CN114792213B - 一种颗粒药品质量稽查方法 - Google Patents
一种颗粒药品质量稽查方法 Download PDFInfo
- Publication number
- CN114792213B CN114792213B CN202210714471.3A CN202210714471A CN114792213B CN 114792213 B CN114792213 B CN 114792213B CN 202210714471 A CN202210714471 A CN 202210714471A CN 114792213 B CN114792213 B CN 114792213B
- Authority
- CN
- China
- Prior art keywords
- batch
- granular
- inspected
- medicines
- granular medicines
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000003814 drug Substances 0.000 title claims abstract description 339
- 238000007689 inspection Methods 0.000 title claims abstract description 45
- 238000000034 method Methods 0.000 title claims abstract description 37
- 229940079593 drug Drugs 0.000 claims abstract description 251
- 239000013598 vector Substances 0.000 claims abstract description 69
- 238000005070 sampling Methods 0.000 claims abstract description 42
- 238000004090 dissolution Methods 0.000 claims abstract description 36
- 238000011156 evaluation Methods 0.000 claims abstract description 25
- 230000001364 causal effect Effects 0.000 claims abstract description 18
- 230000009467 reduction Effects 0.000 claims description 22
- 239000008187 granular material Substances 0.000 claims description 10
- 238000012550 audit Methods 0.000 claims description 5
- 238000012545 processing Methods 0.000 abstract description 3
- 230000000875 corresponding effect Effects 0.000 description 116
- 230000008569 process Effects 0.000 description 10
- 238000004364 calculation method Methods 0.000 description 8
- 239000011159 matrix material Substances 0.000 description 7
- 230000000694 effects Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 238000009826 distribution Methods 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 238000013139 quantization Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 208000012260 Accidental injury Diseases 0.000 description 1
- 244000144730 Amygdalus persica Species 0.000 description 1
- 235000006040 Prunus persica var persica Nutrition 0.000 description 1
- 241000270273 Ptyas dhumnades Species 0.000 description 1
- 241000270666 Testudines Species 0.000 description 1
- 235000008326 Trichosanthes anguina Nutrition 0.000 description 1
- 244000078912 Trichosanthes cucumerina Species 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000007922 dissolution test Methods 0.000 description 1
- 229940126534 drug product Drugs 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000005469 granulation Methods 0.000 description 1
- 230000003179 granulation Effects 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 230000007794 irritation Effects 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000000825 pharmaceutical preparation Substances 0.000 description 1
- 238000000513 principal component analysis Methods 0.000 description 1
- 238000012847 principal component analysis method Methods 0.000 description 1
- 235000004252 protein component Nutrition 0.000 description 1
- 235000018102 proteins Nutrition 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000003809 water extraction Methods 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/06—Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
- G06Q10/063—Operations research, analysis or management
- G06Q10/0639—Performance analysis of employees; Performance analysis of enterprise or organisation operations
- G06Q10/06395—Quality analysis or management
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/213—Feature extraction, e.g. by transforming the feature space; Summarisation; Mappings, e.g. subspace methods
- G06F18/2135—Feature extraction, e.g. by transforming the feature space; Summarisation; Mappings, e.g. subspace methods based on approximation criteria, e.g. principal component analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/22—Matching criteria, e.g. proximity measures
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
- G06Q50/04—Manufacturing
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P90/00—Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
- Y02P90/30—Computing systems specially adapted for manufacturing
Landscapes
- Engineering & Computer Science (AREA)
- Business, Economics & Management (AREA)
- Human Resources & Organizations (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Data Mining & Analysis (AREA)
- General Physics & Mathematics (AREA)
- Strategic Management (AREA)
- Economics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- General Business, Economics & Management (AREA)
- Evolutionary Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Entrepreneurship & Innovation (AREA)
- Artificial Intelligence (AREA)
- Educational Administration (AREA)
- General Engineering & Computer Science (AREA)
- Development Economics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Marketing (AREA)
- Evolutionary Computation (AREA)
- Bioinformatics & Computational Biology (AREA)
- Tourism & Hospitality (AREA)
- Primary Health Care (AREA)
- General Health & Medical Sciences (AREA)
- Health & Medical Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Game Theory and Decision Science (AREA)
- Operations Research (AREA)
- Quality & Reliability (AREA)
- Medical Treatment And Welfare Office Work (AREA)
Abstract
Description
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210714471.3A CN114792213B (zh) | 2022-06-23 | 2022-06-23 | 一种颗粒药品质量稽查方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210714471.3A CN114792213B (zh) | 2022-06-23 | 2022-06-23 | 一种颗粒药品质量稽查方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114792213A CN114792213A (zh) | 2022-07-26 |
CN114792213B true CN114792213B (zh) | 2022-09-02 |
Family
ID=82463770
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210714471.3A Active CN114792213B (zh) | 2022-06-23 | 2022-06-23 | 一种颗粒药品质量稽查方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114792213B (zh) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101676717A (zh) * | 2008-09-19 | 2010-03-24 | 天津天士力制药股份有限公司 | 一种中药制品的质量评价方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101337060B (zh) * | 2008-08-08 | 2012-08-22 | 广西博科药业有限公司 | 宫炎康颗粒的质量控制方法 |
CN102313683B (zh) * | 2011-04-29 | 2012-12-12 | 四川逢春制药有限公司 | 一种颗粒剂型药品的溶化性检测方法 |
EP3635367A4 (en) * | 2017-05-22 | 2021-02-17 | Valisure LLC | METHOD OF VALIDATING A MEDICINAL PRODUCT |
CN113495116A (zh) * | 2020-03-19 | 2021-10-12 | 内蒙古蒙药股份有限公司 | 一种诃子配方颗粒质量标准及检测方法 |
CN112782372A (zh) * | 2021-02-02 | 2021-05-11 | 祈蒙股份有限公司 | 一种蒙药六味木香颗粒的质量标准检测方法 |
-
2022
- 2022-06-23 CN CN202210714471.3A patent/CN114792213B/zh active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101676717A (zh) * | 2008-09-19 | 2010-03-24 | 天津天士力制药股份有限公司 | 一种中药制品的质量评价方法 |
Also Published As
Publication number | Publication date |
---|---|
CN114792213A (zh) | 2022-07-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
He et al. | Multi-modal retinal image classification with modality-specific attention network | |
Peng et al. | Automatic staging for retinopathy of prematurity with deep feature fusion and ordinal classification strategy | |
CN110010252A (zh) | 华法林给药剂量预测方法及装置 | |
CN113049530A (zh) | 一种基于近红外高光谱的单粒玉米种子水分含量检测方法 | |
Stevenson et al. | Development of an artificial intelligence system to classify pathology and clinical features on retinal fundus images | |
CN111383210B (zh) | 眼底图像分类模型训练方法及设备 | |
Orlov et al. | Age-related changes of the retinal microvasculature | |
Bao et al. | Current application of digital diagnosing systems for retinopathy of prematurity | |
Leng et al. | Deep learning for detection of age-related macular degeneration: A systematic review and meta-analysis of diagnostic test accuracy studies | |
Wang et al. | Application of a deep machine learning model for automatic measurement of EZ width in SD-OCT images of RP | |
Salem et al. | Decision support system for an early-stage keratoconus diagnosis | |
CN114792213B (zh) | 一种颗粒药品质量稽查方法 | |
Li et al. | Automated quality assessment and image selection of ultra-widefield fluorescein angiography images through deep learning | |
Ma et al. | An intelligent and vision-based system for Baijiu brewing-sorghum discrimination | |
CN113158822B (zh) | 基于跨模态关系推理的眼部检测数据的分类方法及装置 | |
CN116738352B (zh) | 视网膜血管阻塞疾病的视杆细胞异常分类方法及装置 | |
Tambe et al. | Potato Leaf Disease Classification using Deep Learning: A Convolutional Neural Network Approach | |
Hain et al. | Randomized iterative spherical‐deconvolution informed tractogram filtering | |
Joans | Identification and classification of eye disease using deep learning | |
CN113310928A (zh) | 保质期内和过期高温灭菌牛奶的快速鉴定方法 | |
CN111374632B (zh) | 视网膜病变检测方法、装置及计算机可读存储介质 | |
Yazid et al. | Detection of diabetic retinopathy using convolutional neural network (CNN) | |
Balaskas et al. | The Novel Evidenced Assessment of Tortuosity system: interobserver reliability and agreement with clinical assessment | |
Chen et al. | Multi-Scale Class Attention Network for Diabetes Retinopathy Grading | |
Carvalho et al. | Neural networks and statistical analysis for classification of corneal videokeratography maps based on Zernike coefficients: a quantitative comparison |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20230104 Address after: 272500 No. 5, Jixiang Road, economic development zone, Wenshang County, Jining City, Shandong Province Patentee after: Jining Weimin Pharmaceutical Co.,Ltd. Address before: 272500 west of South Head of Zhongdu street, Wenshang County Economic Development Zone, Jining City, Shandong Province Patentee before: Chenxin Fudu Pharmaceutical (Wenshang) Co.,Ltd. |
|
TR01 | Transfer of patent right | ||
PE01 | Entry into force of the registration of the contract for pledge of patent right |
Denomination of invention: A Quality Inspection Method for Granular Drugs Effective date of registration: 20230331 Granted publication date: 20220902 Pledgee: China Postal Savings Bank Limited by Share Ltd. Wenshang County sub branch Pledgor: Jining Weimin Pharmaceutical Co.,Ltd. Registration number: Y2023980036979 |
|
PE01 | Entry into force of the registration of the contract for pledge of patent right |