CN114774984A - CoTPP-COFs/CNT电催化剂的制备方法及其应用 - Google Patents

CoTPP-COFs/CNT电催化剂的制备方法及其应用 Download PDF

Info

Publication number
CN114774984A
CN114774984A CN202210478351.8A CN202210478351A CN114774984A CN 114774984 A CN114774984 A CN 114774984A CN 202210478351 A CN202210478351 A CN 202210478351A CN 114774984 A CN114774984 A CN 114774984A
Authority
CN
China
Prior art keywords
tetraphenylporphyrin
cobalt
cofs
cotpp
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210478351.8A
Other languages
English (en)
Other versions
CN114774984B (zh
Inventor
姜毅
李浩然
夏立新
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Liaoning University
Original Assignee
Liaoning University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Liaoning University filed Critical Liaoning University
Priority to CN202210478351.8A priority Critical patent/CN114774984B/zh
Publication of CN114774984A publication Critical patent/CN114774984A/zh
Application granted granted Critical
Publication of CN114774984B publication Critical patent/CN114774984B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • C25B11/095Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds at least one of the compounds being organic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/055Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material
    • C25B11/057Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material consisting of a single element or compound
    • C25B11/065Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/11Homopolymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及CoTPP‑COFs/CNT电催化剂的制备方法和应用。制备方法包括如下步骤:1)将吡咯和苯甲醛溶于丙酸中加热回流,制备四苯基卟啉;2)将四苯基卟啉和六水氯化钴在N2气氛下加热回流,制备四苯基卟啉钴;3)将活化后的无水三氯化铝和四苯基卟啉钴在N2气氛下加热回流,制备四苯基卟啉钴共价有机框架材料;4)将四苯基卟啉钴共价有机框架材料和多壁碳纳米管混合液均匀覆盖在碳纸两面,烘干后得到CoTPP‑COFs/CNT电催化剂。本发明制备的CoTPP‑COFs/CNT电催化剂具有较强的机械强度以及较好的导电性,应用在电催化环氧化反应中表现出较高的电催化活性。

Description

CoTPP-COFs/CNT电催化剂的制备方法及其应用
技术领域
本发明属于电催化材料技术领域,具体涉及CoTPP-COFs/CNT电催化剂的制备方法及其应用。
背景技术
对于电化学和化学过程来说,激活分子氧以进行受控氧化是一个理想和有用的目标,在温和的条件下进行有机化合物的氧化可以使许多工业过程变得更加可持续。以每年数百万吨的规模进行的烯烃环氧化,为化学工业以及精细化学品和药物提供了各种重要的构建模块。对于化学过程,进行环氧化反应通常需要苛刻的反应条件或使用合成氧化剂,在这些条件下不能容忍氧化敏感的官能团,且高成本高能耗不具有经济效益性。电化学过程原位生成环氧化产物是一种替代解决方案,水分子由一个氧原子和两个氢原子组成,且水在地球上储量丰富,是最合适的氧源。因此,通过电化学以水中的氧为氧源,在阳极实现底物的直接或间接活化,生成相应的所需产物,同时,伴随的质子在阴极还原导致氢气的形成成为一种具有挑战性但环境友好的构建各种功能分子的方法。
COFs是通过共价键链接而形成的晶态多孔有机框架材料,具有可预测的结构、高稳定性和孔隙率。单独的COFs在电催化方面性能并不是十分出色,效率相对较低,这可能主要归因于COFs导电性差,导致分子间电子传输效率低,致使活性不能很好的表现。因此,为解决这些问题,设计和构筑COFs基复合材料成为了理想的候选。在众多的功能纳米材料中,碳纳米管成为了一个最有希望的候选,由于其具有出色的物理性质,包括强的机械强度及导电性,可以为电子的传输提供一个理想的通道。
发明内容
为解决上述问题,本发明提供CoTPP-COFs/CNT电催化剂的制备方法及其应用。
本发明采用的技术方案为:
CoTPP-COFs/CNT电催化剂的制备方法,包括如下步骤:
1)四苯基卟啉的制备:将吡咯和苯甲醛溶于丙酸中,加热回流,自然冷却至室温后,将溶液进行抽滤得固体粉末,用甲醇抽滤洗涤三次得紫色粉末,置于60℃烘箱内干燥过夜,得四苯基卟啉粉末;
2)四苯基卟啉钴的制备:将步骤1)得到的四苯基卟啉粉末溶于45mL丙酮中,将六水氯化钴溶于5mL丙酮中,将两种溶液混合均匀,磁力搅拌30min,将混合溶液在N2气氛下加热回流,自然冷却至室温后,抽滤除去溶剂,用正戊烷抽滤洗涤三次得固体粉末,置于60℃烘箱内干燥过夜,得四苯基卟啉钴粉末;
3)四苯基卟啉钴多孔有机框架材料的制备:将774.25mg无水三氯化铝溶于15mL新蒸馏的二氯甲烷中,N2气氛下搅拌2h,得活化后的无水三氯化铝溶液;将300mg步骤2)得到的四苯基卟啉钴粉末溶于25mL新蒸馏的二氯甲烷中,得四苯基卟啉钴溶液;通过注射器将活化后的无水三氯化铝溶液注入四苯基卟啉钴溶液中,N2气氛下加热回流,自然冷却至室温后,抽滤除去溶剂,得固体粉末;将所得固体粉末依次溶于乙醇、N,N-二甲基甲酰胺、去离子水、四氢呋喃溶剂中搅拌,每种溶剂每天抽滤三次,隔天更换溶剂,共抽滤四天;抽滤完后,将所得固体粉末先以二氯甲烷为蒸馏溶剂进行索氏提取36h,然后将蒸馏溶剂更换为丙酮进行索氏提取36h;将索氏提取后的样品在50℃下真空干燥24h,得四苯基卟啉钴共价有机框架材料;
4)CoTPP-COFs/CNT电催化剂的制备:将步骤3)得到的四苯基卟啉钴共价有机框架材料和预处理后的多壁碳纳米管溶于N-N二甲基甲酰胺中,超声30min使混合液分散均匀,取10μL混合液滴在预处理后的碳纸的一表面,在50℃烘箱内干燥半小时后取出碳纸,再在碳纸的另一表面滴加10μL混合液,直至混合液在碳纸两表面覆盖均匀,将碳纸置于50℃烘箱内干燥半小时后取出,得到CoTPP-COFs/CNT电催化剂。
进一步的,上述的制备方法,步骤1)中,所述吡咯和苯甲醛的摩尔比为27:28。
进一步的,上述的制备方法,步骤1)中,所述加热回流的条件:温度为160℃,时间为2h。
进一步的,上述的制备方法,步骤2)中,所述四苯基卟啉粉末和六水氯化钴的摩尔比为1:1。
进一步的,上述的制备方法,步骤2)中,所述加热回流的条件:温度为80℃,时间为24h。
进一步的,上述的制备方法,步骤3)中,所述加热回流的条件:温度为70℃,时间为24h。
进一步的,上述的制备方法,步骤4)中,所述四苯基卟啉钴共价有机框架材料和预处理后的多壁碳纳米管的质量比为1:1。
进一步的,上述的制备方法,步骤4)中,所述预处理后的多壁碳纳米管的制备方法如下:将0.2g多壁碳纳米管溶于50mL 98%的浓硫酸中,磁力搅拌90min,在搅拌的同时用滴管往上述溶液中加入7mL磷酸,通过温度计观察当溶液温度升至70℃时,每隔1h向溶液中加入0.2g高锰酸钾,共加入0.8g,待溶液冷却至室温后加入10mL 30wt%的过氧化氢,继续搅拌60min,反应完成后,使用去离子水多次离心洗涤直至pH至7,然后10000r/min离心20min,得到轻度氧化的多壁碳纳米管,在-20℃下冷冻干燥过夜,得到预处理后的多壁碳纳米管。
进一步的,上述的制备方法,步骤4)中,所述预处理后的碳纸的制备方法如下:将碳纸裁剪为1cm×2cm的块状,置于98%的浓硫酸中浸泡半小时后取出,用去离子水和无水乙醇各冲洗三次,放入50℃烘箱内干燥半小时,然后在400℃的马弗炉中煅烧5h,冷却至室温后取出,即得预处理后的碳纸。
上述任意一项所述的制备方法制备的CoTPP-COFs/CNT电催化剂在电催化环氧化反应中的应用。
本发明的有益效果为:
1、本发明提供的CoTPP-COFs/CNT电催化剂具有较强的机械强度以及较好的导电性,应用在电催化环氧化反应中表现出较高的电催化活性。
2、本发明提供的CoTPP-COFs/CNT电催化剂可在温和的反应条件下,以水作为氢氧源,阴极生成氢气,阳极生成高附加值产品环氧环辛烷。
附图说明
图1为四苯基卟啉(TPP)的制备反应式。
图2为四苯基卟啉钴(CoTPP)的制备反应式。
图3为四苯基卟啉钴多孔有机框架材料(CoTPP-COFs)的制备反应式。
图4为CoTPP-COFs、CNT和CoTPP-COFs/CNT的扫描电镜图,其中,a.CoTPP-COFs,b.CNT,c.CoTPP-COFs/CNT。
图5为CoTPP-COFs/CNT在有无环辛烯和水的条件下测得的LSV图。
图6为CoTPP-COFs/CNT、CNT、CoTPP-COFs和CP电催化环辛烯的LSV图。
具体实施方式
实施例1 CoTPP-COFs/CNT电催化剂的制备
1)四苯基卟啉(TPP)的制备:将0.027mol吡咯和0.028mol苯甲醛溶于100mL丙酸中,160℃回流2h,自然冷却至室温后,将溶液进行抽滤得固体粉末,用甲醇抽滤洗涤三次得紫色粉末,置于60℃烘箱内干燥过夜,得四苯基卟啉(TPP)粉末;
2)四苯基卟啉钴(CoTPP)的制备:将1mmol步骤1)得到的TPP粉末溶于45mL丙酮中,将1mmol六水氯化钴溶于5mL丙酮中,将两种溶液混合均匀,磁力搅拌30min,将混合溶液在N2气氛下80℃回流24h,自然冷却至室温后,抽滤除去溶剂,用正戊烷抽滤洗涤三次得固体粉末,置于60℃烘箱内干燥过夜,得四苯基卟啉钴(CoTPP)粉末;
3)四苯基卟啉钴多孔有机框架材料(CoTPP-COFs)的制备:将774.25mg无水三氯化铝溶于15mL新蒸馏的二氯甲烷中,N2气氛下搅拌2h,得活化后的无水三氯化铝溶液;将300mg步骤2)得到的CoTPP粉末溶于25mL新蒸馏的二氯甲烷中,得四苯基卟啉钴溶液;通过注射器将活化后的无水三氯化铝溶液注入四苯基卟啉钴溶液中,N2气氛下70℃回流24h,自然冷却至室温后,抽滤除去溶剂,得固体粉末;将所得固体粉末依次溶于乙醇、N,N-二甲基甲酰胺、去离子水、四氢呋喃溶剂中搅拌,每种溶剂每天抽滤三次,隔天更换溶剂,共抽滤四天;抽滤完后,将所得固体粉末先以二氯甲烷为蒸馏溶剂进行索氏提取36h,然后将蒸馏溶剂更换为丙酮进行索氏提取36h;将索氏提取后的样品在50℃下真空干燥24h,得四苯基卟啉钴共价有机框架材料(CoTPP-COFs);
4)多壁碳纳米管的预处理:将0.2g多壁碳纳米管溶于50mL 98%的浓硫酸中,磁力搅拌90min,在搅拌的同时用滴管往上述溶液中加入7mL磷酸,通过温度计观察当溶液温度升至70℃时,每隔1小时向溶液中加入0.2g高锰酸钾,共加入0.8g,待溶液冷却至室温后加入10mL 30wt%的过氧化氢,继续搅拌60min,反应完成后,使用去离子水多次离心洗涤直至pH至7,然后10000r/min离心20min,得到轻度氧化的多壁碳纳米管,在-20℃下冷冻干燥过夜,得到预处理后的多壁碳纳米管(CNT);
5)碳纸的预处理:将碳纸裁剪为1cm×2cm的块状,置于98%的浓硫酸中浸泡半小时后取出,用去离子水和无水乙醇各冲洗三次,放入50℃烘箱内干燥半小时,然后在400℃的马弗炉中煅烧5h,冷却至室温后取出,即得预处理后的碳纸(CP);
6)CoTPP-COFs/CNT电催化剂的制备:将2mg步骤3)得到的CoTPP-COFs和2mg步骤4)得到的预处理后的多壁碳纳米管溶于1mL N-N二甲基甲酰胺中,超声30min使混合液分散均匀,取10μL混合液滴在步骤5)得到的预处理后的碳纸的一表面,在50℃烘箱内干燥半小时后取出碳纸,再在碳纸的另一表面滴加10μL混合液,直至混合液在碳纸两表面覆盖均匀,将碳纸置于50℃烘箱内干燥半小时后取出,得到CoTPP-COFs/CNT电催化剂。
利用扫描电子显微镜(SEM)表征了CoTPP-COFs/CNT电催化剂的形貌。图4a为CoTPP-COFs的SEM图像,可以看出CoTPP-COFs呈现出无规则块状堆积结构;图4b为CNT的SEM图像,多壁碳纳米管的直径约为20nm,长度约为10-20μm,呈现出弯曲聚集的管状结构;图4c为CoTPP-COFs/CNT的SEM图像,从图中可以看出多壁碳纳米管与CoTPP-COFs相结合,并附着在CoTPP-COFs的表面,证明CoTPP-COFs/CNT的成功构建。
实施例2 CoTPP-COFs/CNT电催化剂的应用
所有的电化学性能测试都是在一个具有CHI760电化学工作站的三电极体系的H型电解池中进行的。H型电解池中间用Nafion117质子膜分隔开,阳极室中加入包含0.2M环辛烯和/或12M去离子水和0.1M四丁基四氟硼酸胺的乙腈溶液,保证溶液总体积和为15mL,阴极室加入15mL 0.1M四丁基四氟硼酸胺的乙腈溶液。
线性扫描伏安法(LSV)在室温下以50mV/s的速率进行扫描,以实施例1制备的CoTPP-COFs/CNT为工作电极,5×10mm铂网为对电极,Ag/AgCl电极为参比电极,电解池密封后通入高纯氩气30min以除去装置内的氧气,进行电化学性能测试。
为探究CoTPP-COFs/CNT的电催化环氧化性能,在有无12M H2O、有无0.2M环辛烯和扫描速率为50mV/s的测试条件下,进行了线性扫描循环伏安测试,其结果如图5所示。从图5中可以看出,在外加电位范围内,水和环辛烯共存的条件下呈现出最大的电流密度,电解液中发生的是水氧化和环辛烯氧化反应。电解液中加入水要比未加水的电流密度要高,这是由于在电解池除氧后,没有水作为氧源,环辛烯很难进行氧化。因此,在电解液中没有水的情况下,CoTPP-COFs/CNT对环辛烯的催化效果很低,说明水是氧化环辛烯必不可少的因素。
在12M H2O和0.2M环辛烯的测试条件下,测试了CoTPP-COFs/CNT、CNT、CoTPP-COFs、CP电催化环辛烯的效果。图6中的LSV曲线表明,CoTPP-COFs/CNT具有最高的电流密度,单独的CoTPP-COFs的催化效果并不明显,可能是由于COFs材料本身导电性差的缘由,由于碳纳米管的多孔缺陷结构,与CoTPP-COFs结合还可提高COFs材料的导电性,效果更好,提高了催化活性。

Claims (10)

1.CoTPP-COFs/CNT电催化剂的制备方法,其特征在于,包括如下步骤:
1)四苯基卟啉的制备:将吡咯和苯甲醛溶于丙酸中,加热回流,自然冷却至室温后,将溶液进行抽滤得固体粉末,用甲醇抽滤洗涤三次得紫色粉末,置于60℃烘箱内干燥过夜,得四苯基卟啉粉末;
2)四苯基卟啉钴的制备:将步骤1)得到的四苯基卟啉粉末溶于45mL丙酮中,将六水氯化钴溶于5mL丙酮中,将两种溶液混合均匀,磁力搅拌30min,将混合溶液在N2气氛下加热回流,自然冷却至室温后,抽滤除去溶剂,用正戊烷抽滤洗涤三次得固体粉末,置于60℃烘箱内干燥过夜,得四苯基卟啉钴粉末;
3)四苯基卟啉钴多孔有机框架材料的制备:将774.25mg无水三氯化铝溶于15mL新蒸馏的二氯甲烷中,N2气氛下搅拌2h,得活化后的无水三氯化铝溶液;将300mg步骤2)得到的四苯基卟啉钴粉末溶于25mL新蒸馏的二氯甲烷中,得四苯基卟啉钴溶液;通过注射器将活化后的无水三氯化铝溶液注入四苯基卟啉钴溶液中,N2气氛下加热回流,自然冷却至室温后,抽滤除去溶剂,得固体粉末;将所得固体粉末依次溶于乙醇、N,N-二甲基甲酰胺、去离子水、四氢呋喃溶剂中搅拌,每种溶剂每天抽滤三次,隔天更换溶剂,共抽滤四天;抽滤完后,将所得固体粉末先以二氯甲烷为蒸馏溶剂进行索氏提取36h,然后将蒸馏溶剂更换为丙酮进行索氏提取36h;将索氏提取后的样品在50℃下真空干燥24h,得四苯基卟啉钴共价有机框架材料;
4)CoTPP-COFs/CNT电催化剂的制备:将步骤3)得到的四苯基卟啉钴共价有机框架材料和预处理后的多壁碳纳米管溶于N-N二甲基甲酰胺中,超声30min使混合液分散均匀,取10μL混合液滴在预处理后的碳纸的一表面,在50℃烘箱内干燥半小时后取出碳纸,再在碳纸的另一表面滴加10μL混合液,直至混合液在碳纸两表面覆盖均匀,将碳纸置于50℃烘箱内干燥半小时后取出,得到CoTPP-COFs/CNT电催化剂。
2.根据权利要求1所述的制备方法,其特征在于,步骤1)中,所述吡咯和苯甲醛的摩尔比为27:28。
3.根据权利要求1所述的制备方法,其特征在于,步骤1)中,所述加热回流的条件:温度为160℃,时间为2h。
4.根据权利要求1所述的制备方法,其特征在于,步骤2)中,所述四苯基卟啉粉末和六水氯化钴的摩尔比为1:1。
5.根据权利要求1所述的制备方法,其特征在于,步骤2)中,所述加热回流的条件:温度为80℃,时间为24h。
6.根据权利要求1所述的制备方法,其特征在于,步骤3)中,所述加热回流的条件:温度为70℃,时间为24h。
7.根据权利要求1所述的制备方法,其特征在于,步骤4)中,所述四苯基卟啉钴共价有机框架材料和预处理后的多壁碳纳米管的质量比为1:1。
8.根据权利要求1所述的制备方法,其特征在于,步骤4)中,所述预处理后的多壁碳纳米管的制备方法如下:将0.2g多壁碳纳米管溶于50mL 98%的浓硫酸中,磁力搅拌90min,在搅拌的同时用滴管往上述溶液中加入7mL磷酸,通过温度计观察当溶液温度升至70℃时,每隔1h向溶液中加入0.2g高锰酸钾,共加入0.8g,待溶液冷却至室温后加入10mL 30wt%的过氧化氢,继续搅拌60min,反应完成后,使用去离子水多次离心洗涤直至pH至7,然后10000r/min离心20min,得到轻度氧化的多壁碳纳米管,在-20℃下冷冻干燥过夜,得到预处理后的多壁碳纳米管。
9.根据权利要求1所述的制备方法,其特征在于,步骤4)中,所述预处理后的碳纸的制备方法如下:将碳纸裁剪为1cm×2cm的块状,置于98%的浓硫酸中浸泡半小时后取出,用去离子水和无水乙醇各冲洗三次,放入50℃烘箱内干燥半小时,然后在400℃的马弗炉中煅烧5h,冷却至室温后取出,即得预处理后的碳纸。
10.权利要求1-9任意一项所述的制备方法制备的CoTPP-COFs/CNT电催化剂在电催化环氧化反应中的应用。
CN202210478351.8A 2022-05-05 2022-05-05 CoTPP-COFs/CNT电催化剂的制备方法及其应用 Active CN114774984B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210478351.8A CN114774984B (zh) 2022-05-05 2022-05-05 CoTPP-COFs/CNT电催化剂的制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210478351.8A CN114774984B (zh) 2022-05-05 2022-05-05 CoTPP-COFs/CNT电催化剂的制备方法及其应用

Publications (2)

Publication Number Publication Date
CN114774984A true CN114774984A (zh) 2022-07-22
CN114774984B CN114774984B (zh) 2023-11-10

Family

ID=82435749

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210478351.8A Active CN114774984B (zh) 2022-05-05 2022-05-05 CoTPP-COFs/CNT电催化剂的制备方法及其应用

Country Status (1)

Country Link
CN (1) CN114774984B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1100093A (zh) * 1993-09-07 1995-03-15 山西大学 meso-四苯基卟啉类化合物的制备方法
CN109046460A (zh) * 2018-08-03 2018-12-21 湖南大学 一种用于电催化还原硝基苯的复合电催化剂
CN109651381A (zh) * 2018-12-20 2019-04-19 广州市绿盈环保科技有限公司 一种制备单金属卟啉化合物的方法及装置
CN110746601A (zh) * 2019-10-11 2020-02-04 东华大学 一种卟啉基聚吡咯共轭微孔聚合物及其制备方法
CN111841645A (zh) * 2020-08-31 2020-10-30 江南大学 一种碳纳米管与共价有机框架复合的oer催化剂
CN113563551A (zh) * 2021-06-24 2021-10-29 山东师范大学 一种基于金属卟啉的共价有机框架材料及其制备方法与应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1100093A (zh) * 1993-09-07 1995-03-15 山西大学 meso-四苯基卟啉类化合物的制备方法
CN109046460A (zh) * 2018-08-03 2018-12-21 湖南大学 一种用于电催化还原硝基苯的复合电催化剂
CN109651381A (zh) * 2018-12-20 2019-04-19 广州市绿盈环保科技有限公司 一种制备单金属卟啉化合物的方法及装置
CN110746601A (zh) * 2019-10-11 2020-02-04 东华大学 一种卟啉基聚吡咯共轭微孔聚合物及其制备方法
CN111841645A (zh) * 2020-08-31 2020-10-30 江南大学 一种碳纳米管与共价有机框架复合的oer催化剂
CN113563551A (zh) * 2021-06-24 2021-10-29 山东师范大学 一种基于金属卟啉的共价有机框架材料及其制备方法与应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ALEKSEI N. MARIANOV ET AL.: ""Modeling and Experimental Study of the Electron Transfer Kinetics for Non-ideal Electrodes Using Variable-Frequency Square Wave Voltammetry"" *

Also Published As

Publication number Publication date
CN114774984B (zh) 2023-11-10

Similar Documents

Publication Publication Date Title
Ma et al. Carbon nanotubes with rich pyridinic nitrogen for gas phase CO2 electroreduction
Yu et al. Metal-free carbon nanomaterials become more active than metal catalysts and last longer
Yuan et al. Electrochemical reduction of CO2 at metal-free N-functionalized graphene oxide electrodes
Feng et al. 2-Methylimidazole as a nitrogen source assisted synthesis of a nano-rod-shaped Fe/FeN@ NC catalyst with plentiful FeN active sites and enhanced ORR activity
Li et al. Metal-free nitrogen-doped hollow carbon spheres synthesized by thermal treatment of poly (o-phenylenediamine) for oxygen reduction reaction in direct methanol fuel cell applications
Wen et al. Porous nitrogen-doped carbon nanosheet on graphene as metal-free catalyst for oxygen reduction reaction in air-cathode microbial fuel cells
Song et al. Cobalt oxide/nanocarbon hybrid materials as alternative cathode catalyst for oxygen reduction in microbial fuel cell
Peng et al. NH3-activated fullerene derivative hierarchical microstructures to porous Fe3O4/NC for oxygen reduction reaction and Zn-air battery
Wang et al. Novel g-C3N4 assisted metal organic frameworks derived high efficiency oxygen reduction catalyst in microbial fuel cells
Tang et al. Phosphorus-doped molybdenum carbide/MXene hybrid architectures for upgraded hydrogen evolution reaction performance over a wide pH range
Liu et al. Controllable synthesis of nitrogen-doped carbon nanotubes derived from halloysite-templated polyaniline towards nonprecious ORR catalysts
Zhang et al. A pioneering melamine foam-based electrode via facile synthesis as prospective direction for vanadium redox flow batteries
Chen et al. Influence of carbon precursors on the structure, composition, and oxygen reduction reaction performance of nitrogen-doped carbon materials
Gong et al. Silk fibroin-derived carbon aerogels embedded with copper nanoparticles for efficient electrocatalytic CO2-to-CO conversion
Lai et al. Calcined polyaniline–iron composite as a high efficient cathodic catalyst in microbial fuel cells
Yang et al. Platinum/nitrogen-doped carbon/carbon cloth: a bifunctional catalyst for the electrochemical reduction and carboxylation of CO 2 with excellent efficiency
Luo et al. Boosting the primary Zn–air battery oxygen reduction performance with mesopore-dominated semi-tubular doped-carbon nanostructures
Zhang et al. Preparation of Pt/(Ti3C2Tx) y-(MWCNTs) 1-y electrocatalysts via a facile and scalable solvothermal strategy for high-efficiency methanol oxidation
CN114032576A (zh) 一种缺陷纳米纤维碳载体耦合铁单原子催化剂的制备方法
Deng et al. Municipal sludge-derived carbon dots-decorated, N-doped hierarchical biocarbon for the electrochemical reduction of carbon dioxide
Chen et al. Enhanced electrochemical performance in microbial fuel cell with carbon nanotube/NiCoAl-layered double hydroxide nanosheets as air-cathode
Yin et al. One-step prepared prussian blue/porous carbon composite derives highly efficient Fe–N–C catalyst for oxygen reduction
Wang et al. Hierarchical molybdenum carbide/N-doped carbon as efficient electrocatalyst for hydrogen evolution reaction in alkaline solution
Miao et al. A bio-inspired N-doped porous carbon electrocatalyst with hierarchical superstructure for efficient oxygen reduction reaction
Hu et al. Urotropine-triggered multi-reactive sites in carbon nanotubes towards efficient electrochemical hydrogen peroxide synthesis

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant