CN114791449B - A kind of gas sensor and its preparation method and application - Google Patents
A kind of gas sensor and its preparation method and application Download PDFInfo
- Publication number
- CN114791449B CN114791449B CN202210312858.6A CN202210312858A CN114791449B CN 114791449 B CN114791449 B CN 114791449B CN 202210312858 A CN202210312858 A CN 202210312858A CN 114791449 B CN114791449 B CN 114791449B
- Authority
- CN
- China
- Prior art keywords
- film
- sputtering
- geteo
- gas
- gas sensor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000002360 preparation method Methods 0.000 title abstract description 10
- 239000010408 film Substances 0.000 claims abstract description 89
- 239000000758 substrate Substances 0.000 claims abstract description 31
- 239000010409 thin film Substances 0.000 claims abstract description 28
- 238000000034 method Methods 0.000 claims abstract description 22
- 229910052751 metal Inorganic materials 0.000 claims abstract description 12
- 239000002184 metal Substances 0.000 claims abstract description 12
- 229910052717 sulfur Inorganic materials 0.000 claims abstract description 4
- 238000004544 sputter deposition Methods 0.000 claims description 102
- 239000007789 gas Substances 0.000 claims description 101
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 32
- 229910052786 argon Inorganic materials 0.000 claims description 16
- 229910052721 tungsten Inorganic materials 0.000 claims description 14
- 229910052727 yttrium Inorganic materials 0.000 claims description 12
- 239000000463 material Substances 0.000 claims description 11
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 9
- 238000005530 etching Methods 0.000 claims description 9
- 239000001301 oxygen Substances 0.000 claims description 9
- 229910052760 oxygen Inorganic materials 0.000 claims description 9
- 229910052782 aluminium Inorganic materials 0.000 claims description 6
- 229910052738 indium Inorganic materials 0.000 claims description 4
- 229910052804 chromium Inorganic materials 0.000 claims description 2
- 229910052737 gold Inorganic materials 0.000 claims description 2
- 229910052759 nickel Inorganic materials 0.000 claims description 2
- 229910052763 palladium Inorganic materials 0.000 claims description 2
- 229910052697 platinum Inorganic materials 0.000 claims description 2
- 229910052709 silver Inorganic materials 0.000 claims description 2
- 229910052718 tin Inorganic materials 0.000 claims description 2
- 229910052719 titanium Inorganic materials 0.000 claims description 2
- 230000035945 sensitivity Effects 0.000 abstract description 19
- 238000012360 testing method Methods 0.000 abstract description 16
- 238000001514 detection method Methods 0.000 abstract description 6
- 238000009776 industrial production Methods 0.000 abstract description 3
- 230000015572 biosynthetic process Effects 0.000 abstract description 2
- 238000001755 magnetron sputter deposition Methods 0.000 abstract description 2
- 238000007740 vapor deposition Methods 0.000 description 24
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 16
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 14
- 238000011084 recovery Methods 0.000 description 13
- 230000004044 response Effects 0.000 description 8
- 239000008367 deionised water Substances 0.000 description 7
- 229910021641 deionized water Inorganic materials 0.000 description 7
- 238000004506 ultrasonic cleaning Methods 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 3
- 238000001179 sorption measurement Methods 0.000 description 3
- 238000011895 specific detection Methods 0.000 description 3
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000011540 sensing material Substances 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000003915 air pollution Methods 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000005034 decoration Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 229910000069 nitrogen hydride Inorganic materials 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 238000001020 plasma etching Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 238000001947 vapour-phase growth Methods 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/20—Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Molecular Biology (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
Abstract
本发明涉及一种气体传感器及其制备方法与应用,涉及气体传感器技术领域。本发明气体传感器,包括基体,所述基体的表面还设置有GeTeOx薄膜和元素共掺的CuO薄膜;所述GeTeOx薄膜和所述元素共掺的CuO薄膜的中部重叠并形成异质结构,所述GeTeOx薄膜和所述元素共掺的CuO薄膜部分均延伸到基体上,所述GeTeOx薄膜和所述元素共掺的CuO薄膜的端部设置有导电金属薄膜,其中,0<x≤4。本发明所述的气体传感器对H2S、NH3、NO2具有高灵敏度和较低的检测限。测试温度越高,检测极限越低,且灵敏度越高。本发明操作简便,反应条件简易,并且磁控溅射方法价格便宜、成膜均匀,可用于大规模的制备器皿传感器元器件,适用于工业化生产。
The invention relates to a gas sensor, a preparation method and application thereof, and relates to the technical field of gas sensors. The gas sensor of the present invention comprises a substrate, the surface of the substrate is also provided with a GeTeO x thin film and an element-co-doped CuO thin film; the middle part of the GeTeO x thin film and the element-co-doped CuO thin film overlaps to form a heterogeneous structure, the GeTeO x thin film and the element-co-doped CuO thin film partly extend to the substrate, and the end of the GeTeO x thin film and the element-co-doped CuO thin film is provided with a conductive metal thin film, wherein 0<x≤4. The gas sensor of the invention has high sensitivity and lower detection limit for H 2 S, NH 3 and NO 2 . The higher the test temperature, the lower the detection limit and the higher the sensitivity. The invention has simple and convenient operation, simple and convenient reaction conditions, and the magnetron sputtering method has low price and uniform film formation, can be used for large-scale preparation of container sensor components, and is suitable for industrial production.
Description
技术领域technical field
本发明涉及气体传感器技术领域,尤其涉及一种气体传感器及其制备方法与应用。The invention relates to the technical field of gas sensors, in particular to a gas sensor and its preparation method and application.
背景技术Background technique
气体传感器是用来检测气体成分和含量的元器件。一般认为,气体传感器是一种将某种气体体积分数转化成对应电信号的转换器。Gas sensors are components used to detect gas composition and content. It is generally believed that a gas sensor is a converter that converts a certain gas volume fraction into a corresponding electrical signal.
随着科技的发展,人们逐步对环境安全问题引起了重视,也越来越关注空气污染等问题。为了保障人身安全、防止事故发生,实时监控生活中各类场所的空气质量,探测有毒有害等危险气体的浓度非常必要。当前,对多种气体的监控和检测已经广泛地应用到医疗卫生、矿井安全、污染源排查、环境监控、工业生产等各个领域。例如,交通安全中涉及酒驾的乙醇气体、室内装修材料中散发的甲醛气体、汽车尾气排放中的氮氧化物、石油煤矿中的甲烷,氨气和硫化氢气体等。如果设计一个传感器能同时实现对几种或多种气体进行检测,无疑在市场中将极具竞争力。目前,商业化的气体传感器大多针对单一气体具有选择性,或通过多个单一组分传感器形成传感器阵列,这会大大增加成本,且无法满足对多种混合组分进行测试的需求。With the development of science and technology, people gradually pay attention to environmental safety issues, and pay more and more attention to air pollution and other issues. In order to ensure personal safety and prevent accidents, it is necessary to monitor the air quality in various places in life in real time and detect the concentration of toxic and harmful gases. At present, the monitoring and detection of various gases have been widely used in various fields such as medical and health care, mine safety, pollution source investigation, environmental monitoring, and industrial production. For example, ethanol gas involved in drunk driving in traffic safety, formaldehyde gas emitted from interior decoration materials, nitrogen oxides in automobile exhaust emissions, methane gas, ammonia gas and hydrogen sulfide gas in oil and coal mines, etc. If a sensor is designed to detect several or more gases at the same time, it will undoubtedly be very competitive in the market. At present, most commercial gas sensors are selective for a single gas, or form a sensor array through multiple single-component sensors, which will greatly increase the cost and cannot meet the needs of testing multiple mixed components.
通常理想的气体传感器应具有以下特点:(1)响应速度快,通常要求响应速度小于50s(包括气体吸附和去吸附两个过程);(2)灵敏度高,只有高的灵敏度才能对微少量的气体浓度产生敏感;(3)高选择性,只对某种特定的气体敏感,不敏感其他气体;(4)可逆性,可以重复敏感,也就是说不是一次性的敏感而可以长期多次使用;(5)使用寿命长,一般要求半年或一年以上;(6)体积小,方便安装和携带。Generally, the ideal gas sensor should have the following characteristics: (1) Fast response speed, and usually requires that the response speed is less than 50s (including two processes of gas adsorption and adsorption); (2) high sensitivity, only high sensitivity can be sensitive to small amounts of gas concentration; (3) high selectivity, only a specific gas sensitivity, not sensitive other gas; (4) Reverseness can repeat sensitivity, that is, it is not a one -time sensitivity and can be used for a long time; (5) The service life is long, and it is generally required for half a year or one year;
两种不同材料之间的物理界面通常称之为异质结,而结合这两种不同成分的材料则具有异质结构。结两边的导电类型由掺杂来控制,掺杂类型相同的称为同型异质结(n-n,p-p),掺杂类型不同的称为异型异质结(n-p,p-n)。其中同型异质结是一种多数载流子器件,速度比少子器件高,适合做气体传感器。现有同类气体传感器大都只能检测单一特定的气体,无法实现一颗芯片同时特异性检测多种气体,而且现有的异质结构型气体传感器不能同时满足单一组分的独立测试与形成异质结测试之间的切换,功能单一,成本较高。A physical interface between two different materials is often called a heterojunction, and a material that combines these two different components has a heterostructure. The conductivity type on both sides of the junction is controlled by doping. The same type of doping is called homo-heterojunction (n-n, p-p), and the type of doping is called hetero-heterojunction (n-p, p-n). Among them, the homotype heterojunction is a majority carrier device, which has a higher speed than the minority carrier device, and is suitable for gas sensors. Most of the existing gas sensors of the same kind can only detect a single specific gas, and cannot realize the specific detection of multiple gases at the same time with one chip, and the existing heterogeneous structure gas sensors cannot simultaneously satisfy the switching between the independent test of a single component and the test of forming a heterojunction, and the function is single and the cost is high.
发明内容Contents of the invention
为此,本发明所要解决的技术问题在于克服现有技术中单颗芯片无法同时特异性检测多种气体且传统异质结构型气体传感器不能同时满足单一组分的独立测试与形成异质结测试之间的切换,功能单一、成本高等问题。Therefore, the technical problem to be solved by the present invention is to overcome the problems in the prior art that a single chip cannot specifically detect multiple gases at the same time and that the traditional heterogeneous structure gas sensor cannot simultaneously satisfy the switching between the independent test of a single component and the test of forming a heterojunction, single function, and high cost.
为解决上述技术问题,本发明提供了一种气体传感器及其制备方法与应用。基于单颗芯片利用MEMS加工技术,设计了多功能图案化多层薄膜异质结构,通过输出电极的切换能同时实现多种气体的特异性检测,并具有较高的灵敏度。In order to solve the above technical problems, the present invention provides a gas sensor and its preparation method and application. Based on a single chip using MEMS processing technology, a multi-functional patterned multi-layer thin film heterogeneous structure is designed. Through the switching of the output electrode, the specific detection of multiple gases can be realized at the same time, and it has high sensitivity.
本发明的第一个目的是提供一种气体传感器,包括基体,所述基体的表面还设置有GeTeOx薄膜和元素共掺的CuO薄膜;所述GeTeOx薄膜和所述元素共掺的CuO薄膜的中部重叠并形成异质结构,所述GeTeOx薄膜和所述元素共掺的CuO薄膜部分均延伸到基体上,所述GeTeOx薄膜和所述元素共掺的CuO薄膜的端部设置有导电金属薄膜,其中,0<x≤4。The first object of the present invention is to provide a gas sensor, comprising a substrate, the surface of the substrate is also provided with a GeTeO x film and an element-codoped CuO film; the middle part of the GeTeO x film and the element-co-doped CuO film overlaps to form a heterogeneous structure, the GeTeO x film and the element-co-doped CuO film partly extend to the substrate, and the end of the GeTeO x film and the element-co-doped CuO film is provided with a conductive metal film, wherein 0<x≤4.
在本发明的一个实施例中,所述GeTeOx薄膜和所述元素共掺的CuO薄膜的两端分别设有0-2个导电金属薄膜,所述GeTeOx薄膜和所述元素共掺的CuO薄膜上至少设有1个导电金属薄膜。In one embodiment of the present invention, 0-2 conductive metal films are arranged on both ends of the GeTeO x film and the element-co-doped CuO film, and at least one conductive metal film is provided on the GeTeO x film and the element-co-doped CuO film.
在本发明的一个实施例中,所述GeTeOx薄膜和所述元素共掺的CuO薄膜的重叠部分为叉指结构。In one embodiment of the present invention, the overlapping portion of the GeTeO x thin film and the element-codoped CuO thin film has an interdigitated structure.
在本发明的一个实施例中,所述基体的材料为Si。In one embodiment of the present invention, the material of the base body is Si.
在本发明的一个实施例中,所述CuO薄膜中掺杂的元素为Y、W、Sn、Al、In和Ni中的两种或两种以上。In one embodiment of the present invention, the elements doped in the CuO film are two or more of Y, W, Sn, Al, In and Ni.
在本发明的一个实施例中,所述导电金属为Au、Ag、Cr、Pt、Pd、Ti、Al、W中的一种或多种。In one embodiment of the present invention, the conductive metal is one or more of Au, Ag, Cr, Pt, Pd, Ti, Al, W.
在本发明的一个实施例中,气体传感器可通过优化材料组成和薄膜厚度等相关参数,满足高灵敏、高选择性气体检测需求。In one embodiment of the present invention, the gas sensor can meet the requirements of highly sensitive and highly selective gas detection by optimizing relevant parameters such as material composition and film thickness.
在本发明的一个实施例中,气体传感器中图案化的叉指结构可以继续滴加敏感材料,轻松实现新的异质结构构建,检测更多气体。In one embodiment of the present invention, the patterned interdigitated structure in the gas sensor can continue to drip sensitive materials, easily realize the construction of new heterostructures, and detect more gases.
在本发明的一个实施例中,气体传感器设置成叉指结构。In one embodiment of the present invention, the gas sensor is arranged in an interdigitated structure.
在本发明的一个实施例中,还可以引入氧化锌纳米材料,形成p-n异质结构,检测H2气体。In an embodiment of the present invention, zinc oxide nanomaterials can also be introduced to form a pn heterostructure to detect H2 gas.
本发明的第二个目的是提供一种气体传感器的制备方法,包括以下步骤,The second object of the present invention is to provide a method for preparing a gas sensor, comprising the following steps,
S1、在预处理后的基体表面刻蚀出电极沟道,电极沟道溅射导电金属薄膜;S1. Etching an electrode channel on the surface of the pretreated substrate, and sputtering a conductive metal film on the electrode channel;
S2、在基体表面溅射GeTeOx薄膜,溅射气体为氩气和氧气的混合气体,其中,0<x≤4;S2. Sputtering a GeTeO x film on the surface of the substrate, the sputtering gas is a mixed gas of argon and oxygen, where 0<x≤4;
S3、在所述GeTeOx薄膜表面溅射元素共掺的CuO薄膜,所述元素共掺的CuO薄膜延伸至基体表面,溅射气体为氩气;S3. Sputtering an element-co-doped CuO film on the surface of the GeTeO x film, the element-co-doped CuO film extends to the surface of the substrate, and the sputtering gas is argon;
S4、在所述GeTeOx薄膜和所述元素共掺的CuO薄膜非重叠部分表面溅射导电金属薄膜,得到所述气体传感器。S4. Sputtering a conductive metal film on the surface of the non-overlapping portion of the GeTeO x film and the CuO film co-doped with the elements to obtain the gas sensor.
在本发明的一个实施例中,在S1步骤中,所述预处理是依次用丙酮、乙醇和去离子水进行超声清洗。In one embodiment of the present invention, in step S1, the pretreatment is ultrasonic cleaning with acetone, ethanol and deionized water in sequence.
在本发明的一个实施例中,在S1步骤中,所述刻蚀是先采用涂胶-光刻-显影工艺制备特定电极图案,再通过反应离子刻蚀机制作浅层电极沟道。In one embodiment of the present invention, in the step S1, the etching is to first prepare a specific electrode pattern by using a glue coating-photolithography-development process, and then make a shallow electrode channel by a reactive ion etching machine.
在本发明的一个实施例中,所述溅射采用的是气相沉积法,真空度小于1.0×10- 3Pa。In one embodiment of the present invention, the sputtering adopts a vapor phase deposition method, and the degree of vacuum is less than 1.0×10 −3 Pa .
在本发明的一个实施例中,所述溅射的功率为5-200W,溅射的时间为1-30min。In one embodiment of the present invention, the sputtering power is 5-200W, and the sputtering time is 1-30min.
在本发明的一个实施例中,所述气体的流量为1-50sccm,气体的溅射压强为0.5-10Pa。In one embodiment of the present invention, the flow rate of the gas is 1-50 sccm, and the sputtering pressure of the gas is 0.5-10 Pa.
本发明的第三个目的是提供一种所述的气体传感器在检测H2S、NH3或NO2中的应用。The third object of the present invention is to provide an application of the gas sensor in detecting H 2 S, NH 3 or NO 2 .
在本发明的一个实施例中,所述应用中检测的温度为50-300℃,气体的浓度为1-200ppm。In one embodiment of the present invention, the temperature detected in the application is 50-300° C., and the gas concentration is 1-200 ppm.
在本发明的一个实施例中,通过结构优化设计可同时满足单一组分的独立测试与形成异质结测试之间的切换,实现多功能化,大大降低成本。In one embodiment of the present invention, the switch between the independent test of a single component and the test of forming a heterojunction can be simultaneously satisfied through structural optimization design, realizing multi-functionality and greatly reducing costs.
本发明的技术方案相比现有技术具有以下优点:Compared with the prior art, the technical solution of the present invention has the following advantages:
(1)本发明所述的气体传感器中GeTeOx薄膜本身对H2S具有较好的选择性和灵敏度,元素共掺的CuO薄膜对NO2具有较好的选择性和灵敏度,GeTeOx可与元素掺杂的CuO薄膜形成异质结构,在两种薄膜材料的界面处形成内建电场,可以促进载流子的分离,同时界面交界处形成的活性吸附位点要高于其他位置,气体分子倾向于在界面交界处与材料相互作用,产生电子交换,增加材料的电子或空穴,在内建电场的作用下促进载流子的输运,同时由于气体分子自身存在极性、尺寸和结构等差异,可大幅提升气体传感器的灵敏度和选择性,例如本发明中两种材料形成的异质结界面对NH3展现出很好的选择性和灵敏度。(1) GeTeO in the gas sensor of the present inventionxThe film itself reacts to H2S has good selectivity and sensitivity, element co-doped CuO thin film has a good effect on NO2With good selectivity and sensitivity, GeTeOxIt can form a heterogeneous structure with element-doped CuO thin films, and form a built-in electric field at the interface of the two thin film materials, which can promote the separation of carriers. At the same time, the active adsorption sites formed at the interface junction are higher than other positions. Gas molecules tend to interact with the material at the interface junction, resulting in electron exchange, increasing the electrons or holes of the material, and promoting the transport of carriers under the action of the built-in electric field. The heterojunction interface for NH3exhibited good selectivity and sensitivity.
(2)本发明所述的气体传感器中多功能图案化多层薄膜异质结构芯片通过连接不同的电极点可特异性检测多种气体,多功能图案化多层薄膜异质结构芯片可进一步作为叉指电极滴加或溅射敏感材料形成新的异质结构,从而实现更多气体的特异性检测。(2) The multifunctional patterned multilayer thin film heterostructure chip in the gas sensor of the present invention can specifically detect various gases by connecting different electrode points, and the multifunctional patterned multilayer thin film heterostructure chip can be further used as an interdigital electrode to form a new heterogeneous structure by dropping or sputtering sensitive materials, thereby realizing the specific detection of more gases.
(3)本发明所述的气体传感器对H2S、NH3、NO2具有高灵敏度和较低的检测限。测试温度越高,检测极限越低,且灵敏度越高。此外该薄膜电极产品采用硬模板法形成了叉指电极结构,可以进一步进行其他气敏材料的滴样,可灵活引入新气敏材料构建新的异质结构,使器件的功能更加多元化。本发明操作简便,反应条件简易,并且磁控溅射方法价格便宜、成膜均匀,可用于大规模的制备器皿传感器元器件,适用于工业化生产。(3) The gas sensor of the present invention has high sensitivity and low detection limit for H 2 S, NH 3 , and NO 2 . The higher the test temperature, the lower the detection limit and the higher the sensitivity. In addition, the thin-film electrode product adopts the hard template method to form an interdigitated electrode structure, which can further perform drop samples of other gas-sensing materials, and can flexibly introduce new gas-sensing materials to construct new heterogeneous structures, making the functions of the device more diversified. The invention has simple and convenient operation, simple and convenient reaction conditions, and the magnetron sputtering method has low price and uniform film formation, can be used for large-scale preparation of container sensor components, and is suitable for industrial production.
附图说明Description of drawings
为了使本发明的内容更容易被清楚地理解,下面根据本发明的具体实施例并结合附图,对本发明作进一步详细的说明,其中:In order to make the content of the present invention more easily understood, the present invention will be described in further detail below according to specific embodiments of the present invention in conjunction with the accompanying drawings, wherein:
图1为本发明实施例中的气体传感器的制备流程图。Fig. 1 is a flow chart of the preparation of the gas sensor in the embodiment of the present invention.
图2为本发明实施例1中的气体传感器的实物图。FIG. 2 is a physical diagram of the gas sensor in Embodiment 1 of the present invention.
图3-8为本发明测试例中的不同气体传感器对不同气体的响应-恢复曲线。3-8 are response-recovery curves of different gas sensors to different gases in the test examples of the present invention.
具体实施方式Detailed ways
下面结合附图和具体实施例对本发明作进一步说明,以使本领域的技术人员可以更好地理解本发明并能予以实施,但所举实施例不作为对本发明的限定。The present invention will be further described below in conjunction with the accompanying drawings and specific embodiments, so that those skilled in the art can better understand the present invention and implement it, but the examples given are not intended to limit the present invention.
实施例1Example 1
参照图1所示,一种气体传感器及其制备方法,具体包括以下步骤:Referring to Fig. 1, a gas sensor and its preparation method specifically include the following steps:
S1、在依次用丙酮、乙醇、去离子水超声清洗后的Si基体表面刻蚀出电极沟道;S1. Etching electrode channels on the surface of the Si substrate after ultrasonic cleaning with acetone, ethanol, and deionized water in sequence;
S2、采用气相沉积法在电极沟道溅射Al薄膜;腔室的真空度为8.0×10-4Pa;溅射功率为20W,溅射时间为3min;S2. Sputtering an Al thin film on the electrode channel by vapor deposition method; the vacuum degree of the chamber is 8.0×10 -4 Pa; the sputtering power is 20W, and the sputtering time is 3min;
S3、采用气相沉积法在基体表面溅射GeTeOx(1≤x≤3)薄膜,溅射气体为15sccm氩气和10sccm氧气的混合气体;溅射功率为50W和100W;溅射气压为1.0Pa;溅射时间为5min;S3, sputtering a GeTeO x (1≤x≤3) film on the surface of the substrate by vapor deposition, the sputtering gas is a mixed gas of 15sccm argon and 10sccm oxygen; the sputtering power is 50W and 100W; the sputtering pressure is 1.0Pa; the sputtering time is 5min;
S4、采用气相沉积法在GeTeOx薄膜表面溅射Y、W共掺的CuO薄膜,并延伸至基体表面,溅射气体为30sccm氩气;溅射功率分别为10W、20W、40W;溅射气压为1.0Pa;溅射时间为3min;S4. Sputtering a CuO film co-doped with Y and W on the surface of the GeTeO x film by vapor deposition, and extending to the surface of the substrate, the sputtering gas is 30 sccm argon; the sputtering power is 10W, 20W, 40W respectively; the sputtering pressure is 1.0Pa; the sputtering time is 3min;
S5、采用气相沉积法在GeTeOx薄膜和Y、W共掺的CuO薄膜非重叠部分表面溅射Al薄膜;溅射功率为20W,溅射时间为3min,得到图2所示的气体传感器。S5. Sputtering an Al film on the surface of the non-overlapping part of the GeTeO x film and the CuO film co-doped with Y and W by vapor deposition method; the sputtering power is 20W, and the sputtering time is 3min to obtain the gas sensor shown in FIG. 2 .
实施例2Example 2
一种气体传感器及其制备方法,具体包括以下步骤:A gas sensor and a preparation method thereof, specifically comprising the following steps:
S1、在依次用丙酮、乙醇、去离子水超声清洗后的Si基体表面刻蚀出电极沟道;S1. Etching electrode channels on the surface of the Si substrate after ultrasonic cleaning with acetone, ethanol, and deionized water in sequence;
S2、采用气相沉积法在电极沟道溅射Au薄膜;腔室的真空度为8.0×10-4Pa;溅射功率为20W,溅射时间为3min;S2. Au thin film is sputtered on the electrode channel by vapor deposition method; the vacuum degree of the chamber is 8.0×10 -4 Pa; the sputtering power is 20W, and the sputtering time is 3min;
S3、采用气相沉积法在基体表面溅射GeTeOx(2≤x≤4)薄膜,溅射气体为10sccm氩气和20sccm氧气的混合气体;溅射功率为50W和100W;溅射时间为5min;S3, sputtering a GeTeO x (2≤x≤4) film on the surface of the substrate by vapor deposition, the sputtering gas is a mixed gas of 10sccm argon and 20sccm oxygen; the sputtering power is 50W and 100W; the sputtering time is 5min;
S4、采用气相沉积法在GeTeOx薄膜表面溅射Y、W共掺的CuO薄膜,并延伸至基体表面,溅射气体为30sccm氩气;溅射功率分别为10W、20W、40W;溅射时间为3min;S4. Sputtering a CuO film co-doped with Y and W on the surface of the GeTeO x film by vapor deposition, and extending to the surface of the substrate, the sputtering gas is 30 sccm argon; the sputtering power is 10W, 20W, 40W; the sputtering time is 3min;
S5、采用气相沉积法在GeTeOx薄膜和Y、W共掺的CuO薄膜非重叠部分表面溅射溅射Au薄膜;溅射功率为20W,溅射时间为3min。S5. Sputtering an Au film on the surface of the non-overlapping part of the GeTeO x film and the CuO film co-doped with Y and W by vapor deposition method; the sputtering power is 20W, and the sputtering time is 3min.
实施例3Example 3
一种气体传感器及其制备方法,具体包括以下步骤:A gas sensor and a preparation method thereof, specifically comprising the following steps:
S1、在依次用丙酮、乙醇、去离子水超声清洗后的Si基体表面刻蚀出电极沟道;S1. Etching electrode channels on the surface of the Si substrate after ultrasonic cleaning with acetone, ethanol, and deionized water in sequence;
S2、采用气相沉积法在电极沟道溅射Pt薄膜;腔室的真空度为8.0×10-4Pa;溅射功率为20W,溅射时间为3min;S2. Sputtering a Pt film on the electrode channel by vapor deposition method; the vacuum degree of the chamber is 8.0×10 -4 Pa; the sputtering power is 20W, and the sputtering time is 3min;
S3、采用气相沉积法在基体表面溅射GeTeOx(1≤x≤3)薄膜,溅射气体为10sccm氩气和15sccm氧气的混合气体;溅射功率为50W和100W;溅射时间为5min;S3. Sputtering a GeTeO x (1≤x≤3) film on the surface of the substrate by vapor deposition, the sputtering gas is a mixed gas of 10sccm argon and 15sccm oxygen; the sputtering power is 50W and 100W; the sputtering time is 5min;
S4、采用气相沉积法在GeTeOx薄膜表面溅射Al、In共掺的CuO薄膜,并延伸至基体表面,溅射气体为30sccm氩气;溅射功率分别为20W、20W、40W;溅射时间为3min;S4. Sputtering an Al and In co-doped CuO film on the surface of the GeTeO x film by vapor deposition, and extending to the surface of the substrate, the sputtering gas is 30 sccm argon; the sputtering power is 20W, 20W, 40W; the sputtering time is 3min;
S5、采用气相沉积法在GeTeOx薄膜和Al、In共掺的CuO薄膜非重叠部分表面溅射Pd薄膜;溅射功率为20W,溅射时间为3min。S5. Sputtering a Pd film on the surface of the non-overlapping part of the GeTeO x film and the Al, In co-doped CuO film by vapor deposition method; the sputtering power is 20W, and the sputtering time is 3min.
对比例1Comparative example 1
S1、在依次用丙酮、乙醇、去离子水超声清洗后的Si基体表面刻蚀出电极沟道;S1. Etching electrode channels on the surface of the Si substrate after ultrasonic cleaning with acetone, ethanol, and deionized water in sequence;
S2、采用气相沉积法在电极沟道溅射Au薄膜;腔室的真空度为8.0×10-4Pa,溅射功率为20W,溅射时间为3min;S2. Au thin film is sputtered on the electrode channel by vapor deposition method; the vacuum degree of the chamber is 8.0×10 -4 Pa, the sputtering power is 20W, and the sputtering time is 3min;
S3、采用气相沉积法在基体表面溅射GeTeOx(1≤x≤3)薄膜,溅射气体为5sccm氩气和25sccm氧气的混合气体;溅射功率为50W和100W;溅射时间为2min;S3. Sputtering a GeTeO x (1≤x≤3) film on the surface of the substrate by vapor deposition, the sputtering gas is a mixed gas of 5 sccm argon and 25 sccm oxygen; the sputtering power is 50W and 100W; the sputtering time is 2min;
S4、采用气相沉积法在GeTeOx薄膜表面溅射Y、W共掺的CuO薄膜,并延伸至基体表面,溅射气体为30sccm氩气;溅射功率分别为10W、20W、40W;溅射时间为3min;S4. Sputtering a CuO film co-doped with Y and W on the surface of the GeTeO x film by vapor deposition, and extending to the surface of the substrate, the sputtering gas is 30 sccm argon; the sputtering power is 10W, 20W, 40W; the sputtering time is 3min;
S5、采用气相沉积法在GeTeOx薄膜和Y、W共掺的CuO薄膜非重叠部分表面溅射Au薄膜;溅射功率为20W,溅射时间为3min。S5. Sputtering an Au film on the surface of the non-overlapping part of the GeTeO x film and the Y, W co-doped CuO film by vapor deposition method; the sputtering power is 20W, and the sputtering time is 3min.
对比例2Comparative example 2
S1、在依次用丙酮、乙醇、去离子水超声清洗后的Si基体表面刻蚀出电极沟道;S1. Etching electrode channels on the surface of the Si substrate after ultrasonic cleaning with acetone, ethanol, and deionized water in sequence;
S2、采用气相沉积法在电极沟道溅射Au薄膜;腔室的真空度为8.0×10-4Pa,溅射功率为20W,溅射时间为3min;S2. Au thin film is sputtered on the electrode channel by vapor deposition method; the vacuum degree of the chamber is 8.0×10 -4 Pa, the sputtering power is 20W, and the sputtering time is 3min;
S3、采用气相沉积法在基体表面溅射GeTeOx(1≤x≤3)薄膜,溅射气体为10sccm氩气和15sccm氧气的混合气体;溅射功率为50W和100W;溅射时间为5min;S3. Sputtering a GeTeO x (1≤x≤3) film on the surface of the substrate by vapor deposition, the sputtering gas is a mixed gas of 10sccm argon and 15sccm oxygen; the sputtering power is 50W and 100W; the sputtering time is 5min;
S4、采用气相沉积法在GeTeOx薄膜表面溅射Y、W共掺的CuO薄膜,并延伸至基体表面,溅射气体为20sccm氧气和10sccm氩气的混合气体;溅射功率分别为10W、20W、40W;溅射时间为3min;S4. Sputtering a CuO film co-doped with Y and W on the surface of the GeTeO x film by vapor deposition, and extending to the surface of the substrate, the sputtering gas is a mixed gas of 20 sccm oxygen and 10 sccm argon; the sputtering power is 10W, 20W, 40W respectively; the sputtering time is 3min;
S5、采用气相沉积法在GeTeOx薄膜和Y、W共掺的CuO薄膜非重叠部分表面溅射Au薄膜;溅射功率为20W,溅射时间为3min。S5. Sputtering an Au film on the surface of the non-overlapping part of the GeTeO x film and the CuO film co-doped with Y and W by vapor deposition method; the sputtering power is 20W, and the sputtering time is 3min.
对比例3Comparative example 3
S1、在依次用丙酮、乙醇、去离子水超声清洗后的Si基体表面刻蚀出电极沟道;S1. Etching electrode channels on the surface of the Si substrate after ultrasonic cleaning with acetone, ethanol, and deionized water in sequence;
S2、采用气相沉积法在电极沟道溅射Au薄膜;腔室的真空度为8.0×10-4Pa,溅射功率为20W,溅射时间为3min;S2. Au thin film is sputtered on the electrode channel by vapor deposition method; the vacuum degree of the chamber is 8.0×10 -4 Pa, the sputtering power is 20W, and the sputtering time is 3min;
S3、采用气相沉积法在基体表面溅射GeTeOx(1≤x≤3)薄膜,溅射气体为10sccm氩气和15sccm氧气的混合气体;溅射功率为50W和100W;溅射时间为5min;S3. Sputtering a GeTeO x (1≤x≤3) film on the surface of the substrate by vapor deposition, the sputtering gas is a mixed gas of 10sccm argon and 15sccm oxygen; the sputtering power is 50W and 100W; the sputtering time is 5min;
S4、采用气相沉积法在GeTeOx薄膜表面溅射Y、W共掺的CuO薄膜,并延伸至基体表面,溅射气体为30sccm的氩气;溅射功率分别为10W、10W、40W;溅射时间为3min;S4. Sputtering a CuO film co-doped with Y and W on the surface of the GeTeO x film by vapor deposition, and extending to the surface of the substrate, the sputtering gas is 30 sccm of argon; the sputtering power is 10W, 10W, 40W; the sputtering time is 3min;
S5、采用气相沉积法在GeTeOx薄膜和Y、W共掺的CuO薄膜非重叠部分表面溅射Au薄膜;溅射功率为20W,溅射时间为3min。S5. Sputtering an Au film on the surface of the non-overlapping portion of the GeTeO x film and the CuO film co-doped with Y and W by vapor deposition method; the sputtering power is 20W, and the sputtering time is 3min.
测试例1test case 1
将实施例1中所得器件(实物图见图2),如图1(4)所示,将传感器件的4、5电极接入动态气体测试系统,测试电压设置为1V,干燥空气作为背景气和稀释气体,通入目标气体(待测气体)前用干燥空气吹扫器件并将器件加热至200℃,同时持续测试记录其电流-时间变化曲线,当基线跑平时,将浓度为10ppm的NO2气体通入测试腔60s后用干燥空气吹扫600s,重复该过程6次,得到该4、5电极对应的气敏材料对10ppmNO2气体的响应-恢复曲线,通过响应公式S=(|It-I0|)/I0计算其响应,其中S为响应值,It为器件在目标气体中的电流值,I0为干燥空气中器件的电流值,得到如图3所示的响应-时间曲线。图3中展示了YW-共掺的CuO薄膜对10ppm NO2气体6次重复响应-恢复曲线,其响应灵敏度高,约为5.0,且恢复性能较好。将实施例1中所得器件(实物图见图2),如图1(4)所示,将传感器件的4、5电极接入动态气体测试系统,测试电压设置为1V,干燥空气作为背景气和稀释气体,通入目标气体(待测气体)前用干燥空气吹扫器件并将器件加热至200℃,同时持续测试记录其电流-时间变化曲线,当基线跑平时,将浓度为10ppm的NO 2气体通入测试腔60s后用干燥空气吹扫600s,重复该过程6次,得到该4、5电极对应的气敏材料对10ppmNO 2气体的响应-恢复曲线,通过响应公式S=(|I t -I 0 |)/I 0计算其响应,其中S为响应值,I t为器件在目标气体中的电流值,I 0为干燥空气中器件的电流值,得到如图3所示的响应-时间曲线。 Figure 3 shows the response-recovery curves of the YW-co-doped CuO film for 6 repetitions of 10ppm NO 2 gas. The response sensitivity is high, about 5.0, and the recovery performance is good.
测试例2test case 2
将对比例1中所得器件,如图1(4)所示,将传感器件的2、3电极接入动态气体测试系统,测试电压设置为1V,干燥空气作为背景气和稀释气体,通入目标气体(待测气体)前用干燥空气吹扫器件并将器件加热至200℃,同时持续测试记录其电流-时间变化曲线,当基线跑平时,将浓度为10ppm的NO2气体通入测试腔60s后用干燥空气吹扫600s,重复该过程4次,得到该2、3电极对应的气敏材料对10ppm NO2气体的响应-恢复曲线,通过响应公式S=(|It-I0|)/I0计算其响应,其中S为响应值,It为器件在目标气体中的电流值,I0为干燥空气中器件的电流值,得到如图4所示的响应-时间曲线。图4中展示了GeTeOx薄膜对10ppmNO2气体4次重复响应-恢复曲线,其响应灵敏度很差,约为0.03,由于恢复性能较差,基线出现向上漂移现象。将对比例1中所得器件,如图1(4)所示,将传感器件的2、3电极接入动态气体测试系统,测试电压设置为1V,干燥空气作为背景气和稀释气体,通入目标气体(待测气体)前用干燥空气吹扫器件并将器件加热至200℃,同时持续测试记录其电流-时间变化曲线,当基线跑平时,将浓度为10ppm的NO 2气体通入测试腔60s后用干燥空气吹扫600s,重复该过程4次,得到该2、3电极对应的气敏材料对10ppm NO 2气体的响应-恢复曲线,通过响应公式S=(|I t -I 0 |)/I 0计算其响应,其中S为响应值,I t为器件在目标气体中的电流值,I 0为干燥空气中器件的电流值,得到如图4所示的响应-时间曲线。 Figure 4 shows the response-recovery curves of the GeTeO x thin film to 10ppmNO 2 gas for 4 repetitions. The response sensitivity is very poor, about 0.03. Due to the poor recovery performance, the baseline drifts upward.
测试例3Test case 3
将对比例2中所得器件,如图1(4)所示,将传感器件的4、5电极接入动态气体测试系统,测试电压设置为1V,干燥空气作为背景气和稀释气体,通入目标气体(待测气体)前用干燥空气吹扫器件并将器件加热至200℃,同时持续测试记录其电流-时间变化曲线,当基线跑平时,将浓度为10ppm的H2S气体通入测试腔60s后用干燥空气吹扫600s,得到该4、5电极对应的气敏材料对10ppm H2S气体的响应-恢复曲线,通过响应公式S=(|It-I0|)/I0计算其响应,其中S为响应值,It为器件在目标气体中的电流值,I0为干燥空气中器件的电流值,得到如图5所示的响应-时间曲线。图5中展示了YW-共掺的CuO薄膜对10ppm H2S气体的响应-恢复曲线,其响应灵敏度差,约为0.75,且恢复性能较差。将对比例2中所得器件,如图1(4)所示,将传感器件的4、5电极接入动态气体测试系统,测试电压设置为1V,干燥空气作为背景气和稀释气体,通入目标气体(待测气体)前用干燥空气吹扫器件并将器件加热至200℃,同时持续测试记录其电流-时间变化曲线,当基线跑平时,将浓度为10ppm的H 2 S气体通入测试腔60s后用干燥空气吹扫600s,得到该4、5电极对应的气敏材料对10ppm H 2 S气体的响应-恢复曲线,通过响应公式S=(|I t -I 0 |)/I 0计算其响应,其中S为响应值,I t为器件在目标气体中的电流值,I 0为干燥空气中器件的电流值,得到如图5所示的响应-时间曲线。 Figure 5 shows the response-recovery curve of the YW-co-doped CuO film to 10ppm H 2 S gas, the response sensitivity is poor, about 0.75, and the recovery performance is poor.
测试例4Test case 4
将实施例1中所得器件,如图1(4)所示,将传感器件的2、3电极接入动态气体测试系统,测试电压设置为1V,干燥空气作为背景气和稀释气体,通入目标气体(待测气体)前用干燥空气吹扫器件并将器件加热至200℃,同时持续测试记录其电流-时间变化曲线,当基线跑平时,将浓度为10-50ppm的H2S气体依次通入测试腔60s后用干燥空气吹扫600s,得到该2、3电极对应的气敏材料对10ppm H2S气体的响应-恢复曲线,通过响应公式S=(|It-I0|)/I0计算其响应,其中S为响应值,It为器件在目标气体中的电流值,I0为干燥空气中器件的电流值,得到如图6所示的响应-时间曲线。图6中展示了GeTeOx薄膜对10-50ppm H2S气体的响应-恢复曲线,其响应灵敏度好,恢复性能优异,基线没有出现向上漂移现象。将实施例1中所得器件,如图1(4)所示,将传感器件的2、3电极接入动态气体测试系统,测试电压设置为1V,干燥空气作为背景气和稀释气体,通入目标气体(待测气体)前用干燥空气吹扫器件并将器件加热至200℃,同时持续测试记录其电流-时间变化曲线,当基线跑平时,将浓度为10-50ppm的H 2 S气体依次通入测试腔60s后用干燥空气吹扫600s,得到该2、3电极对应的气敏材料对10ppm H 2 S气体的响应-恢复曲线,通过响应公式S=(|I t -I 0 |)/I 0计算其响应,其中S为响应值,I t为器件在目标气体中的电流值,I 0为干燥空气中器件的电流值,得到如图6所示的响应-时间曲线。 Figure 6 shows the response-recovery curve of the GeTeO x film to 10-50ppm H 2 S gas, the response sensitivity is good, the recovery performance is excellent, and the baseline does not drift upward.
测试例5Test case 5
将实施例2中所得器件,如图1(4)所示,将传感器件的2、3电极接入动态气体测试系统,测试电压设置为1V,干燥空气作为背景气和稀释气体,通入目标气体(待测气体)前用干燥空气吹扫器件并将器件加热至200℃,同时持续测试记录其电流-时间变化曲线,当基线跑平时,将浓度为10-40ppm的H2S气体通入测试腔60s后用干燥空气吹扫600s,得到该2、3电极对应的气敏材料对10-40ppm H2S气体的响应-恢复曲线,通过响应公式S=(|It-I0|)/I0计算其响应,其中S为响应值,It为器件在目标气体中的电流值,I0为干燥空气中器件的电流值,得到如图7所示的响应-时间曲线。图7中展示了GeTeOx薄膜对10-40ppm H2S气体的响应-恢复曲线,其响应灵敏度高,恢复性能较好。将实施例2中所得器件,如图1(4)所示,将传感器件的2、3电极接入动态气体测试系统,测试电压设置为1V,干燥空气作为背景气和稀释气体,通入目标气体(待测气体)前用干燥空气吹扫器件并将器件加热至200℃,同时持续测试记录其电流-时间变化曲线,当基线跑平时,将浓度为10-40ppm的H 2 S气体通入测试腔60s后用干燥空气吹扫600s,得到该2、3电极对应的气敏材料对10-40ppm H 2 S气体的响应-恢复曲线,通过响应公式S=(|I t -I 0 |)/I 0计算其响应,其中S为响应值,I t为器件在目标气体中的电流值,I 0为干燥空气中器件的电流值,得到如图7所示的响应-时间曲线。 Figure 7 shows the response-recovery curve of the GeTeO x thin film to 10-40ppm H 2 S gas, which has high response sensitivity and good recovery performance.
测试例6Test case 6
将实施例1中所得器件,如图1(4)所示,将传感器件的2、6或4、7电极接入动态气体测试系统,测试电压设置为1V,干燥空气作为背景气和稀释气体,通入目标气体(待测气体)前用干燥空气吹扫器件并将器件加热至200℃,同时持续测试记录其电流-时间变化曲线,当基线跑平时,将浓度为10-50ppm的NH3气体通入测试腔60s后用干燥空气吹扫600s,得到该2、6或4、7电极对应的气敏材料对10-50ppm NH3气体的响应-恢复曲线,通过响应公式S=(|It-I0|)/I0计算其响应,其中S为响应值,It为器件在目标气体中的电流值,I0为干燥空气中器件的电流值,得到如图8所示的响应-时间曲线。图8中展示了GeTeOx@YW-共掺的CuO异质结薄膜对10-50ppmNH3气体的响应-恢复曲线,其响应灵敏度高,恢复性能较好。将实施例1中所得器件,如图1(4)所示,将传感器件的2、6或4、7电极接入动态气体测试系统,测试电压设置为1V,干燥空气作为背景气和稀释气体,通入目标气体(待测气体)前用干燥空气吹扫器件并将器件加热至200℃,同时持续测试记录其电流-时间变化曲线,当基线跑平时,将浓度为10-50ppm的NH 3气体通入测试腔60s后用干燥空气吹扫600s,得到该2、6或4、7电极对应的气敏材料对10-50ppm NH 3气体的响应-恢复曲线,通过响应公式S=(|I t -I 0 |)/I 0计算其响应,其中S为响应值,I t为器件在目标气体中的电流值,I 0为干燥空气中器件的电流值,得到如图8所示的响应-时间曲线。 Figure 8 shows the response-recovery curve of the GeTeO x @YW-co-doped CuO heterojunction film to 10-50ppm NH 3 gas, which has high response sensitivity and good recovery performance.
显然,上述实施例仅仅是为清楚地说明所作的举例,并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引申出的显而易见的变化或变动仍处于本发明创造的保护范围之中。Apparently, the above-mentioned embodiments are only examples for clear description, and are not intended to limit the implementation. For those of ordinary skill in the art, on the basis of the above description, other changes or changes in various forms can also be made. It is not necessary and impossible to exhaustively list all the implementation manners here. However, the obvious changes or changes derived therefrom are still within the scope of protection of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210312858.6A CN114791449B (en) | 2022-03-28 | 2022-03-28 | A kind of gas sensor and its preparation method and application |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210312858.6A CN114791449B (en) | 2022-03-28 | 2022-03-28 | A kind of gas sensor and its preparation method and application |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114791449A CN114791449A (en) | 2022-07-26 |
CN114791449B true CN114791449B (en) | 2023-07-21 |
Family
ID=82461599
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210312858.6A Active CN114791449B (en) | 2022-03-28 | 2022-03-28 | A kind of gas sensor and its preparation method and application |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114791449B (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112179956A (en) * | 2020-09-29 | 2021-01-05 | 西安交通大学 | Preparation method of MEMS formaldehyde sensor based on aluminum-doped zinc oxide porous nanofilm |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100305660B1 (en) * | 1999-02-09 | 2001-09-26 | 김희용 | Gas sensors for sulfur compound gas detection, and their fabrication method with CuO addition by dual lon beam sputtering |
CN101660120A (en) * | 2009-09-15 | 2010-03-03 | 中国科学院上海硅酸盐研究所 | Multi-element doping n-type zinc-oxide-base transparent conducting film and preparation method thereof |
CN104034757B (en) * | 2014-06-24 | 2016-07-20 | 东北大学 | A kind of based on TeO2Alcohols gas sensor of nano wire and preparation method thereof |
CN109298027A (en) * | 2017-07-25 | 2019-02-01 | 天津大学 | Gas sensor based on tellurium oxide nanoparticles modified tungsten oxide nanorods and preparation method thereof |
CN109030578A (en) * | 2018-07-30 | 2018-12-18 | 清华大学 | A preparation method of NO2 gas sensor based on CdTe/ZnO nano-heterojunction structure |
CN109828009B (en) * | 2019-01-29 | 2021-08-13 | 吉林大学 | A kind of H2S gas sensor based on metal oxide semiconductor thin film material and preparation method thereof |
CN109991286B (en) * | 2019-05-05 | 2022-01-04 | 河北工业大学 | Preparation method of aluminum-doped tungsten oxide-based dual-selectivity gas sensor |
CN110042467B (en) * | 2019-05-22 | 2021-07-13 | 天津理工大学 | Compound lithium rubidium germanate and lithium rubidium germanate nonlinear optical crystal and preparation method and use |
-
2022
- 2022-03-28 CN CN202210312858.6A patent/CN114791449B/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112179956A (en) * | 2020-09-29 | 2021-01-05 | 西安交通大学 | Preparation method of MEMS formaldehyde sensor based on aluminum-doped zinc oxide porous nanofilm |
Also Published As
Publication number | Publication date |
---|---|
CN114791449A (en) | 2022-07-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wang et al. | Gas sensing devices based on two-dimensional materials: a review | |
Peng et al. | Gas sensing properties of single crystalline porous silicon nanowires | |
CN110579526B (en) | Field effect transistor gas sensor and array preparation method thereof | |
Sun et al. | Selective oxidizing gas sensing and dominant sensing mechanism of n-CaO-decorated n-ZnO nanorod sensors | |
CN109580725B (en) | Two-dimensional transition metal sulfide gas sensor based on antenna structure and preparation | |
Park et al. | Junction-tuned SnO2 nanowires and their sensing properties | |
JP4056987B2 (en) | Hydrogen sensor and hydrogen detection method | |
CN111307876B (en) | Gas sensor for detecting nitrogen dioxide and preparation method thereof | |
CN104049022A (en) | Molybdenum disulfide/silicon heterogeneous film component with hydrogen sensitivity effect as well as preparation method and application thereof | |
KR101500671B1 (en) | Flexible transparent chemical sensors based on graphene oxide and method for preparing the same | |
CN204389426U (en) | Metal-oxide semiconductor (MOS) gas sensor | |
CN101556257A (en) | Method for preparing direct thermal carbon nanotube gas sensor and sensitive membrane | |
Stuckert et al. | The effect of Ar/O2 and H2O plasma treatment of SnO2 nanoparticles and nanowires on carbon monoxide and benzene detection | |
CN107024516A (en) | A kind of rhenium disulfide nano-chip arrays film adsorbed sensor and preparation method | |
CN106770498A (en) | Acetone sensor, the preparation method and application of the rhodium doped stannic oxide nanometer fiber sensitive material prepared based on electrostatic spinning technique | |
Du et al. | Hydrogen gas sensing properties of Pd/aC: Pd/SiO2/Si structure at room temperature | |
CN114994146B (en) | Gas sensor based on catalytic temperature drag hump bit signal and gas detection method | |
CN114791449B (en) | A kind of gas sensor and its preparation method and application | |
Lu et al. | High-performance Ni3 (HHTP) 2 film-based flexible field-effect transistor gas sensors | |
Nasrollah Gavgani et al. | Graphene-based nanocomposites sensors for detection of ammonia | |
CN203616277U (en) | Semiconductor gas sensor | |
CN105510400B (en) | A kind of hydrogen gas sensor based on carbon nanotube and palladium laminated film | |
He et al. | High-performance ammonia gas sensor based on a catalytic ruthenium-gated field-effect transistor | |
KR100906496B1 (en) | Gas sensor and its manufacturing method | |
CN106744645A (en) | A kind of gas sensor and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |