CN114785299A - 一种超宽带高线性高效率功率放大器 - Google Patents

一种超宽带高线性高效率功率放大器 Download PDF

Info

Publication number
CN114785299A
CN114785299A CN202210362457.1A CN202210362457A CN114785299A CN 114785299 A CN114785299 A CN 114785299A CN 202210362457 A CN202210362457 A CN 202210362457A CN 114785299 A CN114785299 A CN 114785299A
Authority
CN
China
Prior art keywords
mlin
microstrip line
matching
transistor
decoupling capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210362457.1A
Other languages
English (en)
Other versions
CN114785299B (zh
Inventor
徐跃杭
唐博文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN202210362457.1A priority Critical patent/CN114785299B/zh
Publication of CN114785299A publication Critical patent/CN114785299A/zh
Priority to US17/875,465 priority patent/US20230327611A1/en
Application granted granted Critical
Publication of CN114785299B publication Critical patent/CN114785299B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High-frequency amplifiers, e.g. radio frequency amplifiers
    • H03F3/19High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
    • H03F3/195High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only in integrated circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/21Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
    • H03F3/211Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only using a combination of several amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/08Modifications of amplifiers to reduce detrimental influences of internal impedances of amplifying elements
    • H03F1/18Modifications of amplifiers to reduce detrimental influences of internal impedances of amplifying elements by use of distributed coupling, i.e. distributed amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/32Modifications of amplifiers to reduce non-linear distortion
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/32Modifications of amplifiers to reduce non-linear distortion
    • H03F1/3205Modifications of amplifiers to reduce non-linear distortion in field-effect transistor amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/42Modifications of amplifiers to extend the bandwidth
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/24Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
    • H03F3/245Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages with semiconductor devices only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/12A bias circuit for some stages being shown using transmission lines
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/21Bias resistors are added at the input of an amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/216A coil being added in the input circuit, e.g. base, gate, of an amplifier stage
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/24Indexing scheme relating to amplifiers the supply or bias voltage or current at the source side of a FET being continuously controlled by a controlling signal
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/297Indexing scheme relating to amplifiers the loading circuit of an amplifying stage comprising a capacitor
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/301Indexing scheme relating to amplifiers the loading circuit of an amplifying stage comprising a coil
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/36Indexing scheme relating to amplifiers the amplifier comprising means for increasing the bandwidth
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/42Indexing scheme relating to amplifiers the input to the amplifier being made by capacitive coupling means
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/451Indexing scheme relating to amplifiers the amplifier being a radio frequency amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/48Indexing scheme relating to amplifiers the output of the amplifier being coupled out by a capacitor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Microwave Amplifiers (AREA)
  • Amplifiers (AREA)

Abstract

该发明公开了一种超宽带高线性高效率功率放大器,属于微波集成电路技术领域。本发明包括超宽带前级放大电路和超宽带后级放大电路,超宽带前级放大电路将输入端信号进行放大并进行栅极电压调节,将前级的输出信号进行进一步放大输出。通过将单个晶体管采用行波结构匹配,再与多级行波结构进行匹配,在低输出功率回退下可以实现高线性度并且保持高效率,解决了超宽带功率放大器的线性度和效率的问题。

Description

一种超宽带高线性高效率功率放大器
技术领域
本发明属于微波集成电路技术领域,具体涉及一种超宽带高线性功率放大器。
背景技术
功率放大器(Power Amplifier,PA)作为发射链路的末级核心器件,对整个无线系统的作用距离起着至关重要的作用。超宽带、高线性微波功率放大器可以满足雷达、电子战、通信数据链各种业务的要求,满足一体化电子系统。
对于负载调制、预失真等线性化技术,其会增加放大器的复杂性并且会对效率产生影响,且在具有数个倍频程带宽的超宽带放大器中也不能采用如Doherty、谐波端接和谐波注入等这样的窄带线性化技术,回退法虽然可以提供高线性,但对效率有很大的恶化,因此超宽带放大器很难实现高效率和高线性。
2016年美国的HRL实验室通过在分布式放大器中加入gm3控制单元,设计的0.1~8GHz 超宽带放大器,其OIP3/Pdc达到16,是目前为止报道最高的,但由于在功率回退多的情况下因此效率很低,参见[Moon J S,Kang J,Brown D,et al.Wideband lineardistributed GaN HEMT MMIC power amplifier with a record OIP3/Pdc[C]//2016IEEETopical Conference on Power Amplifiers for Wireless and Radio Applications(PAWR).IEEE,2016.]。
2016年QORVO公司采用共漏的Cascode结构设计的0.1~44GHz放大器,在20GHz处实现了45.2dBm的OIP3,但在其他频率上线性度不高,参见[K.W.Kobayashi,D.Denninghoffand D.Miller,"A Novel 0.1-44GHz Linear Common-Drain-Cascode 0.15μm GaNDistributed Amplifier Architecture with Improved IP3-BW,"2016IEEE CompoundSemiconductor Integrated Circuit Symposium(CSICS),2016,pp.1-4.]
RFMD公司的产品RF3826工作频率为0.03~2.5GHz,带内输出功率大于39dBm,PAE大于45%,在1200MHz处输出功率仅回退1.5dB实现了-37dBc的IMD3,对应效率约为37%,参见[www.BDTIC.com/RFMD]。
QORVO公司的产品TGA2237工作频率为0.03~2.7GHz,静态工作电流为360mA,带内输出功率大于39dBm,PAE大于54%,但在2000MHz时输出功率回退5dB下IMD3仅为-20dBc,对应PAE约为35%,参见[www.qorvo.com]。
MACOM公司的产品NP1008工作频率为0.03~2.7GHz,带内输出功率大于37dBm,PAE大于40%,在1900MHz时输出功率回退1.5dB下IMD3为-28dBc,对应PAE约为38%,输出功率回退5dB时IMD3为-35dBc,对应PAE约为25%,参见[www.macom.com]。
AD公司的产品HMC8500PM5E工作频率为0.01~2.8GHz,带内输出功率大于40dBm,在 1200MHz处输出功率回退5dB时IMD3为-32dBc,三阶遮断点OIP3为47dBm,线性优值OIP3/Pdc为2.6,对应PAE大约为30%,参见[www.analog.com]。
发明内容
为了解决超宽带放大器线性度与效率的问题,本发明提出一种超宽带电路设计方法,可以在低回退功率下实现高线性度和高效率。
本发明所采用的技术方案如下:
一种超宽带高线性高效率功率放大器,包括前级放大电路和后级放大电路,所述前级放大电路包括:隔直电容C1,去耦电容C2和C3,稳定电阻Rin,隔交电阻RG1,输入匹配电感L1和L2,输出匹配电感L3,输入匹配微带线MLIN1和MLIN2,输出匹配微带线MLIN3,晶体管 Q1;所述隔直电容C1的一端作为前级放大电路的输入,另一端依次连接稳定电阻Rin、输入匹配电感L1、输入匹配微带线MLIN1和晶体管Q1的栅极;去耦电容C2的一端接地,另一端依次连接隔交电阻RG1、去耦电容C2、输入匹配微带线MLIN2和晶体管Q1的栅极;去耦电容 C2与隔交电阻RG1的共接点连接供电电压Vgs1;去耦电容C3一端接地,另一端依次连接输出匹配电感L3、输出匹配微带线MLIN3和晶体管Q1的漏极;去耦电容C3与输出匹配电感L3的共接点连接供电电压Vds1;输出匹配电感L3、输出匹配微带线MLIN3的共接点作为前级放大电路的输出;
前级放大电路和后级放大电路之间设置隔直电容C4
所述后级放大电路包括:栅极匹配微带线MLIN4、MLIN5、MLIN6、MLIN7,漏极匹配电感L4,漏极匹配微带线MLIN8和MLIN9,隔交电阻RG2,去耦电容C5和C6,隔直电容C7,隔交电感L5,晶体管Q2、Q3、Q4;所述栅极匹配微带线MLIN4的一端作为后级放大电路的输入,另一端依次连接栅极匹配微带线MLIN5、MLIN6、MLIN7、隔交电阻RG2、去耦电容C5,去耦电容C5的末端接地,隔交电阻RG2和去耦电容C5的共接点连接供电电压Vgs2;栅极匹配微带线MLIN4和MLIN5的共接点连接晶体管Q2的栅极,栅极匹配微带线MLIN5、MLIN6的共接点连接晶体管Q3的栅极,栅极匹配微带线MLIN6、MLIN7的共接点连接晶体管Q4的栅极,晶体管Q2和Q3的漏极之间设置漏极匹配电感L4,晶体管Q3和Q4的漏极之间设置栅极匹配微带线MLIN8,栅极匹配微带线MLIN8与晶体管Q4的的漏极共接点连接漏极匹配微带线 MLIN9的一端,漏极匹配微带线MLIN9的另一端同时连接去耦电容C6、隔交电感L5、隔直电容C7的一端,去耦电容C6的另一端接地,隔交电感L5的另一端连接供电电压Vds2,隔直电容 C7的另一端作为后级放大电路的输出。
本发明提出一种超宽带高线性功率放大器电路,包括超宽带前级放大电路和超宽带后级放大电路,超宽带前级放大电路将输入端信号进行放大并进行栅极电压调节,将前级的输出信号进行进一步放大输出。通过将单个晶体管采用行波结构匹配,再与多级行波结构进行匹配,在低输出功率回退下可以实现高线性度并且保持高效率,解决了超宽带功率放大器的线性度和效率的问题。
附图说明
图1为本发明实施例1示意图;
图2为本发明对比例1示意图;
图3为本发明实施例1的仿真结果图;
图4为本发明实施例1与对比例1仿真结果对比;
图5为本发明实施例1与对比例1仿真结果对比;
图6为本发明实施例1与对比例1仿真结果对比。
具体实施方式
为使本发明的目的、技术方案和优点更加清晰,结合以下具体实施例,并参照附图,对本发明做进一步的说明。
实施例1:
本实施例提供了一种超宽带高线性功率放大器电路结构,包括电源,晶体管,匹配电感,稳定电阻,隔直电容,匹配微带线,隔交电阻,去耦电容。使用电感、电阻和微带线对单个晶体管输入端进行匹配,输出端只采用微带线进行匹配,经过隔直电容后通过微带线与多级行波放大电路相连。
本实施例还提供了一种应用低回退超宽带高线性功率放大器电路结构的超宽带高线性功率放大器。仿真表明该放大器工作频率为0.03~2.5GHz,输出功率大于41dBm,功率附加效率大于47%,增益大于15dB,包括信号源ZS,前级放大电路,中间隔直部分,后级放大电路,负载ZL
如图1为一种超宽带高线性功率放大器电路结构,射频信号经过晶体管Q1与其匹配网络构成的所述前级放大电路先对射频信号放大,前级的晶体管Q1选择较小的尺寸进行匹配以得到超宽频带的平坦放大。
所述前级放大电路输出的射频信号经过隔直电容C4后进入后级放大电路,后级放大电路为分布式放大器拓扑,但输入端的微带线MLIN4依然参与晶体管Q1的输出匹配,晶体管Q2、 Q3、Q4分别选用不同的尺寸达到最佳功率和效率匹配,晶体管Q2的漏极匹配电感L4选择大电感进行匹配。
所述超宽带高线性放大器的前级输入端采用电感和电阻匹配,因此可以得到极好的输入驻波,由于采用前级和后级两级结构,因此可以得到很好的反向隔离。
隔直电容C1、C4、C7选择片外大电容对低频进行良好隔直,隔交电感L3和L5选择片外大电感防止低频信号泄露。
晶体管会在多种非线性分量叠加下形成三阶交调IM3的甜点,具体解释为随着输入功率 的变化三阶交调项会在某个输入功率下出现一个极小值,此时对应的输入功率称作三阶交调的 甜点。所述后级放大电路的输入信号由前级放大电路提供,当信号源基波信号输入前级放大电 路后,由于非线性作用前级放大电路会输出各种频率分量的信号,其中构成三阶交调的3阶频 率分量包括基波频率分量非线性产生的3阶频率分量,基波频率分量非线性产生的5阶及更高 阶频率分量产生的3阶频率分量,这些分量有不同的幅度及相位。当这些频率分量进入后级放 大电路,由于后级放大电路的非线性特性产生叠加后更复杂的频率分量,其中构成三阶交调的 3阶频率分量包括后级放大电路输入的基波分量产生的3阶分量,3阶分量放大后的3阶分量, 5阶及更高阶分量产生的3阶分量,其他阶分量混合产生的3阶分量,比如1阶和2阶分量会 产生3阶分量。
通过对前级放大电路的栅极供电电压进行调节,可以得到幅度和相位不同的非线性频率分量,这些分量在后级放大电路的非线性作用下会产生不同的非线性效应,这些非线性效应就包括三阶交调的甜点会随着不同的前级放大电路的栅极供电电压变化,控制前级放大电路的栅极供电电压就可以得到不同的三阶交调甜点,而在甜点处三阶交调为极小值,输出三阶遮断点 OIP3为极大值,控制前级栅极供电电压使三阶交调甜点移动至接近饱和输出功率处则可以在低回退输出功率下实现高线性度,由于回退功率小,因此放大器此时效率也高。此方法同样适用于谐波调谐。
所述前级放大电路包括稳定电阻Rin,隔交电阻RG1,输入匹配电感L1和L2,输入匹配微带线MLIN1和MLIN2,输出匹配微带线MLIN3,隔直电容C1,去耦电容C2和C3,第一栅极供电Vgs1和第一漏极供电Vds1,晶体管Q1,隔直电容C1一端与稳定电阻Rin相连接,另一端与信号源ZS相连接。
所述中间隔直部分包括电容C4。
所述后级放大电路包括栅极匹配微带线MLIN4、MLIN5、MLIN6、MLIN7,漏极匹配电感L4,漏极匹配微带线MLIN8和MLIN9,隔交电阻RG2,去耦电容C5和C6,隔直电容C7,隔交电感L5,晶体管Q2、Q3、Q4,第二栅极供电Vgs2和第二漏极供电Vds2,隔直电容C7一端与微带线MLIN9相连接,另一端与负载ZL相连接。
所述晶体管源级接地。
对比例1:
本对比例提供了一种超宽带功率放大器,电路结构如图2所示,与实施例1相比,不包括驱动级放大电路,采用分布式放大器拓扑。该放大器工作频率为0.03~2.5GHz,输出功率大于 40dBm,增益大于10dB,PAE大于48%。
实施例1在1200MHz(频率间隔为1MHz)时三阶交调上边带甜点移动的仿真结果如图3 所示。
实施例1与对比例1的仿真结果对比如图4到图6。
如图4所示为1200MHz(频率间隔为1MHz)时实施例1与对比例1的OIP3和OIP3最大值处对应的PAE结果对比,其中实施例1中输出功率仅回退1.4dB实现了57.7dBm的OIP3,对应PAE为41%;对比例1中输出功率回退5dB实现了49.8dBm的OIP3,对应PAE为38.3%。
如图5所示为2500MHz(频率间隔为1MHz)时实施例1与对比例1的OIP3和OIP3最大值处对应的PAE结果对比,其中实施例1中输出功率仅回退1.6dB实现了58.2dBm的OIP3,对应PAE为38.5%;对比例1中输出功率回退5dB实现了53.1dBm的OIP3,对应PAE为31.6%。
如图6所示为实施例1与对比例1分别在300MHz,1200MHz,2500MHz(频率间隔为1MHz)下最大OIP3/PDC的结果对比,实施例1在300MHz,1200MHz,2500MHz下的OIP3/PDC 分别为41.5,39.3,41.3;对比例1在300MHz,1200MHz,2500MHz下的OIP3/PDC分别为 30.7,11.4,18.7。
综上所述,本发明提出了一种新型超宽带高线性功率放大器结构,通过单个晶体管匹配作为前级与后级多级行波结构匹配相连,选择合适的晶体管偏置实现具有高线性度和高效率的超宽带功率放大器,为未来的电子一体化应用奠定基础。

Claims (1)

1.一种超宽带高线性高效率功率放大器,包括前级放大电路和后级放大电路,所述前级放大电路包括:隔直电容C1,去耦电容C2和C3,稳定电阻Rin,隔交电阻RG1,输入匹配电感L1和L2,输出匹配电感L3,输入匹配微带线MLIN1和MLIN2,输出匹配微带线MLIN3,晶体管Q1;所述隔直电容C1的一端作为前级放大电路的输入,另一端依次连接稳定电阻Rin、输入匹配电感L1、输入匹配微带线MLIN1和晶体管Q1的栅极;去耦电容C2的一端接地,另一端依次连接隔交电阻RG1、去耦电容C2、输入匹配微带线MLIN2和晶体管Q1的栅极;去耦电容C2与隔交电阻RG1的共接点连接供电电压Vgs1;去耦电容C3一端接地,另一端依次连接输出匹配电感L3、输出匹配微带线MLIN3和晶体管Q1的漏极;去耦电容C3与输出匹配电感L3的共接点连接供电电压Vds1;输出匹配电感L3、输出匹配微带线MLIN3的共接点作为前级放大电路的输出;
前级放大电路和后级放大电路之间设置隔直电容C4
所述后级放大电路包括:栅极匹配微带线MLIN4、MLIN5、MLIN6、MLIN7,漏极匹配电感L4,漏极匹配微带线MLIN8和MLIN9,隔交电阻RG2,去耦电容C5和C6,隔直电容C7,隔交电感L5,晶体管Q2、Q3、Q4;所述栅极匹配微带线MLIN4的一端作为后级放大电路的输入,另一端依次连接栅极匹配微带线MLIN5、MLIN6、MLIN7、隔交电阻RG2、去耦电容C5,去耦电容C5的末端接地,隔交电阻RG2和去耦电容C5的共接点连接供电电压Vgs2;栅极匹配微带线MLIN4和MLIN5的共接点连接晶体管Q2的栅极,栅极匹配微带线MLIN5、MLIN6的共接点连接晶体管Q3的栅极,栅极匹配微带线MLIN6、MLIN7的共接点连接晶体管Q4的栅极,晶体管Q2和Q3的漏极之间设置漏极匹配电感L4,晶体管Q3和Q4的漏极之间设置栅极匹配微带线MLIN8,栅极匹配微带线MLIN8与晶体管Q4的的漏极共接点连接漏极匹配微带线MLIN9的一端,漏极匹配微带线MLIN9的另一端同时连接去耦电容C6、隔交电感L5、隔直电容C7的一端,去耦电容C6的另一端接地,隔交电感L5的另一端连接供电电压Vds2,隔直电容C7的另一端作为后级放大电路的输出。
CN202210362457.1A 2022-04-07 2022-04-07 一种超宽带高线性高效率的功率放大器 Active CN114785299B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202210362457.1A CN114785299B (zh) 2022-04-07 2022-04-07 一种超宽带高线性高效率的功率放大器
US17/875,465 US20230327611A1 (en) 2022-04-07 2022-07-28 Power amplifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210362457.1A CN114785299B (zh) 2022-04-07 2022-04-07 一种超宽带高线性高效率的功率放大器

Publications (2)

Publication Number Publication Date
CN114785299A true CN114785299A (zh) 2022-07-22
CN114785299B CN114785299B (zh) 2023-06-27

Family

ID=82426989

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210362457.1A Active CN114785299B (zh) 2022-04-07 2022-04-07 一种超宽带高线性高效率的功率放大器

Country Status (2)

Country Link
US (1) US20230327611A1 (zh)
CN (1) CN114785299B (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4797628A (en) * 1988-03-23 1989-01-10 Gruchalla Michael E Distributed push-pull amplifier
DE10304861A1 (de) * 2003-02-06 2004-08-26 Infineon Technologies Ag Schaltungsanordnung mit einem Wanderwellenverstärker
US20140333374A1 (en) * 2013-05-10 2014-11-13 Sumitomo Electric Industries, Ltd. Travelling wave amplifier providing cascade units each including dynamic cascade transistor whose collector output fed-back to base input
US20160380699A1 (en) * 2015-06-29 2016-12-29 Sumitomo Electric Industries, Ltd. Traveling wave amplifier for driving optical modulator
CN111082759A (zh) * 2019-12-30 2020-04-28 中电国基南方集团有限公司 一种电抗匹配式与分布式相融合的超宽带功率芯片电路
CN112865725A (zh) * 2021-01-13 2021-05-28 中电国基南方集团有限公司 一种超宽带大功率高效率的单片集成功率放大器电路结构
CN113612450A (zh) * 2021-10-09 2021-11-05 成都嘉纳海威科技有限责任公司 一种超宽带驱动放大电路
CN114244295A (zh) * 2021-11-09 2022-03-25 中电国基南方集团有限公司 一种超宽带高压高功率放大器电路

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4797628A (en) * 1988-03-23 1989-01-10 Gruchalla Michael E Distributed push-pull amplifier
DE10304861A1 (de) * 2003-02-06 2004-08-26 Infineon Technologies Ag Schaltungsanordnung mit einem Wanderwellenverstärker
US20140333374A1 (en) * 2013-05-10 2014-11-13 Sumitomo Electric Industries, Ltd. Travelling wave amplifier providing cascade units each including dynamic cascade transistor whose collector output fed-back to base input
US20160380699A1 (en) * 2015-06-29 2016-12-29 Sumitomo Electric Industries, Ltd. Traveling wave amplifier for driving optical modulator
CN111082759A (zh) * 2019-12-30 2020-04-28 中电国基南方集团有限公司 一种电抗匹配式与分布式相融合的超宽带功率芯片电路
CN112865725A (zh) * 2021-01-13 2021-05-28 中电国基南方集团有限公司 一种超宽带大功率高效率的单片集成功率放大器电路结构
CN113612450A (zh) * 2021-10-09 2021-11-05 成都嘉纳海威科技有限责任公司 一种超宽带驱动放大电路
CN114244295A (zh) * 2021-11-09 2022-03-25 中电国基南方集团有限公司 一种超宽带高压高功率放大器电路

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
冷永清;张立军;曾云;鲁辉;郑占旗;张国梁;彭伟;彭亚涛;官劲;: "基于GaN HEMT的1.5-3.5GHz宽带平衡功率放大器设计", 电子学报 *

Also Published As

Publication number Publication date
CN114785299B (zh) 2023-06-27
US20230327611A1 (en) 2023-10-12

Similar Documents

Publication Publication Date Title
CN106452377B (zh) 一种自适应补偿的射频功率放大器
CA2389489A1 (en) Application of the doherty amplifier as a predistortion circuit for linearizing microwave amplifiers
JP3405401B2 (ja) 前置補償型線形化器および線形化増幅器
WO2023045542A1 (zh) 应用于5g通信系统的射频功率放大器及射频前端架构
Baylis et al. Designing transmitters for spectral conformity: power amplifier design issues and strategies
Saad et al. Efficient and wideband two-stage 100 W GaN-HEMT power amplifier
CN112543004A (zh) 一种线性化偏置电路及射频功率放大器
Liu et al. A broadband CMOS high efficiency power amplifier with large signal linearization
CN108847825B (zh) 晶体管推挽对及具有该推挽对结构的射频放大电路
Liu et al. Inverted sequential load-modulated balanced amplifier for extending dynamic power range over wide bandwidth
KR100287280B1 (ko) 보상소자를 이용한 병렬 푸시풀 증폭기
CN114785299B (zh) 一种超宽带高线性高效率的功率放大器
Baylis et al. Designing for spectral conformity: Issues in power amplifier design
Zakaria et al. Development of wideband power amplifier for RF/microwave front-end subsystem
CN110719077B (zh) 一种功率放大器及电子设备
Spirito et al. Experimental procedure to optimize out-of-band terminations for highly linear and power efficient bipolar class-AB RF amplifiers
Liu et al. Design of 3.5 GHz linear high-efficiency Doherty power amplifier with pre-matching
JP2006093857A (ja) 歪補償回路
CN115913155B (zh) 一种适用于5g系统的高线性功率放大器
Kim et al. Ka-Band CMOS Power Amplifier Using Stacked Structure With Cascode-Like Operation
Choupan et al. Millimeter-wave Power Amplifier with Linearization Technique in $0.18-\mu\mathrm {m} $ CMOS Process
Kangarshahi et al. A novel class-E class-D doherty power amplifier based on past matching network with linearity region extension and flat output power
Zhang et al. Linearity improvement using a modified derivative superposition method in cascaded stages amplifier
Zhang A novel broadband linearization technique for amplifier design
US20230353095A1 (en) Linearization of differential rf power amplifier by bias control using cross-coupling components

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant