳米粒子共格析出强化的超高强度马氏体时效不锈钢及制备方法
CN107988550B (zh) 一种压水堆核电站压力容器支承用钢及其制造方法
CN106498278B (zh) 一种高强度高延伸率低密度的中厚板及其制备方法
CN103131962B (zh) 一种高韧性的低合金高强度钢及其调质热处理方法
CN109136652B (zh) 核电关键设备用镍基合金大截面棒材及其制造方法
CN109136767B (zh) 一种核电站蒸汽发生器承压边界部件用钢及其制造方法
CN109811116B (zh) 一种耐事故包壳用FeCrAl基合金纳米晶材料的制备方法
CN111455146B (zh) 一种低合金马氏体钢强韧化处理方法及马氏体钢
CN109136653A (zh) 用于核电设备的镍基合金及其热轧板的制造方法
CN106119730B (zh) 一种具有高温机械性能的低活化马氏体钢及热处理工艺方法
CN114086049A (zh) 2.0GPa级超高屈服强度塑性CoCrNi基中熵合金及其制备方法
CN109609848A (zh) 高强韧抗疲劳纳米析出物增强马-奥复相钢及其制备方法
CN108456827A (zh) 一种改进型加钒铬钼钢板及其生产方法
CN102876999A (zh) 一种调质型低温压力容器用钢板及其制备方法
CN105039862B (zh) Co-free复合强化二次硬化超高强度钢及制备方法
JP4189133B2 (ja) 普通低炭素鋼を低ひずみ加工・焼鈍して得られる超微細結晶粒組織を有する高強度・高延性鋼板およびその製造方法
CN106756517A (zh) 一种用于极地船舶的钢板及其制造方法
CN112553434A (zh) 一种低温韧性的Ni-Mo-Cr系钢及预备热处理工艺
CN107287500A (zh) 一种压水堆核电站安注箱基板用钢及其制造方法
CN108385023A (zh) 一种高强高韧核电稳压器用钢及其制造方法
CN108728742A (zh) 一种抗震耐火耐蚀钢以及中厚钢板和薄钢板的制造方法
CN106148651A (zh) 含Al节Co型高比强度二次硬化超高强度钢及制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant