CN114784883B - 基于节点电压约束的分布式光伏并网优化方法及系统 - Google Patents

基于节点电压约束的分布式光伏并网优化方法及系统 Download PDF

Info

Publication number
CN114784883B
CN114784883B CN202210679650.8A CN202210679650A CN114784883B CN 114784883 B CN114784883 B CN 114784883B CN 202210679650 A CN202210679650 A CN 202210679650A CN 114784883 B CN114784883 B CN 114784883B
Authority
CN
China
Prior art keywords
voltage
power
line
area
transformer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210679650.8A
Other languages
English (en)
Other versions
CN114784883A (zh
Inventor
戚沁雅
安义
蒙天骐
欧阳文华
蔡木良
曾清霖
刘卓睿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
State Grid Corp of China SGCC
Electric Power Research Institute of State Grid Jiangxi Electric Power Co Ltd
Original Assignee
State Grid Corp of China SGCC
Electric Power Research Institute of State Grid Jiangxi Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by State Grid Corp of China SGCC, Electric Power Research Institute of State Grid Jiangxi Electric Power Co Ltd filed Critical State Grid Corp of China SGCC
Priority to CN202210679650.8A priority Critical patent/CN114784883B/zh
Publication of CN114784883A publication Critical patent/CN114784883A/zh
Application granted granted Critical
Publication of CN114784883B publication Critical patent/CN114784883B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • G06N3/084Backpropagation, e.g. using gradient descent
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/466Scheduling the operation of the generators, e.g. connecting or disconnecting generators to meet a given demand
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Computational Linguistics (AREA)
  • Data Mining & Analysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Molecular Biology (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Health & Medical Sciences (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

本发明属于分布式光伏并网技术领域,涉及一种基于节点电压约束的分布式光伏并网优化方法及系统,该方法对获取的数据进行清洗,对台区档位进行识别并将出口电压换算至高压侧;计算每一个时刻点台区对线路的电压差值;以BP神经网络为基础构建一个台区功率和节点电压相关性神经网络;基于训练好的台区功率和节点电压相关性神经网络,计算得到线路上最小光伏出力限制;根据台区在10kV线路上的相对位置和最小光伏出力限制,推荐光伏并网方案。本发明可在无准确网络拓扑的情况下仍能够计算线路上各台区光伏出力与节点电压变化的关系,从而规模化提出优化的光伏并网策略。

Description

基于节点电压约束的分布式光伏并网优化方法及系统
技术领域
本发明属于分布式光伏并网技术领域,具体涉及基于节点电压约束的分布式光伏并网优化方法及系统。
背景技术
开展屋顶分布式光伏建设,有利于整合资源实现集约开发、削减电力尖峰负荷、引导居民绿色能源消费。屋顶光伏的高速发展,对配电网会带来不可忽视的影响,目前大多数接入策略都是以10kV线路、配变容量作为约束条件,保障线路、台区不发生重过载,但由于配电网整体可观可测水平较低,无法获得准确的网架拓扑,难以对节点电压进行限制,大量潮流倒送后引起的台区出口高电压问题突出。
发明内容
为改善分布式光伏接入引起台区电压高的现状,需从潮流变化引起的电压抬升角度,考虑10kV线路各节点光伏可接入容量。本发明,充分挖掘配电网海量数据价值,从大数据角度开展分布式光伏并网容量和位置优化,在无准确网络拓扑的情况下仍能够计算线路上各台区光伏出力与节点电压变化的关系,从而规模化提出优化的光伏并网策略。
本发明提出的一种基于节点电压约束的分布式光伏并网优化方法,包括以下具体步骤:
S1.数据获取:从调度电能量管理系统(EMS)获取10kV线路电压、电流量测数据,t时刻线路l的电压为u lt ,电流为I lt ;从用电信息采集系统获取台区出口电压、电流、功率量测数据,t时刻第i个台区q i 的电压为u qit ,电流为I qit ,功率为p qit i=1,2,…,nn为台区数量;从PMS2.0系统获取线变关系台账、光伏用户台账;
S2.数据预处理:对获取的数据进行清洗,通过时间对齐,删除不可用数据;对台区档位进行识别并将出口电压换算至高压侧;考虑线路和台区电压量测数据维度不同,将台区电压换算为线电压;计算每一个时刻点台区对线路的电压差值;
S3.基于深度学习构建台区功率和节点电压相关性神经网络:基于深度学习方法,以BP神经网络为基础构建台区功率和节点电压相关性神经网络,将预处理得到的数据集分成训练集和测试集,求解各节点光伏出力与节点电压分布的关系,并对台区功率和节点电压相关性神经网络的实用性进行评估;
S4.推荐光伏并网方案:基于训练好的台区功率和节点电压相关性神经网络,计算10kV线路下各台区在线路的相对位置;基于台区在线路相对位置的排序,按特定的顺序向台区注入功率,直至出现节点电压越限或注入功率之和超过线路承载力,得到线路上最小光伏出力限制;根据台区在10kV线路上的相对位置和最小光伏出力限制,推荐光伏并网方案。
进一步优选,步骤S2过程如下:
S21.数据清洗:考虑到线路、台区的数据时间不同,需先做时间对齐处理,删除不可用数据;
S22.台区档位识别:根据配变档位将获取的台区低压侧采集数据换算为高压侧数据;
S23.台区线电压换算:10kV线路电压为母线线电压,台区电压为相电压,需将台区电压换算为线电压;
S24.计算时刻t下线路上所有台区对线路首端的电压差。
进一步优选,步骤S22过程如下:
S221.取某时间段内,线路l在A相电流最小值时刻t min 对应的电压u lt-min ,和接带的所有台区q={q 1 ,q 2 ,..., q i ,...,q n }电压,形成台区电压序列u qt-min ={u q1t-min ,u q2t-min ,..., u qit-min ,...,u qnt-min },u qit-min 为A相电流最小值时刻t min i个台区电压;
S222.假设A相电流最小值时刻,各台区高压侧电压近似平均分布,计算各台区高压侧相电压与低压侧出口电压的比值,得到台区的电压比值,第i个台区q i 的电压比值k aqi =(u lt-min /1.732)/u qit-min ;计算每个台区的电压比值,形成电压比值序列k aq ={k aq1 ,k aq2 ,..., k aqi ,...,k aqn };
S223.将电压比值序列k aq 按照从大到小排列,取中值k aq-median ,计算中值比例系数k m =25/k aq-median ,令每个台区的中值化电压比值,第i个台区q i 的中值化电压比值k aqi-m =k aqi *k m
S224.对于k aqi-m ≥25.94的台区,令k aqi-m =26.25;对于k aqi-m ∈[25.31,25.94)的台区,令k aqi-m =25.625;对于k aqi-m ∈[24.69,25.31)的台区,令k aqi-m =25;对于k aqi-m ∈[24.06,24.69)的台区,令k aqi-m =24.375;对于k aqi-m <24.06的台区,令k aqi-m =23.75;
S225.将台区低压侧采集数据换算为高压侧电压:u qit-h =u qit *k aqi-m u qit-h 为第i个台区q i 的高压侧电压;
S226.按照步骤S221- S225的方法计算B相、C相档位,并换算为高压侧电压。
进一步优选,步骤S23中,由第i个台区q i 的线电压u’ qit =1.732*u qit-h 得到。
进一步优选,步骤S24中,第i个台区q i 对线路首端的电压差dU qit =u’ qit -u lt
进一步优选,步骤S3具体过程如下:
S31.对于线路l,将经过数据预处理的所有时间断面t=[t 1 ,t 2 ,...,t m ]下,t m 为第m个采集时点,线路l接带所有台区功率p t =[p q1t ,p q2t ,..., p qit ,...,p qnt ]作为输入,每个台区对线路首端的电压差dU t =[dU q1t ,dU q2t ,..., dU qit ,...,dU qnt ]作为输出,以BP神经网络为基础构建台区功率和节点电压相关性神经网络;
S32.训练台区功率和节点电压相关性神经网络:采用深度学习方法自学习台区功率和节点电压相关性神经网络参数,为台区功率和节点电压相关性神经网络添加隐藏层优化学习效果;
S33. 台区功率和节点电压相关性神经网络实用性评估:利用地区年负荷最大、最小和光照最强的日期范围内,所有10kV线路、台区的功率和电压差验证台区功率和节点电压相关性神经网络的实用性,一定比例光伏台区所在节点电压偏差不超过阈值时,台区功率和节点电压相关性神经网络的实用性通过评估,否则在步骤S32进一步优化台区功率和节点电压相关性神经网络训练过程。
进一步优选,步骤S4具体过程如下:
S41.计算台区在10kV线路的相对位置:向训练好的台区功率和节点电压相关性神经网络中注入台区功率,以计算台区之间的相对位置;
S411.以线路l为例,向接带的所有台区q={q 1 ,q 2 ,... , q i ,... ,q n }分别注入功 率-ppl接带的台区最小容量;即台区功率和节点电压相关性神经网络的输入为台区注 入功率矩阵P
Figure 97327DEST_PATH_IMAGE001
Pn×n矩阵;
S412.不考虑线路首端功率和电压,线路上全部的功率流动来自于台区注入功率, 利用台区功率和节点电压相关性神经网络预测出线路上每个台区对线路首端的电压差预 测值dU q ,即台区所在节点电压,台区功率和节点电压相关性神经网络的输出层为节点电压 矩阵dU
Figure 497215DEST_PATH_IMAGE002
dUn×n矩阵;
每一组注入功率输入台区功率和节点电压相关性神经网络会得到一组对应的电压差预测结果向量,dU ij 是采用第j组注入功率时,第i个台区所在节点对线路首端的电压差预测值;
S413. 按照步骤S411设定的注入功率矩阵,当i=j时,第j组注入功率为-p,仅向第i个台区注入功率-p,预测第i个台区自身的电压差,dU ij 表示为dU ii ;节点电压矩阵对角线上的值dU ii 即向第i个台区注入功率时,第i个台区所在节点的电压,将所有台区按照对应的dU ii 由高到低排列,形成新的台区序列q r ,排列顺序即台区距线路首端相对位置的由远到近;
S42.计算最小光伏出力限制:按照S413计算得到的台区序列q r ,依次向台区注入可接入的最大功率,直至线路上有节点电压越限或注入功率之和超过线路承载力;
S421.按照S413计算得到的台区序列q r ,依次向台区注入功率并输入训练好的台区功率和节点电压相关性神经网络,直至台区功率和节点电压相关性神经网络预测的节点电压超过给定的阈值,或所有台区的注入功率之和超过线路载流量的设定比例,得到台区注入功率之和为线路l的最小光伏出力限制,记作p l1
S422.随机生成n 2个整数数组,每个整数数组内部按照升序排列,整数数组最大值和数组长度均不超过线路l接带的台区数量n;按照S413计算得到的台区序列q r ,按整数数组的顺序依次向台区注入功率,直至台区功率和节点电压相关性神经网络预测的节点电压超过给定的阈值,或所有台区的注入功率之和超过线路载流量的设定比例,取所有整数数组顺序下台区注入功率之和的最小值,得到线路l的最小光伏出力限制,记作p l2
S423.根据步骤S421和S422中计算得到的最小光伏出力p l1 p l2 ,计算得到线路最小光伏出力限制p l-gf =min(p l1 , p l2 ),即两种计算结果的较小值为推荐的线路最小光伏出力限制,此时不会引起线路过电压、过电流问题,且无需改造线路;
S43.推荐的光伏并网方案:根据台区在10kV线路上的相对位置和推荐的最小光伏出力限制,提供两种场景下的光伏并网优化方案。
进一步优选,步骤S3具体过程如下:
S431.考虑节点电压和负载限制的光伏并网方案:不考虑光伏并网顺序,t时刻线路l功率为p lt =1.732*u lt *I lt ,线路l全年功率最小值为p lt-min ,按照用户报装时序接入分布式光伏,线路l上分布式光伏接入总容量为S gf ,需满足S gf p l-gf + p lt-min
S432.光伏并网容量最大化方案:考虑分布式光伏并网容量最大化,按照S413计算得到的台区序列q r ,在光伏并网过程中,按照q r 序列从后向前的时序规划分布式光伏接入;根据实际光伏接入规划,换算为台区注入功率输入台区功率和节点电压相关性神经网络,按照台区功率和节点电压相关性神经网络预测的节点电压不超过给定的阈值、且所有台区的注入功率之和不超过线路载流量的设定比例的条件,重新核算线路l最小光伏出力限制阈值p l-gf ,并按照S gf p l-gf + p lt-min ,得到线路l分布式光伏可接入总容量。
一种基于节点电压约束的分布式光伏并网优化系统:包括数据获取模块、数据预处理模块、深度学习模块、光伏并网容量评估模块、结果输出模块。数据获取模块用于连接调度电能量管理系统(EMS)、用电信息采集系统、PMS2.0系统,获取需要的数据;数据预处理模块用于完成数据清洗、台区档位识别、数据转换、台区对线路电压差计算,得到输出给深度学习模块的数据;深度学习模块用于构建台区功率和节点电压相关性神经网络,建立台区注入功率与节点电压变化的关系;光伏并网容量评估模块基于训练好的深度学习模型,分析台区在10kV线路的相对位置,计算线路最小光伏出力限制,生成光伏并网方案;结果输出模块用于输出推荐的光伏并网方案。
本发明提出了一种基于节点电压约束的分布式光伏并网优化方法及系统,充分挖掘配电网海量数据价值,从大数据角度开展分布式光伏并网容量和位置优化,在无准确网络拓扑的情况下仍能够计算线路上各台区光伏出力与节点电压变化的关系,从而规模化提出优化的光伏并网策略。具有以下主要有益效果:
(1)充分利用现有采集数据,在最少数据基础上可实现规模化分布式光伏并网优化评估;
(2)以10kV线路为单位开展分布式光伏并网策略评估,考虑了缺失准确台区档位的条件下,把采集的低压侧数据换算为高压侧,利用深度学习方法构建台区注入功率和节点电压变化的关系,仅使用基础量测数据即可完成整个计算方案。
(3)基于构建的台区功率和节点电压相关性神经网络,综合考虑了线路整体载流量和各节点电压,提出了台区相对位置和线路最小光伏出力限制计算方法,进而给出了优化的光伏并网方案,最大化保障光伏接入线路的安全稳定运行。
(4)适用于以台区为单位的低压分布式光伏并网方案评估。
附图说明
图1是基于节点电压约束的分布式光伏并网优化方法流程图。
图2 是基于节点电压约束的分布式光伏并网优化系统示意图。
具体实施方式
下面结合附图进一步详细阐明本发明。
参照图1,基于节点电压约束的分布式光伏并网优化方法,包括以下具体步骤:
S1.数据获取:从调度电能量管理系统(EMS)获取10kV线路电压、电流量测数据,t时刻线路l的电压为u lt ,电流为I lt ;从用电信息采集系统获取台区出口电压、电流、功率量测数据,t时刻第i个台区q i 的电压为u qit ,电流为I qit ,功率为p qit i=1,2,…,nn为台区数量;从PMS2.0系统获取线变关系台账、光伏用户台账。
S2.数据预处理:对获取的数据进行清洗,通过时间对齐,删除不可用数据;对台区档位进行识别并将出口电压换算至高压侧;考虑线路和台区电压量测数据维度不同,将台区电压换算为线电压;计算每一个时刻点台区对线路的电压差值。
S21.数据清洗:考虑到线路、台区的数据时间不同,需先做时间对齐处理,删除不可用数据。
S211.假定线路数据时间为t l ,线路下所有台区数据时间为t q1 ,t q2 ,…, t qi ,…,t qn ,由于10kV线路、台区标准的采集频率为48点/天或96点/天,对于线路、台区采集器经过时钟校准的情况可直接筛选该线路下共同的采集时点;
S212.对于线路、台区采集器未经过时钟校准的情况,部分台区采集器时间存在1-2分钟偏差,应先对台区本身数据时间做偏差处理,将数据时间归算为整点+k*15min或整点+k*30min,k为采集时点排序,再筛选该线路下共同的采集时点;
S213.因采集器掉线、信道传输问题或设备故障等原因在上传的量测数据中会有电压为零的时刻,需删除该线路下任一采集点电压为零的时刻。
S22.台区档位识别:根据配变档位将获取的台区低压侧采集数据换算为高压侧数据。
S221.取某时间段内,线路l在A相电流最小值时刻t min 对应的电压u lt-min ,和接带的所有台区q={q 1 ,q 2 ,..., q i ,...,q n }电压,形成台区电压序列u qt-min ={u q1t-min ,u q2t-min ,..., u qit-min ,...,u qnt-min },u qit-min 为A相电流最小值时刻t min i个台区电压;
S222.假设A相电流最小值时刻,各台区高压侧电压近似平均分布,计算各台区高压侧相电压与低压侧出口电压的比值,得到台区的电压比值,第i个台区q i 的电压比值k aqi =(u lt-min /1.732)/u qit-min ;计算每个台区的电压比值,形成电压比值序列k aq ={k aq1 ,k aq2 ,..., k aqi ,...,k aqn };
S223.将电压比值序列k aq 按照从大到小排列,取中值k aq-median ,计算中值比例系数k m =25/k aq-median ,令每个台区的中值化电压比值,第i个台区q i 的中值化电压比值k aqi-m =k aqi *k m
S224.对于k aqi-m ≥25.94的台区,令k aqi-m =26.25;对于k aqi-m ∈[25.31,25.94)的台区,令k aqi-m =25.625;对于k aqi-m ∈[24.69,25.31)的台区,令k aqi-m =25;对于k aqi-m ∈[24.06,24.69)的台区,令k aqi-m =24.375;对于k aqi-m <24.06的台区,令k aqi-m =23.75;
S225.将台区低压侧采集数据换算为高压侧电压:u qit-h =u qit *k aqi-m u qit-h 为第i个台区q i 的高压侧电压;
S226.按照步骤S221- S225的方法计算B相、C相档位,并换算为高压侧电压。
S23.台区线电压换算:10kV线路电压为母线线电压,台区电压为相电压,需将台区电压换算为线电压,由第i个台区q i 的线电压u’ qit =1.732*u qit-h 得到。
S24.计算时刻t下线路上所有台区对线路首端的电压差,第i个台区q i 对线路首端的电压差dU qit =u’ qit -u lt
S3.基于深度学习构建台区功率和节点电压相关性神经网络:基于深度学习方法,以BP神经网络为基础构建台区功率和节点电压相关性神经网络,将预处理得到的数据集分成训练集和测试集,求解各节点光伏出力与节点电压分布的关系,并对台区功率和节点电压相关性神经网络的实用性进行评估。
S31.对于线路l,将经过数据预处理的所有时间断面t=[t 1 ,t 2 ,...,t m ]下,t m 为第m个采集时点,线路l接带所有台区功率p t =[p q1t ,p q2t ,..., p qit ,...,p qnt ]作为输入,每个台区对线路首端的电压差dU t =[dU q1t ,dU q2t ,..., dU qit ,...,dU qnt ]作为输出,以BP神经网络为基础构建台区功率和节点电压相关性神经网络。
S32.训练台区功率和节点电压相关性神经网络:采用深度学习方法自学习台区功率和节点电压相关性神经网络参数,为台区功率和节点电压相关性神经网络添加隐藏层优化学习效果。以Tensorflow架构为例构建一个台区功率和节点电压相关性神经网络,将数据集分为训练集和测试集,利用训练集训练台区功率和节点电压相关性神经网络,用测试集验证台区功率和节点电压相关性神经网络预测准确性;为输入层添加线性激活函数activation=linear,添加x个隐藏层(初始令x=1),采用预测值与真实值的均方差评价台区功率和节点电压相关性神经网络的误差,利用梯度下降法(SGD)更新参数,优化台区功率和节点电压相关性神经网络效果,直至误差缩小到设定的阈值范围内。
S33. 台区功率和节点电压相关性神经网络实用性评估:利用地区年负荷最大、最小和光照最强的日期范围内,所有10kV线路、台区的功率和电压差验证台区功率和节点电压相关性神经网络在严苛条件下的实用性,一定比例光伏台区所在节点电压偏差(Δ=预测的电压差-实际的电压差)不超过阈值时,台区功率和节点电压相关性神经网络的实用性通过评估,否则需在步骤S32进一步优化台区功率和节点电压相关性神经网络训练过程。
S4.推荐光伏并网方案:基于训练好的台区功率和节点电压相关性神经网络,计算10kV线路下各台区在线路的相对位置;基于台区在线路相对位置的排序,按特定的顺序向台区注入功率,直至出现节点电压越限或注入功率之和超过线路承载力,得到线路上最小光伏出力限制;根据台区在10kV线路上的相对位置和最小光伏出力限制,推荐光伏并网方案。
S41.计算台区在10kV线路的相对位置:向训练好的台区功率和节点电压相关性神经网络中注入台区功率,以计算台区之间的相对位置。
S411.以线路l为例,向接带的所有台区q={q 1 ,q 2 ,... , q i ,... ,q n }分别注入功率-ppl接带的台区最小容量。即台区功率和节点电压相关性神经网络的输入为台区注入功率矩阵P
Figure 782703DEST_PATH_IMAGE001
Pn×n矩阵。
S412.不考虑线路首端功率和电压,线路上全部的功率流动来自于台区注入功率, 利用台区功率和节点电压相关性神经网络预测出线路上每个台区对线路首端的电压差预 测值dU q ,即台区所在节点电压,台区功率和节点电压相关性神经网络的输出层为节点电压 矩阵dU
Figure 923310DEST_PATH_IMAGE002
dUn×n矩阵;
每一组注入功率输入台区功率和节点电压相关性神经网络会得到一组对应的电压差预测结果向量,dU ij 是采用第j组注入功率时,第i个台区所在节点对线路首端的电压差预测值;
S413. 按照步骤S411设定的注入功率矩阵,当i=j时,第j组注入功率为-p,仅向第i个台区注入功率-p,预测第i个台区自身的电压差,dU ij 可表示为dU ii 。节点电压矩阵对角线上的值dU ii 即向第i个台区注入功率时,第i个台区所在节点的电压,将所有台区按照对应的dU ii 由高到低排列,形成新的台区序列q r ,排列顺序即台区距线路首端相对位置的由远到近。
S42.计算最小光伏出力限制:按照S413计算得到的台区序列q r ,依次向台区注入可接入的最大功率,直至线路上有节点电压越限或注入功率之和超过线路承载力。
S421.按照S413计算得到的台区序列q r ,依次向台区注入功率并输入训练好的台区功率和节点电压相关性神经网络,每个台区注入功率为台区容量S的80%,直至台区功率和节点电压相关性神经网络预测的节点电压超过给定的阈值,或所有台区的注入功率之和超过线路载流量的80%,得到台区注入功率之和为线路l的最小光伏出力限制,记作p l1
S422.随机生成n 2个整数数组,每个整数数组内部按照升序排列,整数数组最大值和数组长度均不超过线路l接带的台区数量n;按照S413计算得到的台区序列q r ,按整数数组的顺序依次向台区注入功率,每个台区注入功率为台区容量的80%,直至台区功率和节点电压相关性神经网络预测的节点电压超过给定的阈值,或所有台区的注入功率之和超过线路载流量的80%,取所有整数数组顺序下台区注入功率之和的最小值,得到线路l的最小光伏出力限制,记作p l2
例:假设第w个整数数组z w =[z1,z2,...,z j ],z j 为整数数组的元素,整数数组z w 长度为j,应满足j<nz j <n,整数数组内部按照升序排列。在台区序列q r 中,依次向第z1,z2,...,z j 个台区注入功率并输入训练好的台区功率和节点电压相关性神经网络,每个台区注入功率为台区容量的80%,直至台区功率和节点电压相关性神经网络预测的节点电压超过给定的阈值,或所有台区的注入功率之和超过线路载流量的80%,此时台区注入功率之和为第w个整数数组顺序下最小光伏出力,计算随机生成的n 2个整数数组顺序下的最小光伏出力(台区注入功率之和),取最小值即满足现有网架场景的线路l最小光伏出力限制,记作p l2
S423.根据上述步骤中计算得到的最小光伏出力p l1 p l2 ,计算得到线路最小光伏出力限制p l-gf =min(p l1 , p l2 ),即两种计算结果的较小值为推荐的线路最小光伏出力限制,此时不会引起线路过电压、过电流问题,且无需改造线路。
S43.推荐的光伏并网方案:根据台区在10kV线路上的相对位置和推荐的最小光伏出力限制,提供两种场景下的光伏并网优化方案。
S431.考虑节点电压和负载限制的光伏并网方案:不考虑光伏并网顺序,t时刻线路l功率为p lt =1.732*u lt *I lt ,线路l全年功率最小值为p lt-min ,按照用户报装时序接入分布式光伏,线路l上分布式光伏接入总容量为S gf ,需满足S gf p l-gf + p lt-min
S432.光伏并网容量最大化方案:考虑分布式光伏并网容量最大化,按照S413计算得到的台区序列q r ,在光伏并网过程中,优先选择排序较后的台区,按照q r 序列从后向前的时序规划分布式光伏接入。此时可根据实际光伏接入规划,换算为台区注入功率输入台区功率和节点电压相关性神经网络,按照台区功率和节点电压相关性神经网络预测的节点电压不超过给定的阈值、且所有台区的注入功率之和不超过线路载流量的80%条件,重新核算线路l最小光伏出力限制阈值p l-gf ,并按照S gf p l-gf + p lt-min ,得到线路l分布式光伏可接入总容量。
如图2所示,本发明还提供一种基于节点电压约束的分布式光伏并网优化系统,包括数据获取模块、数据预处理模块、深度学习模块、光伏并网容量评估模块、结果输出模块。数据获取模块用于连接调度电能量管理系统(EMS)、用电信息采集系统、PMS2.0系统,获取需要的数据。数据预处理模块用于完成数据清洗、台区档位识别、数据转换、台区对线路电压差计算,得到输出给深度学习模块的数据。深度学习模块用于构建台区功率和节点电压相关性神经网络,建立台区注入功率与节点电压变化的关系。光伏并网容量评估模块基于训练好的深度学习模型,分析台区在10kV线路的相对位置,计算线路最小光伏出力限制,生成光伏并网方案。结果输出模块用于输出推荐的光伏并网方案。

Claims (8)

1.一种基于节点电压约束的分布式光伏并网优化方法,其特征是,包括以下具体步骤:
S1.数据获取:从调度电能量管理系统获取10kV线路电压、电流量测数据,t时刻线路l的电压为u lt ,电流为I lt ;从用电信息采集系统获取台区出口电压、电流、功率量测数据,t时刻第i个台区q i 的电压为u qit ,电流为I qit ,功率为p qit i=1,2,…,nn为台区数量;从PMS2.0系统获取线变关系台账、光伏用户台账;
S2.数据预处理:对获取的数据进行清洗,通过时间对齐,删除不可用数据;对台区档位进行识别并将出口电压换算至高压侧;考虑线路和台区电压量测数据维度不同,将台区电压换算为线电压;计算每一个时刻点台区对线路的电压差值;
S3.基于深度学习构建台区功率和节点电压相关性神经网络:基于深度学习方法,以BP神经网络为基础构建台区功率和节点电压相关性神经网络,将预处理得到的数据集分成训练集和测试集,求解各节点光伏出力与节点电压分布的关系,并对台区功率和节点电压相关性神经网络的实用性进行评估;
S4.推荐光伏并网方案:基于训练好的台区功率和节点电压相关性神经网络,计算10kV线路下各台区在线路的相对位置;基于台区在线路相对位置的排序,按特定的顺序向台区注入功率,直至出现节点电压越限或注入功率之和超过线路承载力,得到线路上最小光伏出力限制;根据台区在10kV线路上的相对位置和最小光伏出力限制,推荐光伏并网方案;
步骤S4具体过程如下:
S41.计算台区在10kV线路的相对位置:向训练好的台区功率和节点电压相关性神经网络中注入台区功率,以计算台区之间的相对位置;
S411.对于线路l,向接带的所有台区q={q 1 ,q 2 ,... , q i ,... ,q n }分别注入功率-ppl接带的台区最小容量;即台区功率和节点电压相关性神经网络的输入为台区注入功率矩 阵P
Figure 561382DEST_PATH_IMAGE001
Pn×n矩阵;
S412.不考虑线路首端功率和电压,线路上全部的功率流动来自于台区注入功率,利用 台区功率和节点电压相关性神经网络预测出线路上每个台区对线路首端的电压差预测值dU q ,即台区所在节点电压,台区功率和节点电压相关性神经网络的输出层为节点电压矩阵dU
Figure 744102DEST_PATH_IMAGE002
dUn×n矩阵;
每一组注入功率输入台区功率和节点电压相关性神经网络会得到一组对应的电压差预测结果向量,dU ij 是采用第j组注入功率时,第i个台区所在节点对线路首端的电压差预测值;
S413. 按照步骤S411设定的注入功率矩阵,当i=j时,第j组注入功率为-p,仅向第i个台区注入功率-p,预测第i个台区自身的电压差,dU ij 表示为dU ii ;节点电压矩阵对角线上的值dU ii 即向第i个台区注入功率时,第i个台区所在节点的电压,将所有台区按照对应的dU ii 由高到低排列,形成新的台区序列q r ,排列顺序即台区距线路首端相对位置的由远到近;
S42.计算最小光伏出力限制:按照S413计算得到的台区序列q r ,依次向台区注入可接入的最大功率,直至线路上有节点电压越限或注入功率之和超过线路承载力;
S421.按照S413计算得到的台区序列q r ,依次向台区注入功率并输入训练好的台区功率和节点电压相关性神经网络,直至台区功率和节点电压相关性神经网络预测的节点电压超过给定的阈值,或所有台区的注入功率之和超过线路载流量的设定比例,得到台区注入功率之和为线路l的最小光伏出力限制,记作p l1
S422.随机生成n 2个整数数组,每个整数数组内部按照升序排列,整数数组最大值和数组长度均不超过线路l接带的台区数量n;按照S413计算得到的台区序列q r ,按整数数组的顺序依次向台区注入功率,直至台区功率和节点电压相关性神经网络预测的节点电压超过给定的阈值,或所有台区的注入功率之和超过线路载流量的设定比例,取所有整数数组顺序下台区注入功率之和的最小值,得到线路l的最小光伏出力限制,记作p l2
S423.根据步骤S421和S422中计算得到的最小光伏出力p l1 p l2 ,计算得到线路最小光伏出力限制p l-gf =min(p l1 , p l2 ),即两种计算结果的较小值为推荐的线路最小光伏出力限制,此时不会引起线路过电压、过电流问题,且无需改造线路;
S43.推荐的光伏并网方案:根据台区在10kV线路上的相对位置和推荐的最小光伏出力限制,提供两种场景下的光伏并网优化方案。
2.根据权利要求1所述基于节点电压约束的分布式光伏并网优化方法,其特征是,步骤S2过程如下:
S21.数据清洗:考虑到线路、台区的数据时间不同,需先做时间对齐处理,删除不可用数据;
S22.台区档位识别:根据配变档位将获取的台区低压侧采集数据换算为高压侧数据;
S23.台区线电压换算:10kV线路电压为母线线电压,台区电压为相电压,需将台区电压换算为线电压;
S24.计算时刻t下线路上所有台区对线路首端的电压差。
3.根据权利要求2所述基于节点电压约束的分布式光伏并网优化方法,其特征是,步骤S22过程如下:
S221.取某时间段内,线路l在A相电流最小值时刻t min 对应的电压u lt-min ,和接带的所有台区q={q 1 ,q 2 ,..., q i ,...,q n }电压,形成台区电压序列u qt-min ={u q1t-min ,u q2t-min ,..., u qit-min ,...,u qnt-min },u qit-min 为A相电流最小值时刻t min i个台区电压;
S222.假设A相电流最小值时刻,各台区高压侧电压近似平均分布,计算各台区高压侧相电压与低压侧出口电压的比值,得到台区的电压比值,第i个台区q i 的电压比值k aqi =(u lt-min /1.732)/u qit-min ;计算每个台区的电压比值,形成电压比值序列k aq ={k aq1 ,k aq2 ,..., k aqi ,...,k aqn };
S223.将电压比值序列k aq 按照从大到小排列,取中值k aq-median ,计算中值比例系数k m =25/k aq-median ,令每个台区的中值化电压比值,第i个台区q i 的中值化电压比值k aqi-m =k aqi *k m
S224.对于k aqi-m ≥25.94的台区,令k aqi-m =26.25;对于k aqi-m ∈[25.31,25.94)的台区,令k aqi-m =25.625;对于k aqi-m ∈[24.69,25.31)的台区,令k aqi-m =25;对于k aqi-m ∈[24.06,24.69)的台区,令k aqi-m =24.375;对于k aqi-m <24.06的台区,令k aqi-m =23.75;
S225.将台区低压侧采集数据换算为高压侧电压:u qit-h =u qit *k aqi-m u qit-h 为第i个台区q i 的高压侧电压;
S226.按照步骤S221- S225的方法计算B相、C相档位,并换算为高压侧电压。
4.根据权利要求3所述基于节点电压约束的分布式光伏并网优化方法,其特征是,步骤S23中,由第i个台区q i 的线电压u’ qit =1.732*u qit-h 得到。
5.根据权利要求4所述基于节点电压约束的分布式光伏并网优化方法,其特征是,步骤S24中,第i个台区q i 对线路首端的电压差dU qit =u’ qit -u lt
6.根据权利要求5所述基于节点电压约束的分布式光伏并网优化方法,其特征是,步骤S3具体过程如下:
S31.对于线路l,将经过数据预处理的所有时间断面t=[t 1 ,t 2 ,...,t m ]下,t m 为第m个采集时点,线路l接带所有台区功率p t =[p q1t ,p q2t ,..., p qit ,...,p qnt ]作为输入,每个台区对线路首端的电压差dU t =[dU q1t ,dU q2t ,..., dU qit ,...,dU qnt ]作为输出,以BP神经网络为基础构建台区功率和节点电压相关性神经网络;
S32.训练台区功率和节点电压相关性神经网络:采用深度学习方法自学习台区功率和节点电压相关性神经网络参数,为台区功率和节点电压相关性神经网络添加隐藏层优化学习效果;
S33. 台区功率和节点电压相关性神经网络实用性评估:利用地区年负荷最大、最小和光照最强的日期范围内,所有10kV线路、台区的功率和电压差验证台区功率和节点电压相关性神经网络的实用性,一定比例光伏台区所在节点电压偏差不超过阈值时,台区功率和节点电压相关性神经网络的实用性通过评估,否则在步骤S32进一步优化台区功率和节点电压相关性神经网络训练过程。
7.根据权利要求1所述基于节点电压约束的分布式光伏并网优化方法,其特征是,步骤S43具体过程如下:
S431.考虑节点电压和负载限制的光伏并网方案:不考虑光伏并网顺序,t时刻线路l功率为p lt =1.732*u lt *I lt ,线路l全年功率最小值为p lt-min ,按照用户报装时序接入分布式光伏,线路l上分布式光伏接入总容量为S gf ,需满足S gf p l-gf + p lt-min
S432.光伏并网容量最大化方案:考虑分布式光伏并网容量最大化,按照S413计算得到的台区序列q r ,在光伏并网过程中,按照q r 序列从后向前的时序规划分布式光伏接入;根据实际光伏接入规划,换算为台区注入功率输入台区功率和节点电压相关性神经网络,按照台区功率和节点电压相关性神经网络预测的节点电压不超过给定的阈值、且所有台区的注入功率之和不超过线路载流量的设定比例的条件,重新核算线路l最小光伏出力限制阈值p l-gf ,并按照S gf p l-gf + p lt-min ,得到线路l分布式光伏可接入总容量。
8.一种用于实现权利要求1-7任意一项所述方法的基于节点电压约束的分布式光伏并网优化系统,其特征是,包括数据获取模块、数据预处理模块、深度学习模块、光伏并网容量评估模块、结果输出模块;数据获取模块用于连接调度电能量管理系统、用电信息采集系统、PMS2.0系统,获取需要的数据;数据预处理模块用于完成数据清洗、台区档位识别、数据转换、台区对线路电压差计算,得到输出给深度学习模块的数据;深度学习模块用于构建台区功率和节点电压相关性神经网络,建立台区注入功率与节点电压变化的关系;光伏并网容量评估模块基于训练好的深度学习模型,分析台区在10kV线路的相对位置,计算线路最小光伏出力限制,生成光伏并网方案;结果输出模块用于输出推荐的光伏并网方案。
CN202210679650.8A 2022-06-16 2022-06-16 基于节点电压约束的分布式光伏并网优化方法及系统 Active CN114784883B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210679650.8A CN114784883B (zh) 2022-06-16 2022-06-16 基于节点电压约束的分布式光伏并网优化方法及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210679650.8A CN114784883B (zh) 2022-06-16 2022-06-16 基于节点电压约束的分布式光伏并网优化方法及系统

Publications (2)

Publication Number Publication Date
CN114784883A CN114784883A (zh) 2022-07-22
CN114784883B true CN114784883B (zh) 2022-10-11

Family

ID=82420302

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210679650.8A Active CN114784883B (zh) 2022-06-16 2022-06-16 基于节点电压约束的分布式光伏并网优化方法及系统

Country Status (1)

Country Link
CN (1) CN114784883B (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2827701A1 (en) * 2013-09-23 2015-03-23 Sureshchandra B. Patel Methods of patel decoupled loadlow computation for electrical power system
CN110896231A (zh) * 2019-11-13 2020-03-20 国网经济技术研究院有限公司 一种扶贫区配电网接纳分布式光伏能力计算方法及系统
CN111384726A (zh) * 2020-01-21 2020-07-07 国网安徽省电力有限公司六安供电公司 一种高渗透率光伏配电网分区调压方法
CN112018755A (zh) * 2020-07-03 2020-12-01 国网浙江省电力有限公司电力科学研究院 基于循环神经网络的光伏配电网无功电压预测方法及系统
CN112564098A (zh) * 2020-12-02 2021-03-26 国网浙江省电力有限公司电力科学研究院 基于时间卷积神经网络的高比例光伏配电网电压预测方法
CN112636396A (zh) * 2020-12-24 2021-04-09 国网河北省电力有限公司电力科学研究院 光伏配电网控制方法及终端
CN112711902A (zh) * 2020-12-15 2021-04-27 国网江苏省电力有限公司淮安供电分公司 一种基于蒙特卡洛采样和深度学习的电网电压计算方法
CN113937820A (zh) * 2021-09-03 2022-01-14 广东电网有限责任公司 一种基于深度学习的主动配电网优化调度方法
CN114123294A (zh) * 2021-10-22 2022-03-01 杭州电子科技大学 考虑三相不平衡的多目标光伏单相并网容量规划方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2827701A1 (en) * 2013-09-23 2015-03-23 Sureshchandra B. Patel Methods of patel decoupled loadlow computation for electrical power system
CN110896231A (zh) * 2019-11-13 2020-03-20 国网经济技术研究院有限公司 一种扶贫区配电网接纳分布式光伏能力计算方法及系统
CN111384726A (zh) * 2020-01-21 2020-07-07 国网安徽省电力有限公司六安供电公司 一种高渗透率光伏配电网分区调压方法
CN112018755A (zh) * 2020-07-03 2020-12-01 国网浙江省电力有限公司电力科学研究院 基于循环神经网络的光伏配电网无功电压预测方法及系统
CN112564098A (zh) * 2020-12-02 2021-03-26 国网浙江省电力有限公司电力科学研究院 基于时间卷积神经网络的高比例光伏配电网电压预测方法
CN112711902A (zh) * 2020-12-15 2021-04-27 国网江苏省电力有限公司淮安供电分公司 一种基于蒙特卡洛采样和深度学习的电网电压计算方法
CN112636396A (zh) * 2020-12-24 2021-04-09 国网河北省电力有限公司电力科学研究院 光伏配电网控制方法及终端
CN113937820A (zh) * 2021-09-03 2022-01-14 广东电网有限责任公司 一种基于深度学习的主动配电网优化调度方法
CN114123294A (zh) * 2021-10-22 2022-03-01 杭州电子科技大学 考虑三相不平衡的多目标光伏单相并网容量规划方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
基于深度学习的主动配电网电压优化调控策略;张昊一;《中国优秀硕士学位论文全文数据库 工程科技Ⅱ辑》;20220115;全文 *
基于深度学习的高比例分布式光伏配电网电压预测研究;杨镇宁;《中国优秀硕士学位论文全文数据库 工程科技Ⅱ辑》;20220115;全文 *
高比例光伏接入的配电网电压优化调控方法研究;段向梅;《中国优秀硕士学位论文全文数据库 工程科技Ⅱ辑》;20200615;全文 *

Also Published As

Publication number Publication date
CN114784883A (zh) 2022-07-22

Similar Documents

Publication Publication Date Title
Khatod et al. Analytical approach for well-being assessment of small autonomous power systems with solar and wind energy sources
CN113595158B (zh) 配售电竞争态势下区域配电网的供电能力评估方法
CN107301472B (zh) 基于场景分析法和电压调节策略的分布式光伏规划方法
CN107679658B (zh) 一种高比例清洁能源接入下的输电网规划方法
Shadmand et al. Multi-objective optimization and design of photovoltaic-wind hybrid system for community smart DC microgrid
CN107611966A (zh) 一种考虑差异可靠性的有源配电网供电能力评估方法
Ahmadi et al. A multi-objective framework for distributed energy resources planning and storage management
CN109190792B (zh) 一种确定配电网中分布式电源的配置的方法和系统
CN109149651A (zh) 一种计及调压辅助服务收益的光储系统优化运行方法
Xu et al. Power supply capability evaluation of distribution systems with distributed generations under differentiated reliability constraints
CN111950900B (zh) 一种电力系统源网荷储本质安全风险评估方法
CN110610303B (zh) 一种计及源-荷不确定性的直流配电网可靠性评估方法
CN106529737A (zh) 一种配电网供给侧调峰电源规划布局方法
CN111009914A (zh) 一种面向主动配电网的储能装置选址定容方法
Wang et al. Day-ahead allocation of operation reserve in composite power systems with large-scale centralized wind farms
Zhang et al. Reliability evaluation of high permeability renewable energy distribution network considering energy storage charge and discharge strategy
CN114784883B (zh) 基于节点电压约束的分布式光伏并网优化方法及系统
Jiang et al. Research on nodal wind power values and optimal accommodation based on locational marginal price
CN109492809B (zh) 一种基于节点电价的风电场价值评估方法
CN117094568A (zh) 一种基于碳流追踪的配电网用户减碳贡献分配方法
Wang et al. Optimal distribution network expansion planning incorporating distributed generation
Wang et al. A Precise Carbon Emission Model on Electricity Consumption Side with Carbon Emission Flow Theory
Koutroulis et al. Optimal design and economic evaluation of a battery energy storage system for the maximization of the energy generated by wind farms in isolated electric grids
Xiao et al. Operation Duration Assessment of Isolated Island Considering Demand Side Response
Lyu et al. Two-stage Stochastic Coordinated Scheduling of Integrated Gas-electric Distribution Systems Considering Network Reconfiguration

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant