CN114805942A - 一种rgo/cnc/cnf复合薄膜的制备方法 - Google Patents
一种rgo/cnc/cnf复合薄膜的制备方法 Download PDFInfo
- Publication number
- CN114805942A CN114805942A CN202210553168.XA CN202210553168A CN114805942A CN 114805942 A CN114805942 A CN 114805942A CN 202210553168 A CN202210553168 A CN 202210553168A CN 114805942 A CN114805942 A CN 114805942A
- Authority
- CN
- China
- Prior art keywords
- cellulose
- graphene oxide
- water bath
- composite film
- nanocrystal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002131 composite material Substances 0.000 title claims abstract description 38
- 238000002360 preparation method Methods 0.000 title claims abstract description 9
- 229920002678 cellulose Polymers 0.000 claims abstract description 119
- 239000001913 cellulose Substances 0.000 claims abstract description 119
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 96
- 229910021389 graphene Inorganic materials 0.000 claims abstract description 80
- 239000002159 nanocrystal Substances 0.000 claims abstract description 55
- 239000002121 nanofiber Substances 0.000 claims abstract description 55
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 40
- 239000000725 suspension Substances 0.000 claims abstract description 35
- 239000008367 deionised water Substances 0.000 claims abstract description 17
- 229910021641 deionized water Inorganic materials 0.000 claims abstract description 17
- 229910002804 graphite Inorganic materials 0.000 claims abstract description 15
- 239000010439 graphite Substances 0.000 claims abstract description 15
- 238000000034 method Methods 0.000 claims abstract description 15
- 238000001035 drying Methods 0.000 claims abstract description 14
- 238000005406 washing Methods 0.000 claims abstract description 14
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 claims abstract description 10
- 238000002791 soaking Methods 0.000 claims abstract description 8
- 235000010980 cellulose Nutrition 0.000 claims description 111
- 238000006243 chemical reaction Methods 0.000 claims description 15
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 12
- FGIUAXJPYTZDNR-UHFFFAOYSA-N potassium nitrate Chemical compound [K+].[O-][N+]([O-])=O FGIUAXJPYTZDNR-UHFFFAOYSA-N 0.000 claims description 10
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 claims description 8
- 238000003756 stirring Methods 0.000 claims description 7
- 229920000168 Microcrystalline cellulose Polymers 0.000 claims description 5
- 239000005457 ice water Substances 0.000 claims description 5
- 235000019813 microcrystalline cellulose Nutrition 0.000 claims description 5
- 239000008108 microcrystalline cellulose Substances 0.000 claims description 5
- 229940016286 microcrystalline cellulose Drugs 0.000 claims description 5
- 235000010333 potassium nitrate Nutrition 0.000 claims description 5
- 239000004323 potassium nitrate Substances 0.000 claims description 5
- 239000012286 potassium permanganate Substances 0.000 claims description 5
- 238000002156 mixing Methods 0.000 claims description 3
- 230000003247 decreasing effect Effects 0.000 claims description 2
- 230000001590 oxidative effect Effects 0.000 claims description 2
- 239000000376 reactant Substances 0.000 claims description 2
- 239000002023 wood Substances 0.000 claims description 2
- 238000004519 manufacturing process Methods 0.000 claims 1
- 230000001351 cycling effect Effects 0.000 abstract description 2
- 239000010410 layer Substances 0.000 description 7
- 238000004146 energy storage Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- 239000003990 capacitor Substances 0.000 description 3
- 238000000265 homogenisation Methods 0.000 description 3
- 230000014759 maintenance of location Effects 0.000 description 3
- 241000209094 Oryza Species 0.000 description 2
- 235000007164 Oryza sativa Nutrition 0.000 description 2
- 235000013339 cereals Nutrition 0.000 description 2
- 230000021615 conjugation Effects 0.000 description 2
- 238000005265 energy consumption Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000005580 one pot reaction Methods 0.000 description 2
- 235000009566 rice Nutrition 0.000 description 2
- 125000006850 spacer group Chemical group 0.000 description 2
- 239000002253 acid Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000002803 fossil fuel Substances 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 238000009830 intercalation Methods 0.000 description 1
- 230000002687 intercalation Effects 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 235000012149 noodles Nutrition 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000006479 redox reaction Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000005476 size effect Effects 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/18—Manufacture of films or sheets
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J3/00—Processes of treating or compounding macromolecular substances
- C08J3/12—Powdering or granulating
- C08J3/14—Powdering or granulating by precipitation from solutions
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/26—Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/30—Electrodes characterised by their material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/30—Electrodes characterised by their material
- H01G11/32—Carbon-based
- H01G11/36—Nanostructures, e.g. nanofibres, nanotubes or fullerenes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/84—Processes for the manufacture of hybrid or EDL capacitors, or components thereof
- H01G11/86—Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2301/00—Characterised by the use of cellulose, modified cellulose or cellulose derivatives
- C08J2301/02—Cellulose; Modified cellulose
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2301/00—Characterised by the use of cellulose, modified cellulose or cellulose derivatives
- C08J2301/04—Oxycellulose; Hydrocellulose
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2401/00—Characterised by the use of cellulose, modified cellulose or cellulose derivatives
- C08J2401/02—Cellulose; Modified cellulose
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2401/00—Characterised by the use of cellulose, modified cellulose or cellulose derivatives
- C08J2401/02—Cellulose; Modified cellulose
- C08J2401/04—Oxycellulose; Hydrocellulose
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/02—Elements
- C08K3/04—Carbon
- C08K3/042—Graphene or derivatives, e.g. graphene oxides
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K9/00—Use of pretreated ingredients
- C08K9/02—Ingredients treated with inorganic substances
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/13—Energy storage using capacitors
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Nanotechnology (AREA)
- Crystallography & Structural Chemistry (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
本发明公开了一种RGO/CNC/CNF复合薄膜的制备方法。所述方法主要包括:1、制备氧化石墨/纤维素混合悬浮液;2、将氧化石墨/纤维素混合悬浮液用去离子水离心洗涤后,在高压均质机中进行均质,得到氧化石墨烯/纤维素纳米晶/纤维素纳米纤维混合悬浮液;3、取氧化石墨烯/纤维素纳米晶/纤维素纳米纤维混合悬浮液于培养皿中烘干,并将烘干后的薄膜浸泡在氢碘酸溶液中,最后将浸泡后的薄膜经去离子水洗涤后得到还原氧化石墨烯/纤维素纳米晶/纤维素纳米纤维复合薄膜。本发明得到的复合薄膜具有比相同制备条件下获得的纯还原氧化石墨烯更高的比电容和更优异的循环稳定性。
Description
技术领域
本发明涉及超级电容器薄膜电极领域,具体涉及一种还原氧化石墨烯RGO/纤维素纳米晶CNC/纤维素纳米纤维CNF复合薄膜的制备方法。
背景技术
随着化石燃料的不断消耗以及环境问题的恶化,不但寻找清洁、可持续的能源迫在眉睫,而且与之相应的高效能源储存及转换技术也成为研究热点。超级电容器是一种介于电池和传统电容器之间的新型能源储存装置,通过电解质离子和电极之间的双电层效应、氧化还原反应或插层来实现能量储存,具有充放电速率快、功率密度高、循环寿命长等优点。
石墨烯是一种新兴的二维晶体材料,其特殊的结构使其具有超高的理论比电容(~550F/g),在超级电容器中具有广泛的应用。然而,由于石墨烯片层之间强烈的π-π共轭作用,使得石墨烯片在材料成型过程中很容易发生二次堆叠,减小了石墨烯的有效比表面积,从而极大地影响了石墨烯的电化学性能。一种有效的方法是在石墨烯片层之间引入间隔层,从而减轻石墨烯二次堆叠的影响,进而提升石墨烯的电化学性能。这种方法通常分为三步:(1)制备间隔层材料;(2)制备石墨烯;(3)间隔层材料与石墨烯混合并成型。这种方法通常比较繁杂,且会消耗更多的资源,包括原料、能源、时间等。因此,寻找一种更加简洁的方法制备高电化学性能的石墨烯复合材料具有实际意义。
发明内容
本发明的目的在于提供一种还原氧化石墨烯/纤维素纳米晶/纤维素纳米纤维复合薄膜的制备方法。得到的还原氧化石墨烯/纤维素纳米晶/纤维素纳米纤维复合薄膜具有较高的比电容与较好的循环稳定性,同时纤维素纳米晶和纤维素纳米纤维的存在也提升了还原氧化石墨烯/纤维素纳米晶/纤维素纳米纤维复合薄膜的拉伸强度。
本发明通过如下技术方案实现:
本发明包括以下步骤:
步骤(1)将石墨、硝酸钾、高锰酸钾和硫酸在冰水浴中混合并搅拌均匀,然后将反应物转移至温水浴中反应;
随后,向反应体系中加入去离子水,并调高水浴温度,进行搅拌;
最后,调低水浴温度,加入阔叶木微晶纤维素,并搅拌,搅拌结束后加入过氧化氢溶液终止反应,制得氧化石墨/纤维素混合悬浮液。
步骤(2)将步骤(1)中得到的混合悬浮液用去离子水离心洗涤后,在高压均质机中进行均质,得到氧化石墨烯/纤维素纳米晶/纤维素纳米纤维混合悬浮液;
步骤(3)取氧化石墨烯/纤维素纳米晶/纤维素纳米纤维混合悬浮液于培养皿中烘干,并将烘干后的薄膜浸泡在氢碘酸溶液中;
将浸泡后的薄膜经去离子水洗涤后得到还原氧化石墨烯/纤维素纳米晶/纤维素纳米纤维复合薄膜。
进一步说,步骤(2)中所述的温水浴的温度为35℃,在温水浴中反应0.5h,调高后的水浴温度为80℃,调低后的水浴温度为50℃。
进一步说,步骤(2)中所述的离心洗涤次数为2次,离心速率为10000rpm,单次离心时间为10min;
进一步说,步骤(2)中所述的高压均质压力为60-80MPa,均质时间为0.5h。
进一步说,步骤(3)中所述的烘干温度为45℃,烘干时间为12h;所述的氢碘酸溶液质量分数浓度为47%,浸泡条件为25℃下浸泡10min。
进一步说,步骤(3)中所述的还原氧化石墨烯/纤维素纳米晶/纤维素纳米纤维复合薄膜中还原氧化石墨烯:纤维素纳米晶:纤维素纳米纤维的质量比为1:0.1-1:0.1-2。
本发明的有益效果:
(1)通过本发明得到氧化石墨烯/纤维素纳米晶/纤维素纳米纤维三元混合物,三者相容性良好,并且能够以均匀分散液的形式稳定存在。同时,一锅法制备氧化石墨烯/纤维素纳米晶/纤维素纳米纤维三元混合物不仅减少了危险化学品的使用,更减少了能源的消耗,符合可持续发展理念。
(2)在简单的烘干及还原后,得到了还原氧化石墨烯/纤维素纳米晶/纤维素纳米纤维复合薄膜。“面条”状的纤维素纳米纤维穿插于还原氧化石墨烯片层之间,纤维素纳米纤维表面富含丰富的羟基,能与还原氧化石墨烯表面残留的含氧官能团产生氢键从而吸附于还原氧化石墨烯片层表面,防止还原氧化石墨烯片层间共轭作用而再次堆叠。“米粒”状的纤维素纳米晶由于其更小的尺寸,更容易进入还原氧化石墨烯和纤维素纳米纤维之间形成的空隙,增强了各组分之间的结合。“面条”(纤维素纳米纤维)和“米粒”(纤维素纳米晶)独特的尺寸效应协同促进了还原氧化石墨烯的结合并提升了还原氧化石墨烯的有效比表面积,从而能够增强复合薄膜的力学性能和比电容。
附图说明
图1为氧化石墨烯/纤维素纳米晶/纤维素纳米纤维悬浮液的透射电镜图。
图2为实施例1制备的还原氧化石墨烯/纤维素纳米晶/纤维素纳米纤维复合薄膜与纯还原氧化石墨烯薄膜在0.02V/s的扫面速率下的CV曲线图。
图3为实施例1制备的还原氧化石墨烯/纤维素纳米晶/纤维素纳米纤维复合薄膜与纯还原氧化石墨烯薄膜在1A/cm-3的电流密度下的GCD曲线图。
图4为实施例1制备的还原氧化石墨烯/纤维素纳米晶/纤维素纳米纤维复合薄膜与纯还原氧化石墨烯薄膜在1000次循环后的比电容保留率。
图5为实施例1制备的还原氧化石墨烯/纤维素纳米晶/纤维素纳米纤维复合薄膜与纯还原氧化石墨烯薄膜的拉伸强度-应变曲线图。
具体实施方式
为了进一步理解本发明,下面将结合实施例和对比例对本发明的实施方案作进一步详细的描述,但是本发明的实施方式并不限于此。除非另有说明。
本发明提出了一锅法制备还原氧化石墨烯/纤维素纳米晶/纤维素纳米纤维复合薄膜。本制备方法主要包括两个步骤:化学处理和机械处理。第一步,通过化学处理,石墨被强氧化剂氧化为氧化石墨烯,石墨片层间的距离增大,片层间的作用力减弱。与此同时,在硫酸的作用下,悬浮液中的一部分纤维素被水解,生成了纤维素纳米晶,得到含有纤维素纳米晶的氧化石墨/纤维素悬浮液。第二步,含有纤维素纳米晶的氧化石墨/纤维素悬浮液通过机械处理,在高压均质机的均质作用下,氧化石墨片层被打开,生成氧化石墨烯,而未水解纤维素的长链间的结合被破坏,生成纤维素纳米纤维,见图1,其CV曲线图见图2。
实施例1:
步骤(1):称取1.0g石墨,1.0g硝酸钾,5.0g高锰酸钾,将它们加入到50mL98%的硫酸中,在冰水浴中搅拌混合均匀。随后,将反应物转移至35℃温水浴中,反应0.5h。
步骤(2):将50mL去离子水加入到步骤(1)的悬浮液中,并在80℃水浴条件下搅拌0.5h,得到均匀悬浮液。
步骤(3):取1.0g微晶纤维素粉末加入到步骤(2)得到的均匀悬浮液中,并在50℃水浴条件下搅拌0.5h。
步骤(4):取20mL 30%的过氧化氢加入到步骤(3)的产物中以终止反应。将得到的悬浮液进行离心洗涤,离心条件为在10000rpm转速下离心10min,离心2次。
步骤(5):将步骤(4)中得到的离心产物分散到去离子水中,在60MPa的压力下高压均质0.5h,得到均匀的氧化石墨烯/纤维素纳米晶/纤维素纳米纤维混合悬浮液。
步骤(6):将步骤(5)得到的悬浮液滴入培养皿中,并置于45℃烘箱中烘干12h,得到氧化石墨烯/纤维素纳米晶/纤维素纳米纤维复合薄膜。
步骤(7):将步骤(6)得到的氧化石墨烯/纤维素纳米晶/纤维素纳米纤维复合薄膜浸泡于47%的氢碘酸溶液中还原10min,取出薄膜经去离子水洗涤后得到还原氧化石墨烯/纤维素纳米晶/纤维素纳米纤维复合薄膜。
图2为实施例1制备的还原氧化石墨烯/纤维素纳米晶/纤维素纳米纤维复合薄膜与纯还原氧化石墨烯薄膜在0.02V/s的扫面速率下的CV曲线图。
由图3可知,本实施例的还原氧化石墨烯/纤维素纳米晶/纤维素纳米纤维复合薄膜的比电容为171F/cm-3,纯还原氧化石墨烯薄膜的比电容为105F/cm-3。
由图4可知,在进行1000次充放电循环后,还原氧化石墨烯/纤维素纳米晶/纤维素纳米纤维复合薄膜的电容保留率为82.83%,纯还原氧化石墨烯薄膜的电容保留率为71.35%。
由图5可知,还原氧化石墨烯/纤维素纳米晶/纤维素纳米纤维复合薄膜的拉伸强度为7.03MPa,断裂伸长率为0.47%;纯还原氧化石墨烯薄膜的拉伸强度为4.51MPa,断裂伸长率为0.43%。
实施例2:
步骤(1):称取1.0g石墨,1.0g硝酸钾,5.0g高锰酸钾,将它们加入到50mL98%的硫酸中,在冰水浴中搅拌混合均匀。随后,将反应物转移至35℃温水浴中,反应0.5h。
步骤(2):将50mL去离子水加入到步骤(1)的悬浮液中,并在80℃水浴条件下搅拌0.5h,得到均匀悬浮液。
步骤(3):取2.0g微晶纤维素粉末加入到步骤(2)得到的均匀悬浮液中,并在50℃水浴条件下搅拌0.5h。
步骤(4):取10mL 30%的过氧化氢加入到步骤(3)的产物中以终止反应。将得到的悬浮液进行离心洗涤,离心条件为在10000rpm转速下离心10min,离心2次。
步骤(5):将步骤(4)中得到的离心产物分散到去离子水中,在70MPa的压力下高压均质1.0h,得到均匀的氧化石墨烯/纤维素纳米晶/纤维素纳米纤维混合悬浮液。
步骤(6):将步骤(5)得到的悬浮液滴入培养皿中,并置于45℃烘箱中烘干12h,得到氧化石墨烯/纤维素纳米晶/纤维素纳米纤维复合薄膜。
步骤(7):将步骤(6)得到的氧化石墨烯/纤维素纳米晶/纤维素纳米纤维复合薄膜浸泡于47%的氢碘酸溶液中还原10min,取出薄膜经去离子水洗涤后得到还原氧化石墨烯/纤维素纳米晶/纤维素纳米纤维复合薄膜。
实施例3:
步骤(1):称取1.0g石墨,1.0g硝酸钾,5.0g高锰酸钾,将它们加入到50mL98%的硫酸中,在冰水浴中搅拌混合均匀。随后,将反应物转移至35℃温水浴中,反应1.0h。
步骤(2):将50mL去离子水加入到步骤(1)的悬浮液中,并在80℃水浴条件下搅拌0.5h,得到均匀悬浮液。
步骤(3):取3.0g微晶纤维素粉末加入到步骤(2)得到的均匀悬浮液中,并在80℃水浴条件下搅拌0.5h。
步骤(4):取20mL 30%的过氧化氢加入到步骤(3)的产物中以终止反应。将得到的悬浮液进行离心洗涤,离心条件为在10000rpm转速下离心10min,离心2次。
步骤(5):将步骤(4)中得到的离心产物分散到去离子水中,在80MPa的压力下高压均质0.5h,得到均匀的氧化石墨烯/纤维素纳米晶/纤维素纳米纤维混合悬浮液。
步骤(6):将步骤(5)得到的悬浮液滴入培养皿中,并置于45℃烘箱中烘干12h,得到氧化石墨烯/纤维素纳米晶/纤维素纳米纤维复合薄膜。
步骤(7):将步骤(6)得到的氧化石墨烯/纤维素纳米晶/纤维素纳米纤维复合薄膜浸泡于47%的氢碘酸溶液中还原10min,取出薄膜经去离子水洗涤后得到还原氧化石墨烯/纤维素纳米晶/纤维素纳米纤维复合薄膜。
本发明利用制备氧化石墨烯过程中多余的酸来水解纤维素获得纤维素纳米晶,并一起进行均质从而获得氧化石墨烯/纤维素纳米晶/纤维素纳米纤维混合悬浮液,不仅能够减少危险化学品的使用,还能够降低能源消耗。另外,纤维素纳米晶和纤维素纳米纤维能够作为还原氧化石墨烯的间隔层,增加还原氧化石墨烯的有效比表面积。结果表明,相比于纯还原氧化石墨烯薄膜,该还原氧化石墨烯/纤维素纳米晶/纤维素纳米纤维复合薄膜具有更高的比电容、更优异的循环稳定性和机械性能。该还原氧化石墨烯/纤维素纳米晶/纤维素纳米纤维复合薄膜具有进一步组装成柔性超级电容器或者可穿戴电子设备,从而在柔性能源储存电子器件领域具有广泛的应用。
Claims (6)
1.一种RGO/CNC/CNF复合薄膜的制备方法,其特征在于包括以下步骤:
步骤(1)将石墨、硝酸钾、高锰酸钾和硫酸在冰水浴中混合并搅拌均匀,然后将反应物转移至温水浴中反应;
随后,向反应体系中加入去离子水,并调高水浴温度,进行搅拌;
最后,调低水浴温度,加入阔叶木微晶纤维素,并搅拌;搅拌结束后加入过氧化氢溶液终止反应,制得氧化石墨/纤维素混合悬浮液;
步骤(2)将步骤(1)中得到的混合悬浮液用去离子水离心洗涤后,在高压均质机中进行均质,得到氧化石墨烯/纤维素纳米晶/纤维素纳米纤维混合悬浮液;
步骤(3)取氧化石墨烯/纤维素纳米晶/纤维素纳米纤维混合悬浮液于培养皿中烘干,并将烘干后的薄膜浸泡在氢碘酸溶液中;
将浸泡后的薄膜经去离子水洗涤后得到还原氧化石墨烯/纤维素纳米晶/纤维素纳米纤维复合薄膜。
2.根据权利要求1所述的制备方法,其特征在于:步骤(2)中所述的温水浴的温度为35℃,在温水浴中反应0.5 h,调高后的水浴温度为80℃,调低后的水浴温度为50℃。
3.根据权利要求1所述的制备方法,其特征在于:步骤(2)中所述的离心洗涤次数为2次,离心速率为10000 rpm,单次离心时间为10 min。
4.根据权利要求3所述的制备方法,其特征在于:步骤(2)中所述的高压均质压力为60-80 MPa,均质时间为0.5 h。
5.根据权利要求1所述的制备方法,其特征在于:步骤(3)中所述的烘干温度为45℃,烘干时间为12 h;所述的氢碘酸溶液质量分数浓度为47%,浸泡条件为25 ℃下浸泡10 min。
6.根据权利要求1所述的制备方法,其特征在于:步骤(3)中所述的还原氧化石墨烯/纤维素纳米晶/纤维素纳米纤维复合薄膜中还原氧化石墨烯:纤维素纳米晶:纤维素纳米纤维的质量比为1:0.1-1:0.1-2。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210553168.XA CN114805942B (zh) | 2022-05-19 | 2022-05-19 | 一种rgo/cnc/cnf复合薄膜的制备方法 |
PCT/CN2022/105806 WO2023221279A1 (zh) | 2022-05-19 | 2022-07-14 | 一种rgo/cnc/cnf复合薄膜的制备方法 |
NL2034015A NL2034015A (en) | 2022-05-19 | 2023-01-23 | Preparation method of rgo/cnc/cnf composite film |
US18/179,337 US11845853B2 (en) | 2022-05-19 | 2023-03-06 | Preparation method of composite films based on cellulose nanocrystals, cellulose nanofibers and reduced graphene oxide |
US18/504,118 US20240067804A1 (en) | 2022-05-19 | 2023-11-07 | Energy-saving and environment-friendly method for preparing nanocellulose based flexible conductive film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210553168.XA CN114805942B (zh) | 2022-05-19 | 2022-05-19 | 一种rgo/cnc/cnf复合薄膜的制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114805942A true CN114805942A (zh) | 2022-07-29 |
CN114805942B CN114805942B (zh) | 2022-12-16 |
Family
ID=82517384
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210553168.XA Active CN114805942B (zh) | 2022-05-19 | 2022-05-19 | 一种rgo/cnc/cnf复合薄膜的制备方法 |
Country Status (3)
Country | Link |
---|---|
CN (1) | CN114805942B (zh) |
NL (1) | NL2034015A (zh) |
WO (1) | WO2023221279A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115714173A (zh) * | 2022-11-30 | 2023-02-24 | 广东海洋大学 | 一种柔性锂硫电池正极材料及其制备方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106146899A (zh) * | 2016-06-21 | 2016-11-23 | 华南理工大学 | 一种氧化石墨烯‑纳米微晶纤维素复合材料薄膜及其制备方法 |
CN109896522A (zh) * | 2017-12-11 | 2019-06-18 | 山东省圣泉生物质石墨烯研究院 | 一种石墨烯复合纳米纤维素、制备方法和用途 |
CN113718543A (zh) * | 2021-08-11 | 2021-11-30 | 华南理工大学 | 一种有机酸水解结合纳米微射流均质一步法清洁制备纤维素纳米晶的方法及产物 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104876215A (zh) * | 2015-05-13 | 2015-09-02 | 华中科技大学 | 一种还原氧化石墨烯水分散液及制备方法 |
CN105860143A (zh) * | 2016-05-14 | 2016-08-17 | 上海大学 | 一种柔性纳米纤维素-石墨烯复合膜及其制备方法 |
US10957495B2 (en) * | 2018-01-03 | 2021-03-23 | Nanotek Instruments Group, Llc | Supercapacitor and electrode having cellulose nanofiber-spaced graphene sheets and production process |
CN108395578A (zh) * | 2018-01-23 | 2018-08-14 | 武汉理工大学 | 一种纤维素纳米纤维/氧化石墨烯复合膜的制备方法 |
EP3872172A1 (en) * | 2020-02-28 | 2021-09-01 | CIC nanoGUNE - Asociación Centro de Investigación Cooperativa en Nanociencias | Conductive cellulose composite materials and uses thereof |
CN112500609A (zh) * | 2020-11-04 | 2021-03-16 | 国际竹藤中心 | 一种轻质高强纤维素纳米晶/石墨烯复合薄膜及制备方法 |
-
2022
- 2022-05-19 CN CN202210553168.XA patent/CN114805942B/zh active Active
- 2022-07-14 WO PCT/CN2022/105806 patent/WO2023221279A1/zh unknown
-
2023
- 2023-01-23 NL NL2034015A patent/NL2034015A/en unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106146899A (zh) * | 2016-06-21 | 2016-11-23 | 华南理工大学 | 一种氧化石墨烯‑纳米微晶纤维素复合材料薄膜及其制备方法 |
CN109896522A (zh) * | 2017-12-11 | 2019-06-18 | 山东省圣泉生物质石墨烯研究院 | 一种石墨烯复合纳米纤维素、制备方法和用途 |
CN113718543A (zh) * | 2021-08-11 | 2021-11-30 | 华南理工大学 | 一种有机酸水解结合纳米微射流均质一步法清洁制备纤维素纳米晶的方法及产物 |
Non-Patent Citations (2)
Title |
---|
ZEJUN DINGDENG: ""Reduced graphene oxide/cellulose nanocrystal composite films with high specific capacitance and tensile strength"", 《INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES》 * |
苏占华主编: "《石墨电极材料》", 31 January 2020, 哈尔滨工业大学出版社 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115714173A (zh) * | 2022-11-30 | 2023-02-24 | 广东海洋大学 | 一种柔性锂硫电池正极材料及其制备方法 |
CN115714173B (zh) * | 2022-11-30 | 2023-09-29 | 广东海洋大学 | 一种柔性锂硫电池正极材料及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN114805942B (zh) | 2022-12-16 |
WO2023221279A1 (zh) | 2023-11-23 |
NL2034015A (en) | 2023-04-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Xiao et al. | Nanocellulose and its derived composite electrodes toward supercapacitors: Fabrication, properties, and challenges | |
Tafete et al. | Review on nanocellulose-based materials for supercapacitors applications | |
CN101781459B (zh) | 一种石墨烯/聚苯胺导电复合材料及其制备方法 | |
CN109880136B (zh) | 一种纳米纤维素/石墨烯纳米片复合膜的制备方法 | |
CN108630462B (zh) | 一种纳米纤维基一体化薄膜超级电容器及其制备方法 | |
CN109301210B (zh) | 一种碳纤维/氮化硼柔性复合电极及其制备方法与应用 | |
CN109546085A (zh) | 一种使用高粘导锂粘结剂的碳硅负极极片及其制备方法 | |
CN101000934A (zh) | 一种用于染料敏化太阳能电池的高性能金属/石墨复合对电极及其制备方法 | |
CN105405677A (zh) | 一种由石墨直接制备石墨烯-二氧化锰复合材料的方法及其应用 | |
CN102532891A (zh) | 一种石墨烯/聚苯胺纳米纤维复合材料及其制备方法及在超级电容器上的应用 | |
CN112185703B (zh) | 一种二维复合三明治结构介电储能材料及制备方法与应用 | |
CN114805942B (zh) | 一种rgo/cnc/cnf复合薄膜的制备方法 | |
CN107275124A (zh) | 一种薄膜型超级电容器电极的制备方法 | |
US20240067804A1 (en) | Energy-saving and environment-friendly method for preparing nanocellulose based flexible conductive film | |
Zhao et al. | A new environmentally friendly gel polymer electrolyte based on cotton-PVA composited membrane for alkaline supercapacitors with increased operating voltage | |
Chen et al. | High-performanced flexible solid supercapacitor based on the hierarchical MnCo2O4 micro-flower | |
CN105070522A (zh) | 石墨烯/二氧化钛纳米管制备柔性弯曲可折叠薄膜电极 | |
Chen et al. | Lignin-reinforced PVDF electrolyte for dendrite-free quasi-solid-state Li metal battery | |
Farma et al. | Addition of reduced graphene oxide to carbon shaft based on cerbera manghas mesocarp to improve energy storage performance of supercapacitor cells | |
CN113571681A (zh) | 一种空心二氧化钛/镍/碳复合材料及其制备方法和应用 | |
Chen et al. | Stretchable sodium-ion capacitors based on coaxial CNT supported Na 2 Ti 3 O 7 with high capacitance contribution | |
Huang et al. | Preparation, performance enhancement, and energy storage applications of lignin-based carbon nanofibers | |
Yang et al. | Preparation and electrochemical properties of Si@ C/CNTs composites derived from crosslinked chitosan | |
Liu et al. | All-Cellulose-based flexible Zinc-Ion battery enabled by waste pomelo peel | |
CN108878161B (zh) | 玫瑰花状Ni(OH)2/rGO复合电极材料及其制备方法和应用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |