CN114790435B - 合成可点击反应糖胺聚糖骨架的枯草芽孢杆菌工程菌株及其构建方法与应用 - Google Patents

合成可点击反应糖胺聚糖骨架的枯草芽孢杆菌工程菌株及其构建方法与应用 Download PDF

Info

Publication number
CN114790435B
CN114790435B CN202110096718.5A CN202110096718A CN114790435B CN 114790435 B CN114790435 B CN 114790435B CN 202110096718 A CN202110096718 A CN 202110096718A CN 114790435 B CN114790435 B CN 114790435B
Authority
CN
China
Prior art keywords
gene
skeleton
glycosaminoglycan
azide
bacillus subtilis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110096718.5A
Other languages
English (en)
Other versions
CN114790435A (zh
Inventor
生举正
王钰佳
侯进
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong University
Original Assignee
Shandong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong University filed Critical Shandong University
Priority to CN202110096718.5A priority Critical patent/CN114790435B/zh
Publication of CN114790435A publication Critical patent/CN114790435A/zh
Application granted granted Critical
Publication of CN114790435B publication Critical patent/CN114790435B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • C12N15/75Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora for Bacillus
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/32Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Bacillus (G)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/26Preparation of nitrogen-containing carbohydrates

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biophysics (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明涉及合成可点击反应糖胺聚糖骨架的枯草芽孢杆菌工程菌株及其构建方法与应用。本发明的枯草芽孢杆菌工程菌株不具备内源合成UDP‑单糖和糖胺聚糖的能力,引入异源组成型UDP‑叠氮单糖合成途径及诱导型叠氮修饰糖胺聚糖骨架合成途径,在培养基中添加叠氮单糖和诱导剂时,合成可点击反应的叠氮修饰的糖胺聚糖骨架。本发明基于对糖胺聚糖合成相关酶分子的研究基础和巧妙设计,利用代谢工程手段,分别构建了具备叠氮基团修饰的肝素骨架多糖、硫酸软骨素骨架多糖、以及透明质酸骨架多糖合成能力的工程菌株。通过点击化学等生物正交反应的手段,可以实现工程菌株本身及这些多糖骨架的可视化标记。

Description

合成可点击反应糖胺聚糖骨架的枯草芽孢杆菌工程菌株及其 构建方法与应用
技术领域
本发明涉及合成可点击反应糖胺聚糖骨架的枯草芽孢杆菌工程菌株及其构建方法与应用,属于分子生物学技术领域。
背景技术
糖胺聚糖(Glycosaminoglycans,GAG)广泛地存在于从线虫(Caenorbabditiselegnas)到人类和各级动物各组织中,发挥重要的生理功能,也与许多病理过程息息相关。该类多糖在医药领域具有广泛的应用价值。此外,随着人源糖链生物活性及成药性研究的深入,某些与人源糖链的骨架结构一致的细菌产的糖胺聚糖具有作为人工合成的前体,从而实现活性人源糖链规模化制备,其高效安全制备成为研究热点。糖胺聚糖类药物成为这一研究方向的典型代表。例如,通过大肠埃希菌来源K4和K5多糖(分别与硫酸软骨素,肝素多糖未硫酸化修饰糖链骨架结构一致)的发酵制备与体外糖链硫酸化修饰技术的偶联,高效制备非动物来源的糖胺聚糖药物原料。所以,建立一种利用重组菌株发酵,较大规模制备可被荧光探针等信号分子标记的糖胺聚糖骨架糖链的方法,为开展此类多糖及衍生物的化学生物学提供了重要的手段。
细菌多糖是菌体在代谢过程中合成的对细胞有保护作用的大分子聚合物,其由各类单糖按照特定的糖苷键连接形式聚合而成,而细菌荚膜多糖是细菌多糖重要的一类。表面覆盖荚膜多糖的细菌具有侵袭性强的特点,荚膜多糖和脂多糖是主要的致病因子,会导致严重的疾病。枯草芽孢杆菌一直被用作生产宿主,以生产符合GRAS等级要求的重要药物的生物化学物质和工业上有用的成分(等,2008;Widner等,2005),用枯草芽孢杆菌产生可视化的糖胺聚糖,在化学生物学方面有很大应用。
由于Heparosan是以[→4)GlcA-β(1,4)-GlcNAc-α(1→]为重复二糖单元的线性长链,软骨素是以[→4)GlcA-β(1,3)-GalNAc-β(1→]为重复二糖单元的线性长链,透明质酸是以[→4)GlcA-β(1,3)-GlcNAc-β(1→]为重复二糖单元的线性长链,本发明成功将N-乙酰-D-氨基葡萄糖或N-乙酰-D-氨基半乳糖替换成叠氮基团修饰的GlcNAz或GalNAz,以其为二糖单元之一的形式组装在糖胺聚糖骨架上。而生物正交点击化学已广泛应用于生物分子的标记,叠氮化物以生物正交基团连接在靶标生物分子构建体中具有生物相容性高,可选择性地与炔烃或芳基膦反应。因此,本发明选择叠氮化物作为活细胞表面生物正交基团,选择能发生生物正交反应的荧光素作为进行探针标记的基团,实现细胞表面糖胺聚糖骨架的成像。
发明内容
针对现有技术的不足,尤其是基于产生可视化糖胺聚糖骨架生物分子的枯草芽孢杆菌构建,以及可视化糖胺聚糖骨架糖链在化学生物学方面的应用,本发明提供了合成可点击反应糖胺聚糖骨架的枯草芽孢杆菌工程菌株及其构建方法与应用,主要以枯草芽孢杆菌168为例,构建得到产生可视化糖胺聚糖骨架生物分子的工程菌株。
术语说明:
UDP-GlcA:中文全称为UDP-葡萄糖醛酸,其作用是为糖胺聚糖骨架的合成提供活化的葡萄糖醛酸供体。
UDP-GlcNAc:中文全称为UDP-N-乙酰葡萄糖胺,其作用是为糖胺聚糖骨架的合成提供活化的乙酰葡萄糖胺供体。
glmS:中文全称为谷氨酰胺--6-磷酸果糖氨基转移酶,其作用是催化Fru-6P到GlcN-6P,是UDP-GlcNAc内源合成途径的关键酶分子。
NahK:中文全称为N-乙酰己糖胺1-激酶,来源于长双歧杆菌,其作用是催化GlcNAc(GlcNAz)到GlcNAc-1P(GlcNAz-1P)。
AGX1:人源UDP-N-乙酰基己糖胺焦磷酸化酶,其作用是催化GlcNAc-1P(GlcNAz-1P)到UDP-GlcNAc(UDP-GlcNAz)。
pmHS2:巴氏杆菌属Heparosan合酶2,其作用催化UDP-GlcA和UDP-GlcNAc(UDP-GlcNAz)合成Heparosan(叠氮修饰Heparosan)。
KfoA:大肠杆菌O5:K4:H4菌株的UDP-葡萄糖-4-表异构酶,其作用是催化UDP-GlcNAc转化为UDP-GalNAc。
KfoC:大肠杆菌软骨素聚合酶,其作用是催化UDP-GlcA和UDP-GalNAc(UDP-GalNAz)合成软骨素(叠氮修饰软骨素)。
PmHAS:巴氏杆菌属透明质酸合酶基因,其作用是催化UDP-GlcA和UDP-GlcNAc(UDP-GlcNAz)合成透明质酸(叠氮修饰透明质酸)。
GlcNAz:中文全称为N-叠氮乙酰葡萄糖胺,其作用是添加在培养基中为UDP-GlcNAz合成的起始底物。
UDP-GlcNAz:中文全称为UDP-N-叠氮乙酰葡萄糖胺,其作用是为叠氮化糖胺聚糖骨架的合成提供活化的叠氮乙酰葡萄糖胺供体。
UDP-GalNAz:中文全称为UDP-N-叠氮乙酰半乳糖胺,其作用是为叠氮化糖胺聚糖骨架的合成提供活化的叠氮乙酰半乳糖胺供体。
本发明技术方案如下:
合成可点击反应糖胺聚糖骨架的枯草芽孢杆菌工程菌株,其特征在于,所述枯草芽孢杆菌工程菌株不具备内源合成UDP-单糖和糖胺聚糖的能力,引入异源组成型UDP-叠氮单糖合成途径及诱导型叠氮修饰糖胺聚糖骨架合成途径,在培养基中添加叠氮单糖和诱导剂时,合成可点击反应的叠氮修饰的糖胺聚糖骨架。
根据本发明优选的,所述枯草芽孢杆菌工程菌株敲除了glmS基因,不具备UDP-单糖内源合成能力。
根据本发明优选的,所述枯草芽孢杆菌工程菌株引入了NahK、AGX1基因,具备UDP-叠氮单糖合成能力。
根据本发明优选的,所述枯草芽孢杆菌工程菌株引入了pmHS2基因、或PmHAS基因、或KfoA、KfoC基因,具备叠氮修饰糖胺聚糖骨架合成能力。
上述合成可点击反应糖胺聚糖骨架的枯草芽孢杆菌工程菌株的构建方法,包括如下步骤:
(1)以枯草芽孢杆菌为出发菌株,利用同源重组技术敲除glmS基因,阻断枯草芽孢杆菌中的UDP-单糖内源合成途径;
(2)在经步骤(1)改造的枯草芽孢杆菌中插入NahK、AGX1基因,引入异源组成型UDP-叠氮单糖合成途径,并插入pmHS2基因、或PmHAS基因、或KfoA、KfoC基因,引入诱导型叠氮修饰糖胺聚糖骨架合成途径,构建得到合成可点击反应糖胺聚糖骨架的枯草芽孢杆菌工程菌株。
根据本发明优选的,步骤(1)中所述出发菌株为枯草芽孢杆菌168。
根据本发明优选的,步骤(2)中所述插入NahK、AGX1基因是将含有组成型启动子Pveg调控下NahK基因和AGX1基因序列的同源重组片段插入菌株基因组中。
根据本发明优选的,步骤(2)中所述插入插入pmHS2基因、或PmHAS基因是将pmHS2基因、或PmHAS基因序列置于诱导型启动子PxylA调控下插入质粒载体中,然后将重组质粒转化入菌体中;进一步优选的,所述质粒载体为pHT43。
根据本发明优选的,步骤(2)中所述插入KfoA、KfoC基因是将KfoA和KfoC基因序列分别置于诱导型启动子PxylA调控下插入同一质粒载体中,然后将重组质粒转化入菌体中;进一步优选的,所述质粒载体为pHT43。
根据本发明优选的,所述glmS基因的核苷酸序列如SEQ ID NO.1所示,所述NahK基因的核苷酸序列如SEQ ID NO.2所示,所述AGX1基因的核苷酸序列如SEQ ID NO.3所示,所述pmHS2基因的核苷酸序列如SEQ ID NO.4所示,所述PmHAS基因的核苷酸序列如SEQ IDNO.5所示,所述KfoA基因的核苷酸序列如SEQ ID NO.6所示,所述KfoC基因的核苷酸序列如SEQ ID NO.7所示。
上述合成可点击反应糖胺聚糖骨架的枯草芽孢杆菌工程菌株在制备叠氮修饰的糖胺聚糖骨架中的应用。
上述合成可点击反应糖胺聚糖骨架的枯草芽孢杆菌工程菌株以及其合成的可点击反应糖胺聚糖骨架在化学生物学中的应用。
本发明中未作详细说明的实验步骤均按照本技术领域的常规操作进行。
有益效果:
本发明基于对糖胺聚糖合成相关酶分子的研究基础和巧妙设计,利用代谢工程手段,分别构建了具备叠氮基团修饰的肝素骨架多糖、硫酸软骨素骨架多糖、以及透明质酸骨架多糖合成能力的工程菌株。这些多糖糖链以游离的形式进入发酵培养基,或者以荚膜多糖的形式锚定在工程菌株细胞表面。通过点击化学等生物正交反应的手段,可以实现工程菌株本身及这些多糖骨架的可视化标记。基于荚膜多糖的菌株可视化示踪,提供了一种新的可视化手段,有望成为细菌侵染机制的有力工具。通过工程菌株的发酵纯化可得到叠氮修饰的糖胺聚糖骨架,可较大规模制备被荧光探针等信号分子标记多糖糖链,开展此类多糖及衍生物的化学生物学研究。
附图说明
图1为pUC57-neo质粒酶切片段琼脂糖凝胶电泳图;
图2为glmS基因敲除验证琼脂糖凝胶电泳图,图中,N:无模板阴性对照,WT:野生型BS168以glmS F和glmS R为引物的扩增样品,P1、P2:阳性转化子以glmS F和glmS R为引物的扩增样品,P3:阳性转化子以neo F和neo R为引物的扩增样品;
图3为BS168△glmS菌株在M9培养基中的生长曲线;
图4为Pveg-AGXI-Pveg-Nahk基因片段整合的琼脂糖凝胶电泳图,图中,1~5:阳性转化子以AGX1 F和AGX1 R为引物的扩增样品,6~10:阳性转化子以NahK 2F和NahK 2R为引物的扩增样品,11~16:阳性转化子以tuaD F和tuaD R为引物的扩增样品;
图5为pHT43-KfiA质粒酶切后的琼脂糖凝胶电泳图;
图6为pHT43-PxylA-pmHS2质粒的PCR产物琼脂糖凝胶电泳图,图中,1:阳性对照,0:阴性对照,2~5:阳性质粒;
图7为pHT43-PxylA-KfoA-PxylA-KfoC质粒的琼脂糖凝胶电泳图,图中,1~4:阳性质粒,5~8:阳性质粒以KfoC F和KfoC R为引物的PCR产物,9~12:阳性质粒以KfoA F和KfoAR为引物的PCR产物;
图8为pHT43-PxylA-pmHAS的琼脂糖凝胶电泳图,图中,1:阳性质粒Acc65I和SmaI酶切产物,2~5:阳性质粒以pmHAS F和pmHAS R为引物的PCR产物;
图9为BS168△glmS NahK AGX1 pmhs2菌株FAM荧光标记的LSM成像图(A)及流式细胞荧光分析图(B);
图10为BS168△glmS NahK AGX1 pmHAS菌株FAM荧光标记的LSM成像图(A)及流式细胞荧光分析图(B);
图11为BS168△glmS NahK AGX1 KfoA-KfoC菌株以为GalNAz底物FAM荧光标记的LSM成像图(A)及流式细胞荧光分析图(B);
图12为BS168△glmS NahK AGX1 KfoA-KfoC菌株以为GlcNAz底物FAM荧光标记的LSM成像图(A)及流式细胞荧光分析图(B);
图13为BS168△glmS NahK AGX1 pmhs2菌株DBCO-Cy5荧光标记的SIM成像图(A)及流式细胞荧光分析图(B);
图14为BS168△glmS NahK AGX1 pmHAS菌株DBCO-Cy5荧光标记的SIM成像图(A)及流式细胞荧光分析图(B);
图15为BS168△glmS NahK AGX1 KfoA-KfoC菌株以为GalNAz底物DBCO-Cy5荧光标记的SIM成像图(A)及流式细胞荧光分析图(B);
图16为BS168△glmS NahK AGX1 KfoA-KfoC菌株以为GlcNAz底物DBCO-Cy5荧光标记的SIM成像图(A)及流式细胞荧光分析图(B);
图17为DBCO-Cy5荧光标记的BS168△glmS NahK AGX1 pmhs2菌株肝素酶III酶解的SIM成像图(A)及流式细胞荧光分析图(B);
图18为DBCO-Cy5荧光标记的BS168△glmS NahK AGX1 pmHAS菌株AsChnAC酶解的SIM成像图(A)及流式细胞荧光分析图(B);
图19为DBCO-Cy5荧光标记的BS168△glmS NahK AGX1 KfoA-KfoC菌株AsChnAC酶解的SIM成像图(A)及流式细胞荧光分析图(B);
图20为不同比例叠氮单糖和非叠氮单糖条件下BS168△glmS NahK AGX1 pmHAS菌株FAM荧光标记的LSM成像图(A~E)及流式细胞荧光分析图(F)。
具体实施方式
下面结合实施例及说明书附图,对本发明的技术方案做进一步说明,但本发明所保护范围不限于此。除非特殊说明,本发明中所运用的技术手段均为本领域技术人员所公知的方法。除非特殊说明,本发明中所涉及的试剂及药品均为普通市售产品。
实施例中的枯草芽孢杆菌为枯草芽孢杆菌168(Bacillus subtilis(Ehrenberg)Cohn(ATCC23857,Bacillus subtilis 168,BS168)。
本发明中的底物糖类试剂GlcNAz和GlcNAz为济南山目生物科技有限公司所购;
实施例1:合成叠氮修饰肝素骨架的枯草芽孢杆菌工程菌株的构建
1.1UDP-GlcNAc内源合成途径的阻断
(1)BS168中glmS基因(SEQ ID NO.1)同源重组片段的制备
带有新霉素抗性基因glmS基因同源臂片段的pUC57-neo质粒在公司合成(金斯瑞),该质粒存在于E.coli DH5α中。利用试剂盒提取pUC57-neo质粒,利用快切酶BamHI酶切pUC57-neo质粒,酶切体系:BamHI酶6μL,10×buffer 7μL,质粒20μL(202ng/μL),三蒸水37μL,共70μL,酶切1h。酶切后得到含有新霉素抗性基因的glmS基因同源臂片段,长度为2345bp(图1)。将酶切后的体系脱盐液体回收。
(2)BS168中glmS基因敲除
将保存在-80℃的BS168甘油菌种取3μL转接到3mL LB液体培养基中,在37℃以225rpm过夜活化,取2.6mL过夜培养物接于40mL培养基(LB+0.5M山梨醇)中,37℃,200rpm培养至OD600=0.89。将菌液冰水浴10分钟,然后5000g,4℃离心5分钟收集菌体。用50mL预冷的电转培养基(0.5M山梨醇,0.5M甘露醇,10%甘油),重新吹悬菌体,5000g,4℃离心5分钟去上清,如此漂洗4次。将洗涤后的菌体吹悬于1mL电转培养基中,每个EP管分装60μL,得BS168感受态。将BS168感受态保存在-80℃超低温冰箱,并制成电转感受态。在60μL电转感受态细胞中加入8μL的pUC57-neo质粒酶切后液体回收产物,冰上孵育2分钟,加入到预冷的电转杯(1mm)中,电击一次。电转仪设置:2kV,1mm,电击1次。电击完毕取出杯子并立即加入1mL RM培养基(LB+0.5M山梨醇+0.38M甘露醇),37℃,200rpm,复苏3小时后,涂LB平板(新霉素抗性100μg/mL)。37℃静置过夜培养,得到转化子,试剂盒提取转化子的基因组,基因组PCR验证。
以转化子基因组为模板,以glmS F和glmS R为引物进行PCR扩增得到1480bp的目的片段,以neo F和neo R为引物进行PCR扩增得到1475bp的目的片段(图2),证明通过同源重组敲除了基因组上的glmS基因,得到阳性转化子,记为BS168△glmS菌株。
上述引物的序列如下:
glmS F:5’-CGATAACGACAACAGAGAAAC-3’,
glmS R:5’-CTGGATACAGTCAGGTATTCACG-3’,
neo F:5’-TGAGAATAGTGAATGGACCAATAATAATG-3’,
neo R:5’-AACCTGATTGACCGATCTAATGAG-3’;
(3)生长表型验证
将BS168△glmS菌株扩大培养进行生长表型的验证,控制扩大培养初始OD600为0.05,每隔1h取200μL菌液检测OD600,培养基条件分别为有无GlcNAc 100μg/mL的M9培养基。
结果如图3所示,在M9培养基中外源添加GlcNAc后,BS168△glmS菌株有一定生长,GlcNAc缺失培养基中,BS168△glmS菌株生长停滞,BS168△glmS菌株可以在M9培养基中实现目的。
1.2可利用GlcNAc(GlcNAz)的UDP-GlcNAc(UDP-GlcNAz)补救合成途径的引入
Pveg-AGX1-Pveg-NahK同源重组片段对BS168△glmS菌株进行基因组同源重组
根据新霉素抗性基因设计带有卡那霉素抗性基因的新霉素抗性基因同源臂片段Pveg-AGX1-Pveg-NahK(AGX1基因:SEQ ID NO.3,Nahk基因:SEQ ID NO.2),以敲除基因组上的新霉素抗性基因,pUC57-Pveg-AGX1-Pveg-NahK质粒在公司合成(生工)。该质粒存在于菌株Stbl2中。利用试剂盒提pUC57-Pveg-AGX1-Pveg-NahK质粒,利用快切酶Acc65I和SmaI酶切pUC57-Pveg-AGX1-Pveg-NahK质粒,酶切体系:Acc65I酶1.5μL,SmaI酶1.5μL,10×buffer4μL,质粒7μL(202ng/μL),三蒸水26μL,共40μL,酶切1h。将酶切后的体系脱盐液体回收。
将保存在-80℃的BS168△glmS甘油菌种取3μL转接到3mL LB液体培养基中,在37℃以225rpm过夜活化,取2.6mL过夜培养物接于40mL培养基(LB+0.5M山梨醇)中,37℃,200rpm培养至OD600=0.92。将菌液冰水浴10分钟,然后5000g,4℃离心5分钟收集菌体。用50mL预冷的电转培养基(0.5M山梨醇,0.5M甘露醇,10%甘油),重新吹悬菌体,5000g,4℃离心5分钟去上清,如此漂洗4次。将洗涤后的菌体吹悬于1mL电转培养基中,每个EP管分装60μL,得BS168△glmS感受态。将BS168△glmS感受态保存在-80℃超低温冰箱,并制成电转感受态。在60μL电转感受态细胞中加入8μL的pUC57-Pveg-AGX1-Pveg-NahK质粒酶切后液体回收产物,冰上孵育2分钟,加入到预冷的电转杯(1mm)中,电击一次。电转仪设置:2kV,1mm,电击1次。电击完毕取出杯子并立即加入1mLRM培养基(LB+0.5M山梨醇+0.38M甘露醇),37℃,200rpm,复苏3小时后,涂LB平板(卡那霉素抗性50μg/mL)。37℃静置过夜培养,得到转化子,试剂盒提取转化子的基因组,基因组PCR验证。
以转化子基因组为模板,以AGX1F和AGX1 R为引物进行PCR扩增得到1502bp的目的片段,以NahK 2F和NahK 2R为引物进行PCR扩增得到1023bp的目的片段,以tuaD F和tuaD R为引物进行PCR扩增得到1978bp的目的片段(图4),证明通过同源重组把带有新霉素抗性基因同源臂的Pveg-AGXI-Pveg-Nahk基因片段整合到基因组上,得到阳性转化子,记为BS168△glmS NahK AGX1菌株。
上述引物的序列如下:
AGX1F:5’-TCACAGGGAAGCAACATCAAC-3’,
AGX1R:5’-TGGACGCCGTTTTCATCGAT-3’,
NahK 2F:5’-GCATTGCTTCACATTTTGCCCTTG-3’,
NahK 2R:5’-CAATTGCATGTGTTTCGCTCGC-3’,
tuaD F:5’-TGACTTGTATGAAACCGTGCA-3’,
tuaD R:5’-TCAATATGGGTTCGATTCCG-3’。
1.3可利用UDP-GlcNAc(UDP-GlcNAz)的Heparosan(叠氮修饰Heparosan)荚膜多糖合成途径的引入
(1)pHT43-PxylA-pmHS2质粒在E.coli DH5α中的构建
按照质粒提取试剂盒FastPure Plasmid Mini Kit(Vazyme)说明书操作提取质粒pHT43-KfiA质粒。Acc65I和SmaI酶切pHT43-KfiA质粒,切胶回收得到pHT43质粒骨架,pHT43质粒骨架的长度为7760bp(图5)。
以pUC57-PxylA-pmHS2质粒(金斯瑞,pmHS2基因:SEQ ID NO.4)为模板,以pmHS2-1F和pmHS2-1R为引物,使用Phanta Max Super-Fidelity DNA Polymerase(购自Vazyme)高保真PCR扩增PxylA-pmHS2片段;PxylA-pmHS2片段的PCR产物切胶回收,
其中,pmHS2F和pmHS2 R的引物序列如下:
pmHS2-1F:5’-GTACCAACATTGAAATAAACATTT-3’,
pmHS2-1R:5’-GCCCGGGGACAAAC-3’,
PCR扩增体系及程序均按照Phanta Max Super-Fidelity DNAPolymerase的说明书进行。
使用T4DNALigase进行pHT43质粒骨架和PxylA-pmHS2片段的连接。酶连体系:pHT43质粒骨架:10μL;PxylA-pmHS2片段:8μL;10×T4 DNALigase Buffer:2.5μL;T4 DNA Ligase:2.5μL;三蒸水:2μL,22℃孵育3h。将连接体系化学转化E.coli DH5α中。于-80℃取出E.coliDH5α感受态,置于冰上融化,加入连接体系10μL,轻轻混匀,静置于冰上30min;将感受态放入42℃水浴中热激90s,快速转移至冰上,冷却2min;加入900μL预热的LB培养基,于37℃,150rpm培养45min。将实验组涂布在含氨苄50μg/mL的LB固体培养基平板上,37℃正置培养30min后,倒置培养14h,挑取4个实验组单菌落(阴性对照无单菌落),在含有氨苄(终浓度为50μg/mL)的LB液体培养基中以225rpm于37℃连续培养12h后,收集菌液,按照质粒提取试剂盒FastPure Plasmid Mini Kit(Vazyme)说明书操作提取质粒,pHT43-PxylA-pmHS2质粒经Acc65I和SmaI酶切后得到的片段大小为3175bp和7760bp。以pmhs2 F和pmhs2 R为引物,使用普通PCR聚合酶2×Taq Master Mix(Dye Plus)进行PCR验证(图6,PCR产物2137bp)后,进行测序验证,将测序正确的质粒重命名为pHT43-PxylA-pmHS2;
其中:pmhs2F和pmhs2 R的引物序列如下:
pmhs2F:5’-TGACAAATGGTCCAAACTAGTGA-3’,
pmhs2R:5’-GTTGCAGACAAAGATCTCCATG-3’;
(2)BS168△glmS NahK AGX1 pmhs2工程菌的获得
将pHT43-PxylA-pmHAS质粒通过电转方法转到BS168△glmS NahK AGX1感受态中。将实验组涂布在含氯霉素5μg/mL和卡那霉素50μg/mL的LB固体培养基平板上,37℃正置培养30min后,倒置培养14h,挑取3个实验组单菌落,在含有氯霉素5μg/mL和卡那霉素50μg/mL的LB液体培养基中以225rpm于37℃连续培养12h后,收集菌液,保种,得到BS168△glmSNahK AGX1 pmhs2工程菌。
实施例2:合成叠氮修饰硫酸软骨素骨架的枯草芽孢杆菌工程菌株的构建
合成叠氮修饰硫酸软骨素骨架的枯草芽孢杆菌工程菌株的构建方法与实施例1基本相同,不同之处在于:
2.3可利用UDP-GlcNAc(UDP-GlcNAz)的软骨素(叠氮修饰软骨素)合成途径的引入
(1)pHT43-PxylA-KfoA-PxylA-KfoC质粒在E.coli DH5α中的构建
按照质粒提取试剂盒FastPure Plasmid Mini Kit(Vazyme)说明书操作提取质粒pHT43-KfiA质粒。Acc65I和SmaI酶切pHT43-KfiA质粒骨架,切胶回收得到pHT43质粒骨架。
以pUC57-PxylA-KfoA-PxylA-KfoC质粒(金斯瑞合成,KfoA基因:SEQ ID NO.6,KfoC基因:SEQ ID NO.7)为模板,以KfoAC-F和KfoAC-R为引物,使用Phanta Max Super-FidelityDNA Polymerase(购自Vazyme)高保真PCR扩增PxylA-KfoA-PxylA-KfoC片段;PxylA-KfoA-PxylA-KfoC片段的PCR产物切胶回收。
其中,KfoAC F和KfoAC R的引物序列如下:
KfoAC-F:5’-AATTAGCTTGGTACCAACATTGAAA-3’,
KfoAC-R:5’-CTCCATGGACGCGTGACGTGGAC-3’,
PCR扩增体系及程序均按照Phanta Max Super-Fidelity DNAPolymerase的说明书进行。
按照实施例1中的方法,使用T4DNALigase进行pHT43质粒骨架和PxylA-KfoA-PxylA-KfoC片段的连接,连接后将连接体系化学转化E.coli DH5α中,培养、筛选阳性转化子,提取质粒。分别以KfoC F和KfoC R、KfoA F和KfoAR为引物,使用普通PCR聚合酶2×Taq MasterMix(Dye Plus)进行PCR验证(图7,质粒长度为11317bp,PCR产物分别为2355bp和1308bp)后,进行测序验证,将测序正确的质粒重命名为pHT43-PxylA-KfoA-PxylA-KfoC;
其中:KfoC F和KfoC R、KfoA F和KfoA R的引物序列如下:
KfoC F:5’-AATGAGCGGGCTTTTTTCACGTCAACATTGAAATA-3’,
KfoC R:5’-AGTTGCAGACAAAGATCTCCATGGACGC-3’,
KfoA F:5’-TCGTTTCCACCGGAATTAGCTTGGTACCAACATT-3’,
KfoAR:5’-CGCTCATTAGGCGGGCTGC-3’;
(2)BS168△glmS NahK AGX1 KfoA-KfoC工程菌的获得
按照实施例1的方法,将pHT43-PxylA-KfoA-PxylA-KfoC质粒通过电转方法转到BS168△glmS NahK AGX1感受态中,培养、筛选,得到BS168△glmS NahK AGX1 KfoA-KfoC工程菌。
实施例3:合成叠氮修饰透明质酸骨架的枯草芽孢杆菌工程菌株的构建
合成叠氮修饰透明质酸骨架的枯草芽孢杆菌工程菌株的构建方法与实施例1基本相同,不同之处在于:
3.3可利用UDP-GlcNAc(UDP-GlcNAz)的透明质酸(叠氮修饰透明质酸)合成途径的引入
(1)pHT43-PxylA-pmHAS质粒在E.coli DH5α中的构建
按照质粒提取试剂盒FastPure Plasmid Mini Kit(Vazyme)说明书操作提取质粒pHT43-KfiA质粒。Acc65I和SmaI酶切pHT43-KfiA质粒骨架,切胶回收得到pHT43质粒骨架。
以pUC57-PxylA-pmHAS质粒(金斯瑞合成,pmHAS基因:SEQ ID NO.5)为模板,以pmhas-1F和pmhas-1R为引物,使用Phanta Max Super-Fidelity DNAPolymerase(购自Vazyme)高保真PCR扩增PxylA-pmHAS片段;PxylA-pmHAS片段的PCR产物切胶回收。
其中,pmhas F和pmhas R的引物序列如下:
pmhas-1F:5’-TTAGCTTGGTACCAACATTGAAATAA-3’,
pmhas-1R:5’-GGGCTGCCCCGGGGA-3’,
PCR扩增体系及程序均按照Phanta Max Super-Fidelity DNA Polymerase的说明书进行。
按照实施例1中的方法,使用T4DNA Ligase进行pHT43质粒骨架和PxylA-pmHAS片段的连接,连接后将连接体系化学转化E.coli DH5α中,培养、筛选阳性转化子,提取质粒。将质粒经Acc65I和SmaI酶切后得到3175bp和7760bp的片段,再以pmHAS F和pmHAS R为引物,使用普通PCR聚合酶2×Taq Master Mix(Dye Plus)进行PCR验证(图8,PCR产物2333bp)后,进行测序验证,将测序正确的质粒重命名为pHT43-PxylA-pmHAS;
其中:pmHAS F和pmHAS R的引物序列如下:
pmHAS F:5’-CTGGCCTGCTTAGTCAACCAGA-3’,
pmHAS R:5’-GGACAAATGAACAGATCGAGTCAGC-3’,
(2)BS168△glmS NahK AGX1 pmHAS工程菌的获得
按照实施例1的方法,将pHT43-PxylA-pmHAS质粒通过电转方法转到BS168△glmSNahK AGX1感受态中,培养、筛选,得到BS168△glmS NahK AGX1 pmHAS工程菌。
实施例4.工程菌株可视化验证
4.1工程菌株的培养
4.1.1合成叠氮修饰肝素骨架的枯草芽孢杆菌工程菌株BS168△glmS NahK AGX1pmhs2的培养
将BS168△glmS NahK AGX1 pmhs2在含有GlcNAc(终浓度为100μg/mL)、氯霉素(终浓度为5μg/mL)、卡那霉素(终浓度为50μg/mL)的LB液体培养基中37℃,225rpm过夜活化,第二天将菌体离心(6000rpm,5min),用PBS洗3遍,转移到M9培养基中,在消耗原有GlcNAc 1h后,加入GlcNAz(终浓度为500μg/mL),继续在37℃,225rpm培养至OD600为0.45左右,加入木糖(终浓度为20mg/mL),37℃,225rpm下继续培养6h;然后收集菌体(6000rpm,5min),用1×PBS缓冲液洗涤三次。
4.1.2合成叠氮修饰透明质酸骨架的枯草芽孢杆菌工程菌株BS168△glmS NahKAGX1 pmHAS的培养
BS168△glmS NahK AGX1 pmHAS的培养与4.1.1中BS168△glmS NahK AGX1 pmhs2的培养方法一致。
4.1.3合成叠氮修饰硫酸软骨素骨架的枯草芽孢杆菌工程菌株BS168△glmS NahKAGX1 KfoA-KfoC的培养
将BS168△glmS NahK AGX1 KfoA-KfoC在含有GlcNAc(终浓度为100μg/mL)、氯霉素(终浓度为5μg/mL)、卡那霉素(终浓度为50μg/mL)的LB液体培养基中37℃,225rpm过夜活化,第二天将菌体离心(6000rpm,5min),用PBS洗3遍,转移到M9培养基中,在消耗原有GlcNAc 1h后,分成两组,一组加入GalNAz(终浓度为500μg/mL),另一组加入GlcNAz(终浓度为500μg/mL),继续在37℃,225rpm培养至OD600为0.45左右,加入木糖(终浓度为20mg/mL),37℃,225rpm下继续培养6h;然后收集菌体(6000rpm,5min),用1×PBS缓冲液洗涤三次。
4.2有铜催化的生物正交化学可视化验证
将4.1中收集到的菌体重悬在1×PBS缓冲液中,准备铜催化的生物正交化学,将FAM alkyne 5-isomer,0.032M五水硫酸铜和0.32M抗坏血酸钠按顺序添加到生物正交标记的菌体中,在37℃培养1h后,用1×PBS缓冲液洗涤三次。稀释后,使用LSM 880激光共聚焦显微镜在明场和495nm激发场下进行AIRY SCAN成像。FAM 5-isomer具有与GFP相近的荧光激发波长,所以在低倍镜下通过打开GFP蓝光激发,调整粗细准焦螺旋,大致确定菌株有没有被荧光标记,然后再转63X油镜,也是同样先在目镜观察下找到视野,确定焦平面。然后使用Acquisition进行ARIY SCAN成像。
成像后的剩余各种菌液做流式细胞分析,采用5-FAM通道分析,将FCS文件在Flowjo软件中分析,双击出现的散点图中X轴选择FSC,Y轴选择SSC,微调坐标轴显示范围,全中目标细菌群后,X轴选择FL03-H::5-FAM-H,Y轴选择Histogram得到单参数直方图,在Layout Editor区,利用功能键将三种细菌的直方图进行叠加。
结果如图9~12所示,各工程菌的添加GlcNAc组无荧光,添加GlcNAz组有荧光,证明工程菌可以产生叠氮化的多糖,可以在铜催化下被荧光标记,实现可视化,工程菌可被荧光素FAM标记,在蓝光激发下显示为绿色荧光。
4.3无铜催化的生物正交化学可视化验证
将4.1收集到的菌体重悬在200μL 1×PBS缓冲液中,准备无铜催化的生物正交化学,将DBCO-Cy5添加到菌液中,在37℃培养1h后,用1×PBS缓冲液洗涤三次。采用结构照明显微镜SIM观察细菌荧光,观察方法如下:盖玻片(Zeiss;18mm×18mm,0.17±0.005mm)在室温下用0.1mg/mL聚l-赖氨酸处理3h;将盖玻片用三蒸水洗涤3次,并在室温下风干;将20μL标记的菌体上样到盖玻片的中央,并在室温下孵育30分钟,以使细胞粘附;将菌体用1×PBS缓冲液冲洗3次,并用500μL 4%多聚甲醛固定,在4℃下放置30分钟;固定菌体的盖玻片用1×PBS缓冲液清洗3次,并用5μL抗荧光淬灭剂放在载玻片上,以覆盖整个盖玻片;Alk5-FAM和DBCO-Cy5的激发分别通过488nm和568nm激光激发实现,相机的曝光时间设定为100.0毫秒,Z值5812.5μm;利用mosaic功能预览图象,选择最佳视野;使用超高分辨率分析软件,处理和过滤设置保持不变,并保留图像强度,进行OMX SI Restruction光学重构,quickprojection最大强度投影。分析软件生成二维(2D)和三维(3D)图像。
成像后的剩余各种菌液做流式细胞分析,采用5-FAM通道分析,将FCS文件在Flowjo软件中分析,双击出现的散点图中X轴选择FSC,Y轴选择SSC,微调坐标轴显示范围,全中目标细菌群后,X轴选择FL03-H::5-FAM-H,Y轴选择Histogram得到单参数直方图,在Layout Editor区,利用功能键将三种细菌的直方图进行叠加。
结果如图13~16所示,添加GlcNAc的组无荧光,添加GlcNAz组有荧光,证明工程菌可以产生叠氮化的多糖,可以被另一种无铜催化的荧光素DBCO-Cy5所标记,实现可视化。
4.4酶催化的可视化验证
按照4.3用DBCO-Cy5标记枯草芽孢杆菌工程菌,37℃孵育1h。孵育结束后用PBS缓冲液洗五遍,将菌体重悬至酶解体系缓冲液中,具体的酶解体系如下:
BS168△glmS NahK AGX1 pmhs2工程菌200μLPBS重悬,加入CaCl2(1mol/L)10μL,Tris-HCl(1mol/L)50μL,肝素酶III:100μL;
BS168△glmS NahK AGX1 KfoA-KfoC工程菌Tris-HCl(0.02mol/L)200μL重悬,AsChnAC酶50μL,pH=7;
BS168△glmS NahK AGX1 pmHAS工程菌Tris-HCl(0.02mol/L)200μL重悬,AsChnAC酶50μL,pH=7;
阴性对照组孵育条件与正对照相同,但不加酶。
37℃孵育24h,孵育结束后按照4.3进行荧光照片拍摄和流式分析。
结果如图17~19所示,DBCO-Cy5标记后的能产生叠氮化肝素骨架的工程菌被肝素酶III酶解后荧光强度下降,DBCO-Cy5标记后的能产生叠氮化软骨素骨架的工程菌被AsChnAc酶解后荧光强度下降,DBCO-Cy5标记后的能产生叠氮化透明质酸骨架的工程菌被AsChnAc酶解后荧光强度下降,酶解后荧光强度的变弱,证明工程菌可以产生叠氮化的糖胺聚糖。证明多糖上有叠氮,荧光素在多糖上。
实施例5.工程菌株BS168△glmS NahK AGX1 pmHAS可视化发酵条件的优化
为了提高工程菌株BS168△glmS NahK AGX1 pmHAS可以荧光示踪的HA的产量,在之前所述的培养方法中加入不同比例的叠氮单糖和非叠氮单糖,通过实施例4的4.2中的流式细胞术和荧光显微镜,找到叠氮单糖加入的下限,探究了工程菌BS168△glmS NahK AGX1pmHAS可以荧光示踪的最下限比例的GlcNAz:GlcNAc为1:3。该比例为达到工程菌BS168△glmS NahK AGX1 pmHAS可以荧光示踪的检测下限(图20)。
SEQUENCE LISTING
<110> 山东大学
<120> 合成可点击反应糖胺聚糖骨架的枯草芽孢杆菌工程菌株及其构建方法与应用
<160> 7
<170> PatentIn version 3.5
<210> 1
<211> 1803
<212> DNA
<213> Bacillus subtilis
<400> 1
atgtgtggaa tcgtaggtta tatcggtcag cttgatgcga aggaaatttt attaaaaggg 60
ttagagaagc ttgagtatcg cggttatgac tctgctggta ttgctgttgc caacgaacag 120
ggaatccatg tgttcaaaga aaaaggacgc attgcagatc ttcgtgaagt tgtggatgcc 180
aatgtagaag cgaaagccgg aattgggcat actcgctggg cgacacacgg cgaaccaagc 240
tatctgaacg ctcacccgca tcaaagcgca ctgggccgct ttacacttgt tcacaacggc 300
gtgatcgaga actatgttca gctgaagcaa gagtatttgc aagatgtaga gctcaaaagt 360
gacaccgata cagaagtagt cgttcaagta atcgagcaat tcgtcaatgg aggacttgag 420
acagaagaag cgttccgcaa aacacttaca ctgttaaaag gctcttatgc aattgcttta 480
ttcgataacg acaacagaga aacgattttt gtagcgaaaa acaaaagccc tctattagta 540
ggtcttggag atacattcaa cgtcgtagca tctgatgcga tggcgatgct tcaagtaacc 600
aacgaatacg tagagctgat ggataaagaa atggttatcg tcactgatga ccaagttgtc 660
atcaaaaacc ttgatggtga cgtgattaca cgtgcgtctt atattgctga gcttgatgcc 720
agtgatatcg aaaaaggcac gtaccctcac tacatgttga aagaaacgga tgagcagcct 780
gttgttatgc gcaaaatcat ccaaacgtat caagatgaaa acggcaagct gtctgtgcct 840
ggcgatatcg ctgccgctgt agcggaagcg gaccgcatct atatcattgg ctgcggaaca 900
agctaccatg caggacttgt cggtaaacaa tatattgaaa tgtgggcaaa cgtgccggtt 960
gaagtgcatg tagcgagtga attctcctac aacatgccgc ttctgtctaa gaaaccgctc 1020
ttcattttcc tttctcaaag cggagaaaca gcagacagcc gcgcggtact cgttcaagtc 1080
aaagcgctcg gacacaaagc cctgacaatc acaaacgtac ctggatcaac gctttctcgt 1140
gaagctgact atacattgct gcttcatgca ggccctgaga tcgctgttgc gtcaacgaaa 1200
gcatacactg cacaaatcgc agttctggcg gttcttgctt ctgtggctgc tgacaaaaat 1260
ggcatcaata tcggatttga cctcgtcaaa gaactcggta tcgctgcaaa cgcaatggaa 1320
gctctatgcg accagaaaga cgaaatggaa atgatcgctc gtgaatacct gactgtatcc 1380
agaaatgctt tcttcatcgg acgcggcctt gactacttcg tatgtgtcga aggcgcactg 1440
aagctgaaag agatttctta catccaggca gaaggttttg ccggcggtga gctaaagcac 1500
ggaacgattg ccttgatcga acaaggaaca ccagtattcg cactggcaac tcaagagcat 1560
gtaaacctaa gcatccgcgg aaacgtcaaa gaagttgctg ctcgcggagc aaacacatgc 1620
atcatctcac tgaaaggcct agacgatgcg gatgacagat tcgtattgcc ggaagtaaac 1680
ccagcgcttg ctccgttggt atctgttgtt ccattgcagc tgatcgctta ctatgctgca 1740
ctgcatcgcg gctgtgatgt ggataaacct cgtaaccttg cgaagagtgt tactgtggag 1800
taa 1803
<210> 2
<211> 1079
<212> DNA
<213> Bifidobacterium longum
<400> 2
catatgaccg aaagcaatga agttttattc ggcatcgcct cgcattttgc gctggaaggt 60
gccgtgaccg gtatcgaacc ttacggagac ggccacatca acaccaccta tctggtgacc 120
acggacggcc cccgctacat cctccagcag atgaacacca gcatcttccc cgatacggtg 180
aatctgatgc gcaatgtcga actggtcacc tccactctca aggctcaggg caaagagacg 240
ctggacattg tgcccaccac ctcaggcgcc acctgggccg agatcgatgg cggcgcatgg 300
cgcgtctaca agttcatcga acacaccgtg tcctacaacc tcgtgccgaa cccggacgtg 360
ttccgcgaag ccggcagcgc attcggcgac ttccagaact tcctgtccga attcgacgcc 420
agccagctga ccgaaaccat cgcccacttc cacgacaccc cgcatcgttt cgaggacttc 480
aaggccgccc tcgccgcgga caagctcggc cgcgccgccg catgccagcc ggaaatcgac 540
ttctatctga gtcacgccga ccagtatgcc gtcgtgatgg atgggctcag ggacggttcg 600
attccgctgc gcgtgaccca caatgacacc aagctcaaca acatcctcat ggacgccacc 660
accggcaagg cgcgtgcgat catcgatctc gacaccatca tgcccggctc catgctgttc 720
gacttcggcg attccatacg ctttggtgcg tccactgctc tggaagacga aaaggacctc 780
agcaaggtgc atttcagcac cgagctgttc cgcgcctaca cggaaggctt cgtgggcgaa 840
ctacgcggca gcatcaccgc gcgcgaggcc gaactgctgc cgttcagcgg caacctgctc 900
accatggaat gcggcatgcg ctttctcgcc gactacttgg aaggcgatat ctactttgcc 960
accaagtacc ccgagcataa tctggtgcgc acccgcaccc agatcaaact cgtgcaggag 1020
atggagcaga aggccagtga aacccacgcc atcgtagccg acatcatgga ggctgccag 1079
<210> 3
<211> 1515
<212> DNA
<213> Homo sapiens
<400> 3
aacattaatg acctcaaact cacgttgtcc aaagctgggc aagagcacct actacgtttc 60
tggaatgagc ttgaagaagc ccaacaggta gaactttatg cagagctcca ggccatgaac 120
tttgaggagc tgaacttctt tttccaaaag gccattgaag gttttaacca gtcttctcac 180
caaaagaatg tggatgcacg aatggaacct gtgcctcgag aggtattagg cagtgctaca 240
agggatcaag atcagctcca ggcctgggaa agtgaaggac ttttccagat ttctcagaat 300
aaagtagcag ttcttcttct agctggtggg caggggacaa gactcggcgt tgcatatcct 360
aaggggatgt atgatgttgg tttgccatcc cgtaagacac tttttcagat tcaagcagag 420
cgtatcctga agctacagca ggttgctgaa aaatattatg gcaacaaatg cattattcca 480
tggtatataa tgaccagtgg cagaacaatg gaatctacaa aggagttctt caccaagcac 540
aagtactttg gtttaaaaaa agagaatgta atcttttttc agcaaggaat gctccccgcc 600
atgagttttg atgggaaaat tattttggaa gagaagaaca aagtttctat ggctccagat 660
gggaatggtg gtctttatcg ggcacttgca gcccagaata ttgtggagga tatggagcaa 720
agaggcattt ggagcattca tgtctattgt gttgacaaca tattagtaaa agtggcagac 780
ccacggttca ttggattttg cattcagaaa ggagcagact gtggagcaaa ggtggtagag 840
aaaacgaacc ctacagaacc agttggagtg gtttgccgag tggatggagt ttaccaggtg 900
gtagaatata gtgagatttc cctggcaaca gctcaaaaac gaagctcaga cggacgactg 960
ctgttcaatg cggggaacat tgccaaccat ttcttcactg taccatttct gagagatgtt 1020
gtcaatgttt atgaacctca gttgcagcac catgtggctc aaaagaagat tccttatgtg 1080
gatacccaag gacagttaat taagccagac aaacccaatg gaataaagat ggaaaaattt 1140
gtctttgaca tcttccagtt tgcaaagaag tttgtggtat atgaagtatt gcgagaagat 1200
gagttttccc cactaaagaa tgctgatagt cagaatggga aagacaaccc tactactgca 1260
aggcatgctt tgatgtccct tcatcattgc tgggtcctca atgcaggggg ccatttcata 1320
gatgaaaatg gctctcgcct tccagcaatt ccccgcttga aggatgccaa tgatgtacca 1380
atccaatgtg aaatctctcc tcttatctcc tatgctggag aaggattaga aagttatgtg 1440
gcagataaag aattccatgc acctctaatc atcgatgaga atggagttca tgagctggtg 1500
aaaaatggta tttga 1515
<210> 4
<211> 1953
<212> DNA
<213> Pasteurella multocida
<400> 4
aagggtaaga aagagatgac ccagattcaa atcgcgaaga acccgccgca acacgagaaa 60
gaaaacgagc tgaacacctt tcagaacaaa atcgatagcc tgaagaccac cctgaacaaa 120
gacatcatta gccagcaaac cctgctggcg aaacaagaca gcaagcaccc gctgagcgcg 180
agcctggaaa acgagaacaa actgctgctg aagcagctgc aactggtgct gcaagaattt 240
gagaagattt acacctataa ccaggcgctg gaagcgaaac tggagaagga taaacagacc 300
accagcatca ccgacctgta taacgaagtt gcgaagagcg atctgggcct ggtgaaagaa 360
accaacagcg cgaacccgct ggttagcatc attatgacca gccacaacac cgcgcaattc 420
attgaagcga gcatcaacag cctgctgctg cagacctaca agaacatcga aatcattatc 480
gtggacgatg acagcagcga caacaccttt gagattgcga gccgtatcgc gaacaccacc 540
agcaaagtgc gtgttttccg tctgaacagc aacctgggta cctattttgc gaaaaacacc 600
ggtatcctga agagcaaagg cgacattatc ttctttcagg atagcgatga cgtttgccac 660
cacgaacgta ttgagcgttg cgtgaacatc ctgctggcga acaaagaaac catcgcggtt 720
cgttgcgcgt acagccgtct ggcgccggaa acccaacaca ttatcaaggt gaacaacatg 780
gactatcgtc tgggtttcat taccctgggc atgcaccgta aagtttttca ggagatcggc 840
ttctttaact gcaccaccaa gggtagcgat gacgagttct tccaccgtat tgcgaaatac 900
tatggcaagg agaaaatcaa gaacctgctg ctgccgctgt actataacac catgcgtgaa 960
aacagcctgt tcaccgacat ggtggagtgg atcgataacc acaacattat ccagaagatg 1020
agcgacaccc gtcaacacta cgcgaccctg ttccaggcga tgcacaacga aaccgcgagc 1080
cacgatttta aaaacctgtt ccaatttccg cgtatttacg acgcgctgcc ggttccgcag 1140
gagatgagca agctgagcaa cccgaaaatc ccggtgtata ttaacatctg cagcattccg 1200
agccgtatcg cgcaactgcg tcgtattatc ggtattctga agaaccagtg cgaccacttc 1260
cacatctacc tggatggcta tgttgaaatt ccggacttta tcaagaacct gggtaacaaa 1320
gcgaccgtgg ttcactgcaa agacaaggat aacagcattc gtgacaacgg caagttcatt 1380
ctgctggagg aactgatcga gaagaaccag gatggttact atatcacctg cgatgacgat 1440
attatctacc cgagcgacta tattaacacc atgatcaaga aactgaacga gtacgacgat 1500
aaagcggtta ttggtctgca cggcatcctg ttcccgagcc gtatgaccaa gtattttagc 1560
gcggatcgtc tggtgtacag cttctataaa ccgctggaga aagacaaggc ggtgaacgtt 1620
ctgggtaccg gcaccgttag ctttcgtgtg agcctgttca accaatttag cctgagcgat 1680
ttcacccaca gcggtatggc ggacatttac tttagcctgc tgtgcaagaa aaacaacatc 1740
ctgcagattt gcatcagccg tccggcgaac tggctgaccg aagacaaccg tgatagcgaa 1800
accctgtacc accaatatcg tgacaacgat gaacagcaaa cccagctgat tatggagaac 1860
ggtccgtggg gctacagcag catctatccg ctggttaaaa accatccgaa gttcaccgac 1920
ctgattccgt gcctgccgtt ctatttcctg taa 1953
<210> 5
<211> 2940
<212> DNA
<213> Pasteurella multocida
<400> 5
atgaatacct tatctcaagc catcaaggca tacaattcaa atgactatca attggctttg 60
aaattgttcg aaaagtcagc agaaatctac ggacgtaaga tagtagagtt tcagattact 120
aagtgcaagg agaaattgtc tgcccatcca agtgtcaatt cagctcatcc ttcagtcaac 180
tcagcacatt tgtcagtaaa caaagaggaa aaggttaatg tgtgcgattc tccattggat 240
attgctaccc aattgttgtt gtcaaatgtc aagaaattag tgttatctga cagtgagaag 300
aacacattga agaataagtg gaagttgtta actgaaaaga aaagtgagaa tgctgaagtt 360
cgtgctgtag cattggtacc aaaggatttc ccaaaggatt tggtgttggc accattacct 420
gaccatgtga atgactttac ttggtacaag aagagaaaga aacgtttagg tatcaaacca 480
gaacatcaac acgtgggttt gtcaataatt gtcaccactt tcaatcgtcc tgcaatctta 540
agtataactt tggcatgctt agttaatcaa aagactcact atccattcga ggtgattgtc 600
acagatgatg gatcacaaga agatttgtct ccaatcataa gacaatatga aaacaaattg 660
gatatccgtt atgtcagaca aaaggacaat ggtttccaag ctagtgctgc taggaatatg 720
ggtttgagat tagcaaagta tgatttcatt ggtttgttgg attgcgatat ggcacctaac 780
ccattatggg tgcattcata tgtcgctgaa ttgttagaag atgatgattt gacaatcatt 840
ggaccaagaa agtacattga tacacaacat atcgacccaa aggacttctt aaacaatgca 900
tctttgttgg aatcattgcc agaagttaag accaataact cagtggccgc aaaaggtgaa 960
ggtaccgttt cattggattg gaggttggag caattcgaaa agactgaaaa cttaagattg 1020
tcagactctc cttttagatt cttcgcagct ggtaatgttg ctttcgccaa gaagtggttg 1080
aacaaatctg gattctttga tgaagagttc aaccattggg gtggtgaaga tgttgagttt 1140
ggatatagat tgtttaggta tggttcattc ttcaagacta ttgacggtat catggcctac 1200
catcaagagc cacctggtaa ggaaaacgaa acagataggg aagctggaaa gaacatcaca 1260
ttggatatta tgagggagaa ggtaccatat atttacagga agttgttgcc tatcgaagat 1320
tcacacatca atagagtccc tttggtttct atctatatcc cagcttacaa ctgtgccaat 1380
tatattcaac gttgtgttga ttctgccttg aaccagacag ttgtagattt ggaagtctgt 1440
atttgcaatg atggttctac agataatact ttggaagtta tcaacaagtt gtacggtaac 1500
aatccaagag tcagaatcat gagtaaacca aatggtggta ttgctagtgc ttctaatgca 1560
gcagtgagtt ttgccaaagg atattacata ggtcaattag attcagatga ctatttggag 1620
ccagatgccg tagagttatg tttgaaagag ttcttgaaag acaaaacttt ggcttgtgta 1680
tatacaacaa acagaaatgt caatcctgat ggttctttga tagcaaatgg ttacaactgg 1740
ccagagttta gtagggagaa gttgactact gcaatgattg ctcatcactt ccgtatgttc 1800
actatcaggg catggcattt gaccgatggt tttaatgaga agattgagaa tgctgtggac 1860
tacgatatgt tcttgaagtt gagtgaagtt ggtaagttca agcacttaaa caaaatctgc 1920
tataacaggg tattgcatgg tgataataca agtattaaga agttgggtat ccaaaagaag 1980
aaccatttcg tggtcgtcaa ccagagtttg aacaggcaag gaatcactta ctacaattac 2040
gacgagttcg atgacttaga tgagtctagg aaatacatct ttaacaaaac agctgagtac 2100
caggaagaaa ttgacatctt aaaggacatt aagatcatac aaaacaagga cgctaaaata 2160
gcagtatcta tcttctaccc aaatactttg aatggtttgg tcaagaaatt gaataacatc 2220
atcgagtaca acaagaacat attcgttatt gtcttgcatg tggacaagaa ccatttgacc 2280
ccagatatca agaaagagat attggctttc taccacaagc atcaagtgaa tattttgttg 2340
aataacgata tctcatacta cacatcaaac cgtttaatca agaccgaggc acatttatca 2400
aacattaata agttgtcaca gttgaacttg aattgtgaat atatcatatt cgacaatcat 2460
gactctttgt tcgtgaagaa tgattcttat gcctatatga agaagtacga tgttggtatg 2520
aatttctcag ccttaactca tgattggatt gaaaagatta acgcacatcc accattcaag 2580
aagttgatta agacatactt taacgataat gacttgaaat ctatgaacgt taaaggagct 2640
agtcaaggaa tgtttatgac atatgcattg gctcacgaat tgttgactat tatcaaagag 2700
gttatcactt cttgccaatc tatcgattct gtaccagaat acaacactga ggacatatgg 2760
tttcaatttg cattgttgat cttggaaaag aaaactggtc atgtctttaa caagacaagt 2820
accttgacat acatgccttg ggagaggaag ttgcaatgga ccaatgaaca aattgaatca 2880
gctaaacgtg gagaaaacat tccagtgaac aagttcataa tcaattcaat cacattgtaa 2940
<210> 6
<211> 1020
<212> DNA
<213> Escherichia coli
<400> 6
atgaatatat tagttacagg tggagcaggc tatattggct cgcatactag tttatgtctt 60
ctgaataaag gttacaatgt tgtaatcatt gacaacttaa ttaattcatc ttgcgagagc 120
attcgaagga ttgaattaat agctaaaaaa aaagttactt tctatgagtt gaacatcaac 180
aatgaaaaag aagttaatca aattctaaaa aaacacaaat ttgattgtat aatgcatttt 240
gccggtgcaa agtctgttgc tgaatcttta ataaaaccca ttttttatta tgataataat 300
gtttcaggga cgttgcaatt aattaattgc gctataaaaa acgatgtggc taattttatt 360
tttagctctt ctgcaacggt ttatggtgaa agcaaaataa tgcctgttac agaagattgc 420
catataggag gaacattaaa tccatatggt acatcaaagt atatatcaga attgatgatt 480
agagatattg caaaaaaata tagcgatact aattttttgt gtctgagata ttttaaccca 540
acaggtgctc acgagtcggg aatgatcggt gaaagtcccg ctgatatacc aagcaattta 600
gttccttata tattacaagt tgctatgggt aaactagaaa aacttatggt gtttgggggg 660
gattacccta caaaggatgg aaccggtgtt cgtgattata tacacgtaat ggatttagcg 720
gaagggcatg tggctgcttt atcttacctt ttccgtgata ataacactaa ttatcatgtt 780
tttaatttag gtactggtaa aggatattct gttttagagc tggtttctac ctttgaaaaa 840
atatctgggg ttagaattcc atatgaaatt gtttcgagaa gagatgggga tattgctgaa 900
agttggtcat caccagaaaa agcaaataag tatctcaatt ggaaagctaa aagggaattg 960
gaaacaatgc ttgaggatgc ctggcgctgg caaatgaaaa acccaaatgg ttatatttaa 1020
<210> 7
<211> 2061
<212> DNA
<213> Escherichia coli
<400> 7
atgagtattc ttaatcaagc aataaattta tataaaaaca aaaattatcg ccaagcttta 60
tctctttttg agaaggttgc tgaaatttat gatgttagtt gggtcgaagc aaatataaaa 120
ttatgccaaa ccgcactcaa tctttctgaa gaagttgata agttaaatcg taaagctgtt 180
attgatattg atgcagcaac aaaaataatg tgttctaacg ccaaagcaat tagtctgaac 240
gaggttgaaa aaaatgaaat aataagcaaa taccgagaaa taaccgcaaa gaaatcagaa 300
cgggcggagt taaaggaagt cgaacccatt cctttagatt ggcctagtga tttaacttta 360
ccgccgttac ctgagagcac aaacgattat gtttgggcgg ggaaaagaaa agagcttgat 420
gattatccaa gaaaacagtt aatcattgac gggcttagta ttgtaattcc tacatataat 480
cgagcaaaaa tacttgcaat tacacttgct tgtctttgta accaaaagac catatacgac 540
tatgaagtta ttgttgccga tgatggaagt aaagaaaata ttgaagaaat agtaagagaa 600
tttgaaagtt tattaaatat aaaatatgta cgtcagaagg attatggata tcaactgtgt 660
gctgttagaa atcttgggct tagggctgca aagtataatt atgttgcaat tctggattgt 720
gatatggctc cgaacccact atgggttcag tcatatatgg aactattagc ggtggacgat 780
aatgttgctc taattggccc tagaaaatat atagatacaa gcaagcatac atatttagat 840
ttcctttccc aaaaatcact aataaatgaa attcctgaaa tcattactaa taatcaggtt 900
gcaggcaagg ttgagcaaaa caaatcagtt gactggcgaa tagaacattt caaaaatacc 960
gataatctaa gattatgcaa cacaccattt cgatttttta gcggaggtaa tgtcgctttt 1020
gcgaaaaaat ggcttttccg tgcaggatgg tttgatgaag agtttacgca ttgggggggg 1080
gaggataatg agtttggata tcgtctctac agagaaggat gttactttcg gtctgttgaa 1140
ggagcaatgg catatcatca agaaccaccc gggaaagaaa acgagacgga tcgtgcggca 1200
gggaaaaata ttactgttca attgttacag caaaaagttc cttatttcta tagaaaaaaa 1260
gaaaaaatag aatccgcgac attaaaaaga gtaccactag tatctatata tattcccgcc 1320
tataactgct ctaaatatat tgttcgttgt gttgaaagcg cccttaatca gacaataact 1380
gacttagaag tatgcatatg cgatgatggt tccacagatg atacattgcg gattcttcag 1440
gagcattatg caaaccatcc tcgagttcgt tttatttcac aaaaaaacaa aggaattggt 1500
tcagcatcta atacagcagt tagattgtgt cggggattct atataggtca gttagactct 1560
gatgactttc ttgaaccaga tgctgttgaa ctatgtctag atgaatttag aaaagatcta 1620
tcattggcat gtgtttatac aactaaccgt aatatagatc gtgaaggtaa tttgatatca 1680
aatggctata attggcccat ttattcgcga gaaaaactta ctagtgcaat gatatgtcat 1740
catttcagga tgttcacagc aagagcatgg aacctaactg aaggtttcaa cgaatcgatc 1800
agcaacgcag ttgattacga tatgtattta aaacttagtg aagttggacc gttcaagcat 1860
ataaacaaaa tttgttataa tcgcgtattg catggtgaaa atacgtctat aaaaaagttg 1920
gatattcaaa aggaaaatca ttttaaagtt gttaacgaat cattaagtag gctaggcata 1980
aaaaaatata aatattcacc attaactaat ttgaatgaat gtagaaaata tacctgggaa 2040
aaaatagaga atgatttata a 2061

Claims (10)

1.合成可点击反应糖胺聚糖骨架的枯草芽孢杆菌工程菌株,其特征在于,所述枯草芽孢杆菌工程菌株不具备内源合成UDP-单糖和糖胺聚糖的能力,引入异源组成型UDP-叠氮单糖合成途径及诱导型叠氮修饰糖胺聚糖骨架合成途径,在培养基中添加叠氮单糖和诱导剂时,合成可点击反应的叠氮修饰的糖胺聚糖骨架;
所述枯草芽孢杆菌工程菌株敲除了glmS基因,不具备UDP-单糖内源合成能力;
所述枯草芽孢杆菌工程菌株引入了NahKAGX1基因,具备UDP-叠氮单糖合成能力;
所述枯草芽孢杆菌工程菌株引入了pmHS2基因、或PmHAS基因、或KfoA以及KfoC基因,具备叠氮修饰糖胺聚糖骨架合成能力;
所述glmS基因的核苷酸序列如SEQ ID NO.1所示,所述NahK基因的核苷酸序列如SEQID NO.2所示,所述AGX1基因的核苷酸序列如SEQ ID NO.3所示,所述pmHS2基因的核苷酸序列如SEQ ID NO.4所示,所述PmHAS基因的核苷酸序列如SEQ ID NO.5所示,所述KfoA基因的核苷酸序列如SEQ ID NO.6所示,所述KfoC基因的核苷酸序列如SEQ ID NO.7所示。
2.权利要求1所述的合成可点击反应糖胺聚糖骨架的枯草芽孢杆菌工程菌株的构建方法,其特征在于,包括如下步骤:
(1)以枯草芽孢杆菌为出发菌株,利用同源重组技术敲除glmS基因,阻断枯草芽孢杆菌中的UDP-单糖内源合成途径;
(2)在经步骤(1)改造的枯草芽孢杆菌中插入NahKAGX1基因,引入异源组成型UDP-叠氮单糖合成途径,并插入pmHS2基因、或PmHAS基因、或KfoA以及KfoC基因,引入诱导型叠氮修饰糖胺聚糖骨架合成途径,构建得到合成可点击反应糖胺聚糖骨架的枯草芽孢杆菌工程菌株。
3.如权利要求2所述的构建方法,其特征在于,步骤(1)中所述出发菌株为枯草芽孢杆菌168。
4.如权利要求2所述的构建方法,其特征在于,步骤(2)中所述插入NahKAGX1基因是将含有组成型启动子Pveg调控下NahK基因和AGX1基因的同源重组片段插入菌株基因组中。
5.如权利要求2所述的构建方法,其特征在于,步骤(2)中所述插入pmHS2基因、或PmHAS基因是将pmHS2基因、或PmHAS基因置于诱导型启动子PxylA调控下插入质粒载体中,然后将重组质粒转化入菌体中。
6.如权利要求5所述的构建方法,其特征在于,所述质粒载体为pHT43。
7.如权利要求2所述的构建方法,其特征在于,步骤(2)中所述插入KfoA以及KfoC基因是将KfoAKfoC基因分别置于诱导型启动子PxylA调控下插入同一质粒载体中,然后将重组质粒转化入菌体中。
8.如权利要求7所述的构建方法,其特征在于,所述质粒载体为pHT43。
9.权利要求1所述的合成可点击反应糖胺聚糖骨架的枯草芽孢杆菌工程菌株在制备叠氮修饰的糖胺聚糖骨架中的应用。
10.权利要求1所述的合成可点击反应糖胺聚糖骨架的枯草芽孢杆菌工程菌株以及其合成的可点击反应糖胺聚糖骨架在化学生物学中的应用。
CN202110096718.5A 2021-01-25 2021-01-25 合成可点击反应糖胺聚糖骨架的枯草芽孢杆菌工程菌株及其构建方法与应用 Active CN114790435B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110096718.5A CN114790435B (zh) 2021-01-25 2021-01-25 合成可点击反应糖胺聚糖骨架的枯草芽孢杆菌工程菌株及其构建方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110096718.5A CN114790435B (zh) 2021-01-25 2021-01-25 合成可点击反应糖胺聚糖骨架的枯草芽孢杆菌工程菌株及其构建方法与应用

Publications (2)

Publication Number Publication Date
CN114790435A CN114790435A (zh) 2022-07-26
CN114790435B true CN114790435B (zh) 2023-11-17

Family

ID=82459921

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110096718.5A Active CN114790435B (zh) 2021-01-25 2021-01-25 合成可点击反应糖胺聚糖骨架的枯草芽孢杆菌工程菌株及其构建方法与应用

Country Status (1)

Country Link
CN (1) CN114790435B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106497845A (zh) * 2016-12-14 2017-03-15 江南大学 一种高产软骨素的重组枯草芽孢杆菌及其应用
CN108865918A (zh) * 2017-05-09 2018-11-23 中国科学院微生物研究所 一种标记存活的革兰氏阳性细菌及其细胞壁的方法
CN110643561A (zh) * 2019-10-30 2020-01-03 上海市农业科学院 glms基因在乳酸菌生物安全性筛选标记中的应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104928333B (zh) * 2015-07-07 2017-09-22 江南大学 一种敲除glcK促进枯草芽孢杆菌合成乙酰氨基葡萄糖的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106497845A (zh) * 2016-12-14 2017-03-15 江南大学 一种高产软骨素的重组枯草芽孢杆菌及其应用
CN108865918A (zh) * 2017-05-09 2018-11-23 中国科学院微生物研究所 一种标记存活的革兰氏阳性细菌及其细胞壁的方法
CN110643561A (zh) * 2019-10-30 2020-01-03 上海市农业科学院 glms基因在乳酸菌生物安全性筛选标记中的应用

Also Published As

Publication number Publication date
CN114790435A (zh) 2022-07-26

Similar Documents

Publication Publication Date Title
CA2684883C (en) Chondroitin-producing bacterium and method of producing chondroitin
EP2542686B1 (en) Compositions and methods for bacterial production of chondroitin
US9938549B2 (en) Process for producing monosaccharides
EA025126B1 (ru) Рекомбинантная бактерия и способ получения хондроитина биотехнологическим путем
CN1304317A (zh) 编码透明质酸合酶的核酸及其应用方法
WO2021178934A1 (en) Class ii, type v crispr systems
US10508279B2 (en) Recombinant Escherichia coli for high efficiency production of fructosylated chondroitin and method for making thereof
EP2905341B1 (en) Methods for producing GDP-fucose using nucleotide sugar transporters and recombinant microorganism host cells used therefor
WO2023184822A1 (zh) 酶共表达系统及其在合成唾液酸的应用
CN114790435B (zh) 合成可点击反应糖胺聚糖骨架的枯草芽孢杆菌工程菌株及其构建方法与应用
CN116396916B (zh) 低内毒素大肠杆菌及低内毒素重组人源胶原蛋白大肠杆菌工程菌
CN114790434B (zh) 合成可点击反应肝素骨架的大肠埃希菌工程菌株及其构建方法与应用
CN116042561B (zh) 一种s-腺苷蛋氨酸合成酶突变体及其应用
CN118240735B (zh) 一种能表达外源蛋白的菌株、重组人源胶原蛋白及合成方法与应用
US20220333144A1 (en) Recombinant microorganisms for in vivo production of sulfated glycosaminoglycans
CN117004635A (zh) 一种糖胺聚糖骨架合酶的高通量筛选方法
WO2024044761A2 (en) β-1,3-GALACTOSYLTRANSFERASES FOR USE IN THE BIOSYNTHESIS OF OLIGOSACCHARIDES
CN114958792A (zh) 一种重组表达型烟酰胺磷酸核糖转移酶突变体及其应用
CN114958943A (zh) 一种植烷醇连接的复合型寡糖的合成方法
CN117802188A (zh) 一种高产鼠李糖脂工程菌及其构建方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant