CN114790702B - 一种基于bim和fem协同的钢箱梁整体同步顶推安装方法 - Google Patents

一种基于bim和fem协同的钢箱梁整体同步顶推安装方法 Download PDF

Info

Publication number
CN114790702B
CN114790702B CN202210530007.9A CN202210530007A CN114790702B CN 114790702 B CN114790702 B CN 114790702B CN 202210530007 A CN202210530007 A CN 202210530007A CN 114790702 B CN114790702 B CN 114790702B
Authority
CN
China
Prior art keywords
construction
bim
steel box
box girder
pushing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210530007.9A
Other languages
English (en)
Other versions
CN114790702A (zh
Inventor
赵贵朋
王红力
杨雷
税宁波
吕鑫
贺燕平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sinohydro Bureau 7 Co Ltd
Original Assignee
Sinohydro Bureau 7 Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sinohydro Bureau 7 Co Ltd filed Critical Sinohydro Bureau 7 Co Ltd
Priority to CN202210530007.9A priority Critical patent/CN114790702B/zh
Publication of CN114790702A publication Critical patent/CN114790702A/zh
Application granted granted Critical
Publication of CN114790702B publication Critical patent/CN114790702B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D21/00Methods or apparatus specially adapted for erecting or assembling bridges
    • E01D21/06Methods or apparatus specially adapted for erecting or assembling bridges by translational movement of the bridge or bridge sections
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D2/00Bridges characterised by the cross-section of their bearing spanning structure
    • E01D2/04Bridges characterised by the cross-section of their bearing spanning structure of the box-girder type
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/13Architectural design, e.g. computer-aided architectural design [CAAD] related to design of buildings, bridges, landscapes, production plants or roads
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/23Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D2101/00Material constitution of bridges
    • E01D2101/30Metal
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/14Force analysis or force optimisation, e.g. static or dynamic forces

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Geometry (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Architecture (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Bridges Or Land Bridges (AREA)

Abstract

本发明公开了一种基于BIM和FEM协同的钢箱梁整体同步顶推安装方法,包括FEM受力分析阶段、BIM实时监测仿真阶段;FEM受力分析阶段通过对各工况钢箱梁顶推至最不利位置时钢箱梁关键截面应力状态及导梁前端位移进行计算;BIM实时监测仿真阶段通过基于施工图的施工作业颗粒度BIM模型,结合工程施工进度计划、施工资源等信息对施工过程进行模拟和预演,采用BIM技术模拟整个顶推过程以及应用BIM技术进行施工监测,实现施工中的事前控制和动态管理。本发明通过BIM+FEM协同技术的应用,采用有限元和现场监测的技术手段保障施工安全,有效规避钢箱梁施工过程中监控数据散乱、整理困难、信息反馈缓慢等问题,提升智能化管理水平,大大降低了宽幅钢箱梁线型监测施工难度。

Description

一种基于BIM和FEM协同的钢箱梁整体同步顶推安装方法
技术领域
本发明属于建筑施工技术领域,尤其属于桥梁施工技术领域,特别是一种基于BIM和FEM协同的宽幅钢箱梁整体同步顶推安装方法。
背景技术
BIM简称建筑信息模型,随着BIM技术发展,其在桥梁建造的应用也越来越广泛深入;FEM简称有限元法或有限元素法,是随着电子计算机的发展而迅速发展起来的一种现代计算方法,越来越多的施工分析可以通过有限元软件进行受力分析,验证其合理性和安全性。
大型桥梁建设中,宽幅钢箱梁顶推施工过程有许多影响因素,若不能及时处理,会对施工造成很大的影响,因此,需要一种能预先对顶推进行受力分析和方案可行性、高效性分析的方法。
发明内容
本发明目的是针对上述问题,公开一种基于BIM和FEM协同的钢箱梁整体同步顶推安装方法。本发明方法通过BIM+FEM协同技术的应用,采用有限元和现场监测的技术手段保障施工安全,有效规避钢箱梁施工过程中监控数据散乱、整理困难、信息反馈缓慢等问题,提升智能化管理水平,大大降低了宽幅钢箱梁线型监测施工难度。
为实现上述目的,本发明所采用的技术方案是:
一种基于BIM和FEM协同的钢箱梁整体同步顶推安装方法,其特征在于:包括FEM受力分析阶段、BIM实时监测仿真阶段;
FEM受力分析阶段通过对各工况钢箱梁顶推至最不利位置时钢箱梁关键截面应力状态及导梁前端位移进行计算;
BIM实时监测仿真阶段通过基于施工图的施工作业颗粒度BIM模型,结合工程施工进度计划、施工资源等信息对施工过程进行模拟和预演,采用BIM技术模拟整个顶推过程以及应用BIM技术进行施工监测,实现施工中的事前控制和动态管理。
作为优选的,所述的FEM受力分析阶段通过以下步骤实现:
S1:使用有限元软件Midas Civil,建立大桥的顶推施工模型;
S2:设定桥梁顶推施工整体配置,模拟桥梁顶推的施工工序;
S3:将整个施工工作分为多个阶段,分析每一个施工阶段的受力情况;
S4:计算顶推施工中梁段自重、钢导梁受力情况、悬臂端变形等对钢箱梁受力的影响。
作为优选的,所述的BIM实时监测仿真阶段通过以下步骤实现:
S1:通过BIM软件进行大桥模型建立;
S2:基于OPENCV图像技术,通过RTSP协议采集现场监控视频图像,为后续视频融合提供稳定、实时的视频二维图像数据;
S3:针对各个摄像头分别抓取1张监控图像数据作为模型初始纹理,通过BIM工具中FFD4×4×4编辑修改器,依次完成单路视频、多路视频二维静态图像与三维模型的融合拼接;
S4:将融合拼接场景模型导入平台,结合三维模型材质纹理动态更新技术,完成三维实景视频动态一张图动态监控。
采用本发明技术方案具有以下有益效果:
本发明钢箱梁整体同步顶推安装方法进行全程模拟的监控计算、跟踪计算及误差调整,整体把握顶推施工全程的结构受力变形状态,形成施工控制目标值序列并对各施工状态作出实时预测及误差修正。钢箱梁施工时的监测,主要控制梁体制作精度,施工观测导梁挠度、应力以及各临时支墩沉降、偏位等,确保顶推阶段拼接顺利。
有效规避了钢箱梁施工过程中监控数据散乱、整理困难、信息反馈缓慢等问题,提升了智能化管理水平,大大降低了钢箱梁线型监测施工难度。
通过BIM技术在数字化建模、预拼装的基础上实现了先进性的施工管理与现场生产紧密结合,实现了对施工过程的超前管理,在降低施工成本的同时也极大地减小了施工安全风险。
附图说明
图1为本发明具体实施方式的钢箱梁断面图;
图2为本发明具体实施方式的钢箱梁有限元分析图;
图3为本发明具体实施方式的主梁BIM模型;
图4为本发明具体实施方式的BIM顶推模拟图一;
图5为本发明具体实施方式的BIM顶推模拟图二。
具体实施方式
下面结合具体实施方式对本发明进一步说明,具体实施方式是对本发明原理的进一步说明,不以任何方式限制本发明,与本发明相同或类似技术均没有超出本发明保护的范围。
以下实施例以某钢箱梁桥梁的BIM和FEM分析为例说明:
分块的原则是经过FEM分析将断开位置设在顶推及今后受力最小部位,分块后的重量不需要大型吊机安装,分块形状规整,起吊后重力下发生翻转的可能性小。如图1所示,本实施例钢箱梁采用单节钢箱梁划分为8个小节段,最重节段为50.5吨,在构件加工厂内进行加工制作,运输至现场后,采用2台56t龙门吊吊装至拼装平台进行组拼,组拼按照3+1即半宽为三块主梁加上一块主梁的悬臂进行,组拼完成后采用800t步履式千斤顶顶推至设计位置。步履顶顶升顶由1台400t和2台200t千斤顶构成,最大顶升15cm,顶推顶由两个30T千斤顶组成,每次行程30cm。滑箱两侧设4个纠偏顶,单次纠偏5cm,当出现偏位和受力偏差时,通过传感器反馈的数据,辅以步履千斤顶进行微调,实现动态纠偏。再根据钢箱梁节段变化调整千斤顶施加的顶推力,使钢箱梁平稳前移。具体顶推位置是根据FEM计算,以最少顶推点满足顶推力作用下结构变形不使结构产生不良变形和内力的原则,反复计算优化得到的。
如图2所示,使用有限元分析软件Midas Civil,建立全桥主梁顶推施工模型。设定桥梁顶推施工整体配置,模拟桥梁顶推的施工工序,并将整个施工工作分为多个阶段,分析每一个施工阶段的受力情况,计算顶推施工中梁段自重、钢导梁受力情况、悬臂端变形等对钢箱梁受力的影响,模拟结果表明,随着顶推长度不断增加,最大位移、应力也随之增大。
钢箱梁顶推过程中,支点以及结构体系在不断变化,整个顶推过程主要控制工况如下:
导梁即将上n#墩时,最大悬臂状态,此工况下钢箱梁悬臂端部应力最大,(n-1)#临时墩支点反力较大;
导梁上墩后,支撑完成体系转换,导梁支撑点处反力较大,导梁结构受力较大;
导梁上n#号墩后,往(n+1)#临时墩方向继续顶推过程中,由于导梁与钢箱梁自重的差别以及导梁悬臂的影响,(n-1)#临时墩反力不断变化,先增大后变小,过程中有最大临界点,经每顶推1m来试算得到导梁上n#墩后往(n+1)#顶推至导梁悬臂16m时,(n-1)#临时墩反力达最大值。
由计算分析可知,各结构受力满足要求。为进一步保证顶推安全,可适当增设加劲板控制钢箱梁线型。
如图3所示,建立全桥BIM模型并模拟顶推过程。全桥智能多点同步顶推施工,主要控制步履机行程同步性、顶推线形、支墩受力安全。顶推过程中通过联动控制及每台步履机上端的倾斜传感器、色标传感器、油站、滑箱上的高精度位移传感器反馈信息,主控制器自动运算显示数据进行判断顶推过程倾斜、轴线偏位、位移同步状况,在倾斜度达2%、轴线色标偏位50mm时、油站误差5%、不同步5mm时触摸屏上面的报警指示灯闪烁或停止顶推,再通过单点控制实时对顶推单顶受力、轴线、同步性进行控制调整,采用BIM仿真监控技术及传递矩阵法进行线性辅助控制,顶推过程,对顶推实时监测,实时纠偏,实现顶推过程安全、质量控制,最终实现钢箱梁顶推线性满足成桥线性。
如图4、图5所示,图4为本发明具体实施方式的BIM顶推模拟图一;图5为本发明具体实施方式的BIM顶推模拟图二;模拟图一是顶推初期一种状态,模拟图二是顶推过程中的一种状态。将桥梁三维模型和视频监控融为一体,主要分为以下几个步骤来实现:①通过BIM软件进行全桥模型建立;②基于OPENCV图像技术,通过RTSP协议采集现场监控视频图像,为后续视频融合提供稳定、实时的视频二维图像数据;③针对各个摄像头分别抓取1张监控图像数据作为模型初始纹理,通过BIM工具中FFD4×4×4编辑修改器,依次完成单路视频、多路视频二维静态图像与三维模型的融合拼接,然后将融合拼接场景模型导入平台,结合三维模型材质纹理动态更新技术,完成三维实景视频动态一张图动态监控。
利用BIM仿真监控技术辅助线性控制,通过设定虚拟摄像头,将现实中视频监控所拍摄的画面与虚拟摄像头拍摄到的BIM模型一一对应,在系统中控制摄像头的视角和画面时,虚拟摄像头会实时同步,实现虚拟模型与现实施工情况的对比,及时对不同步性、偏差进行数据化反馈,作为调整梁段的参照。

Claims (1)

1.一种基于BIM和FEM协同的钢箱梁整体同步顶推安装方法,其特征在于:包括FEM受力分析阶段、BIM实时监测仿真阶段;
FEM受力分析阶段通过对各工况钢箱梁顶推至最不利位置时钢箱梁关键截面应力状态及导梁前端位移进行计算;步骤如下:
S1:使用有限元软件Midas Civil,建立大桥的顶推施工模型;
S2:设定桥梁顶推施工整体配置,模拟桥梁顶推的施工工序;
S3:将整个施工工作分为多个阶段,分析每一个施工阶段的受力情况;
S4:计算顶推施工中梁段自重、钢导梁受力情况、悬臂端变形对钢箱梁受力的影响;
BIM实时监测仿真阶段通过基于施工图的施工作业颗粒度BIM模型,结合工程施工进度计划、施工资源信息对施工过程进行模拟和预演,采用BIM技术模拟整个顶推过程以及应用BIM技术进行施工监测,实现施工中的事前控制和动态管理;步骤如下:
S1:通过BIM软件进行大桥模型建立;
S2:基于OPENCV图像技术,通过RTSP协议采集现场监控视频图像,为后续视频融合提供稳定、实时的视频二维图像数据;
S3:针对各个摄像头分别抓取1张监控图像数据作为模型初始纹理,通过BIM工具中FFD4×4×4编辑修改器,依次完成单路视频、多路视频二维静态图像与三维模型的融合拼接;
S4:将融合拼接场景模型导入平台,结合三维模型材质纹理动态更新技术,完成三维实景视频动态一张图动态监控。
CN202210530007.9A 2022-05-16 2022-05-16 一种基于bim和fem协同的钢箱梁整体同步顶推安装方法 Active CN114790702B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210530007.9A CN114790702B (zh) 2022-05-16 2022-05-16 一种基于bim和fem协同的钢箱梁整体同步顶推安装方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210530007.9A CN114790702B (zh) 2022-05-16 2022-05-16 一种基于bim和fem协同的钢箱梁整体同步顶推安装方法

Publications (2)

Publication Number Publication Date
CN114790702A CN114790702A (zh) 2022-07-26
CN114790702B true CN114790702B (zh) 2023-11-17

Family

ID=82463323

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210530007.9A Active CN114790702B (zh) 2022-05-16 2022-05-16 一种基于bim和fem协同的钢箱梁整体同步顶推安装方法

Country Status (1)

Country Link
CN (1) CN114790702B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117591984B (zh) * 2024-01-17 2024-04-09 湖北楚天联发路桥养护有限公司 基于深度学习的桥梁顶推路径监控方法及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110424276A (zh) * 2019-08-30 2019-11-08 山东省路桥集团有限公司 基于bim技术的双曲线钢箱梁双向顶推施工方法
CN111395173A (zh) * 2020-03-23 2020-07-10 东南大学 一种基于bim的钢桁拱桥螺栓连接施工精度控制方法
CN111611634A (zh) * 2020-03-30 2020-09-01 南京震坤物联网科技有限公司 基于bim-fem的桥梁健康评估系统和健康评估方法
CN112507413A (zh) * 2020-09-28 2021-03-16 中铁七局集团有限公司 大跨度变截面小半径s曲线连续梁桥应力监测及分析方法
CN112609581A (zh) * 2020-12-08 2021-04-06 上海市机械施工集团有限公司 一种大跨度钢箱梁的施工方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110424276A (zh) * 2019-08-30 2019-11-08 山东省路桥集团有限公司 基于bim技术的双曲线钢箱梁双向顶推施工方法
CN111395173A (zh) * 2020-03-23 2020-07-10 东南大学 一种基于bim的钢桁拱桥螺栓连接施工精度控制方法
CN111611634A (zh) * 2020-03-30 2020-09-01 南京震坤物联网科技有限公司 基于bim-fem的桥梁健康评估系统和健康评估方法
CN112507413A (zh) * 2020-09-28 2021-03-16 中铁七局集团有限公司 大跨度变截面小半径s曲线连续梁桥应力监测及分析方法
CN112609581A (zh) * 2020-12-08 2021-04-06 上海市机械施工集团有限公司 一种大跨度钢箱梁的施工方法

Also Published As

Publication number Publication date
CN114790702A (zh) 2022-07-26

Similar Documents

Publication Publication Date Title
CN110008591B (zh) 一种基于bim的连续刚构桥施工管理控制方法
CN104156544B (zh) 基于bim技术的梁柱钢筋节点自动布置与施工模拟方法
US20180031457A1 (en) Shear test device and test method of rock mass discontinuities under constant normal stiffness condition
CN107391793B (zh) 基于3d扫描技术与mr混合现实技术的建筑结构拆除方法
CN114790702B (zh) 一种基于bim和fem协同的钢箱梁整体同步顶推安装方法
CN105740560B (zh) 一种钢管拱肋节段胎架法连续拼装施工用模拟拼装方法
CN112081285B (zh) 一种索结构预应力态拉索长度确定方法
CN108153972B (zh) 一种缆索吊装全过程分析方法
CN113738390B (zh) 一种矩形顶管机的分时迁移空间姿态微调纠偏方法
CN208183537U (zh) 一种450吨步履机顶推系统
CN108563860A (zh) 一种钢结构虚拟预拼装方法
CN107491619A (zh) 一种基于bim技术的旧改项目钢结构定位吊装施工方法
CN114997584A (zh) 基于bim可视化的高拱坝施工全生命周期动态仿真分析方法
CN116561871A (zh) 一种桥梁承台预埋件安装深化施工方法
CN105302938A (zh) 一种组装式桁架内力计算方法
CN110593104A (zh) 一种花瓶型索塔钢模板的制作施工工艺
CN112069583B (zh) 有限元同步分析的斜悬挑安全智能施工系统及方法
CN112065043B (zh) 有限元同步分析的大悬挑安全智能施工系统及方法
CN103871108A (zh) 一种基于3d可视化技术钢结构的吊装全过程模拟方法
CN111553013B (zh) 一种模拟抗滑桩对桥梁墩台作用的简化数值模拟方法
CN113267170A (zh) 一种基于3d激光扫描和模型计算数据对比反馈的三主桁钢梁横向高差调节方法
CN113264450A (zh) 轮胎式提梁机小曲线半径非平衡式悬臂及拼装施工系统
CN102505863A (zh) 一种多轨道滑移施工无线激光同步控制装置
CN105405169A (zh) 管桁架在不同坐标系中的坐标转换方法
CN101923599A (zh) 一种基于ansys的建筑物迁移数字化模拟方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant