CN114774413A - 斑马鱼排卵障碍模型的构建方法、检测方法及应用 - Google Patents

斑马鱼排卵障碍模型的构建方法、检测方法及应用 Download PDF

Info

Publication number
CN114774413A
CN114774413A CN202210271728.2A CN202210271728A CN114774413A CN 114774413 A CN114774413 A CN 114774413A CN 202210271728 A CN202210271728 A CN 202210271728A CN 114774413 A CN114774413 A CN 114774413A
Authority
CN
China
Prior art keywords
zebra fish
sgrna
model
seq
gene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210271728.2A
Other languages
English (en)
Other versions
CN114774413B (zh
Inventor
张晓彦
侯吉伦
王桂兴
韩甜
刘玉峰
何忠伟
王玉芬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BEIDAIHE CENTRAL EXPERIMENTAL STATION CHINESE ACADEMY OF FISHERY SCIENCES
Original Assignee
BEIDAIHE CENTRAL EXPERIMENTAL STATION CHINESE ACADEMY OF FISHERY SCIENCES
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BEIDAIHE CENTRAL EXPERIMENTAL STATION CHINESE ACADEMY OF FISHERY SCIENCES filed Critical BEIDAIHE CENTRAL EXPERIMENTAL STATION CHINESE ACADEMY OF FISHERY SCIENCES
Priority to CN202210271728.2A priority Critical patent/CN114774413B/zh
Publication of CN114774413A publication Critical patent/CN114774413A/zh
Application granted granted Critical
Publication of CN114774413B publication Critical patent/CN114774413B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • C12N15/1137Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing against enzymes
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
    • A01K67/027New or modified breeds of vertebrates
    • A01K67/0275Genetically modified vertebrates, e.g. transgenic
    • A01K67/0276Knock-out vertebrates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/0004Screening or testing of compounds for diagnosis of disorders, assessment of conditions, e.g. renal clearance, gastric emptying, testing for diabetes, allergy, rheuma, pancreas functions
    • A61K49/0008Screening agents using (non-human) animal models or transgenic animal models or chimeric hosts, e.g. Alzheimer disease animal model, transgenic model for heart failure
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/873Techniques for producing new embryos, e.g. nuclear transfer, manipulation of totipotent cells or production of chimeric embryos
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/89Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation using microinjection
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0071Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/22Ribonucleases RNAses, DNAses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y114/00Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14)
    • C12Y114/14Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14) with reduced flavin or flavoprotein as one donor, and incorporation of one atom of oxygen (1.14.14)
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2227/00Animals characterised by species
    • A01K2227/40Fish
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2267/00Animals characterised by purpose
    • A01K2267/03Animal model, e.g. for test or diseases
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/20Type of nucleic acid involving clustered regularly interspaced short palindromic repeats [CRISPRs]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/124Animal traits, i.e. production traits, including athletic performance or the like

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Environmental Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Endocrinology (AREA)
  • Pathology (AREA)
  • Rheumatology (AREA)
  • Toxicology (AREA)
  • Urology & Nephrology (AREA)
  • Epidemiology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Public Health (AREA)
  • Diabetes (AREA)
  • Animal Husbandry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Immunology (AREA)
  • Virology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明提供了斑马鱼排卵障碍模型的构建方法、检测方法及应用,涉及基因工程技术领域。本发明提供了用于特异性敲除斑马鱼cyp21a2基因的sgRNA,通过CRISPR/Cas9技术构建并选育出cyp21a2基因缺失型斑马鱼,获得了斑马鱼排卵障碍模型。本发明所构建的斑马鱼排卵障碍模型同时具备高雄激素和高促黄体激素的内分泌特征,为深入解析内分泌激素调控排卵机制研究提供了良好的模型材料。

Description

斑马鱼排卵障碍模型的构建方法、检测方法及应用
技术领域
本发明涉及基因工程技术领域,尤其是涉及斑马鱼排卵障碍模型的构建方法、检测方法及应用。
背景技术
排卵障碍包括稀发排卵和无排卵,占不孕症患者病因的25%,其病因复杂,准确定位及评估排卵障碍发病机制是有效治疗的关键(闫阳等,2021)。内分泌失调是多种排卵障碍的主要表现,包括以高雄激素为特征的多囊卵巢综合征,和以高促黄体激素为特征的卵巢不敏感综合征(Ruan X等,2018;Manna PR等,2016和Zhang Y等,2018)。这些疾病的发病机制复杂,涉及途径繁多,因此,不孕模型的成功构建为明确该类疾病的致病原因、早期诊断和治疗奠定了基础。
cyp21a基因定位于人类6p21.3,有真基因和假基因两个基因组成。cyp21a基因为编码21羟化酶的功能基因,该酶催化17-羟孕酮(17-OHP)转化为11-脱氧皮质醇,同时催化孕酮转化为11-脱氧皮质酮,二者分别是皮质醇和醛固酮的前体。
21羟化酶活性降低致使皮质醇和醛固酮合成受损,最终导致高雄激素血症,临床上表现为女性男性化、不育等症状(例如先天性肾上腺皮质增生症,CAH)。目前,为了研究由cyp21a基因突变引起的CAH即先天性肾上腺皮质增生症21羟化酶缺乏型(21OHD),人们构建了21OHD老鼠模型和利用TALEN法构建的cyp21a基因突变斑马鱼模型(TOSHIHIRO TAJIMA等,1999;M Perdomini等,2017和Helen Eachus等,2017),而老鼠模型存在很难养活的问题,斑马鱼模型存在尚未出现排卵障碍性状的问题。因此,有必要继续研究和开发cyp21a基因突变相关的排卵障碍模型,为排卵障碍发病机制的研究提供基础。
鉴于此,特提出本发明。
发明内容
本发明的目的在于提供一种高LH和T激素内分泌特征的排卵障碍模型的构建方法、检测方法及应用。本发明提供了用于特异性敲除斑马鱼cyp21a2基因的sgRNA,通过CRISPR/Cas9技术构建并选育出cyp21a2基因缺失型斑马鱼,获得了斑马鱼排卵障碍模型。本发明所构建的斑马鱼排卵障碍模型同时具备高雄激素(T)和高促黄体激素素(LH)的内分泌特征,为深入解析内分泌激素调控排卵机制研究提供了良好的模型材料。
本发明提供的技术方案如下:
在一个方面,本发明提供了用于斑马鱼cyp21a2基因敲除的sgRNA,所述sgRNA的DNA序列为SEQ ID No.1和SEQ ID No.2所示。
本发明中提供的sgRNA是基于CRISPR/Cas9技术,特异性敲除斑马鱼cyp21a2基因构建斑马鱼排卵障碍模型的sgRNA。
在另一个方面,本发明提供了一种CRISPR/Cas9组合物,所述组合物包含前述sgRNA或编码权利要求1前述sgRNA的DNA,以及Cas9蛋白。
在本发明中,本发明还涵盖包含前述的靶向斑马鱼cyp21a2基因的sgRNA或前述的CRISPR/Cas9组合物的试剂盒等相关检测产品。
在另一个方面,本发明提供了前述的sgRNA或前述的CRISPR/Cas9组合物在制备斑马鱼排卵障碍模型的应用;优选地,所述应用为在构建斑马鱼高雄激素和高促黄体激素不孕模型中的应用。
本发明利用设计的sgRNA与Cas9蛋白的组合物进行基因编辑,获得了敲除斑马鱼cyp21a2基因的斑马鱼突变体,即斑马鱼模型,该斑马鱼模型具有排卵障碍,特别是高雄激素和高促黄体激素型排卵障碍。
本发明还涵盖前述的sgRNA或前述的CRISPR/Cas9组合物在制备斑马鱼cyp21a2基因敲除的细胞系中的应用。
在另一个方面,本发明提供了一种cyp21a2基因功能缺失的斑马鱼突变体的制备方法,所述方法包括:
(a)将前述的sgRNA和Cas9蛋白共同导入斑马鱼受精卵中;
(b)培养获得稳定遗传的cyp21a2基因功能缺失的斑马鱼突变体。
在另一个方面,本发明提供了前述制备方法获得的斑马鱼基因突变体,该突变体斑马鱼cyp21a2基因第二外显子上46bp片段被敲除,被敲除的序列如SEQ ID No.5所示:CATTCACTCTATAAGCTCTTCTTCAGTACCGTTTCTCCAACTATTT。
在另一个方面,本发明提供了一种斑马鱼排卵障碍模型的构建方法,所述方法包括以下步骤:
(A)设计并合成用于靶向斑马鱼cyp21a2基因第二外显子的sgRNA;所述sgRNA的DNA序列为SEQ ID No.1和SEQ ID No.2所示;
(B)将有活性的sgRNA(步骤(A)中得到的)和Cas9蛋白的组合物经显微注射入斑马鱼受精卵中;
(C)培育显微注射后的受精卵,获得F0代斑马鱼,将阳性斑马鱼与野生型杂交,得到F1代杂合子,自交,得到F2代纯合突变体,即得斑马鱼排卵障碍模型。
在一个实施方案中,所述方法还包括将得到的F2代纯合突变体培养至成鱼,选出雌鱼,检测激素水平,获得斑马鱼高雄激素和高促黄体激素不孕模型。
在一个实施方案中,所述sgRNA和Cas9蛋白的组合物中,sgRNA的终浓度为80-150ng/μL;Cas9蛋白终浓度为200-300ng/μL;优选地,每个受精卵注射所述组合物的体积为0.8-1.2nL。
在一个具体的实施方案中,sgRNA的终浓度为80-150ng/μL;Cas9蛋白终浓度为200-300ng/μL;注射量为1nL。
在一个实施方案中,在斑马鱼胚胎1-2细胞期进行显微注射。
具体地,本发明的构建方法包括:
1)、靶向cyp21a2基因的sgRNA和检测引物的筛选:sgRNA序列如SEQ ID No.1和SEQID No.2所示,检测引物序列如SEQNO.3至SEQNO.4所示;
2)、将sgRNA和Cas9蛋白混合物注射到斑马鱼受精卵中;
3)、F0代突变斑马鱼筛选:筛选出敲出有效的胚胎,培养至成鱼,获得F0代突变斑马鱼;
4)、获得可遗传的斑马鱼突变体F1代:将F0代突变斑马鱼与野生型斑马鱼杂交,筛选得到可遗传的斑马鱼突变体的F1代。
5)、获得斑马鱼F2代纯合突变体:将F1代突变斑马鱼自交得到F2代,筛选得到斑马鱼F2代纯合突变体。
6)、获得斑马鱼高雄激素和高促黄体激素不孕模型:将斑马鱼纯合突变体培养至成鱼,选出雌鱼,检测激素水平,获得斑马鱼高雄激素和高促黄体激素不孕模型。
在另一个方面,本发明还提供了用于检测前述构建方法得到的斑马鱼模型的引物序列,所述引物序列如SEQ ID No.3和SEQ ID No.4所示。
在一个实施方案中,本发明还涵盖检测前述的构建方法得到的斑马鱼模型的试剂盒,其含有前述的引物序列;优选地,还包含dNTPs、DNA聚合酶、缓冲液、双蒸水中的任一种或几种。
基于此,本发明还提供一种检测前述构建方法得到的斑马鱼模型的方法,包括使用前述的引物序列以待检测物的基因组作为模板,进行PCR扩增,得到的产物测序,判断其基因型。
在再一个方面,本发明提供了所述构建方法得到的斑马鱼模型在排卵障碍相关的疾病的药物研究或药物筛选中的应用。
本发明制得的斑马鱼模型具有多种用途,可以用作研究排卵障碍相关的疾病(尤其是多囊卵巢综合征、卵巢不敏感综合征等疾病)的动物模型。利用该模型可用于研究cyp21a2基因突变介导的高雄激素和高促黄体激素与排卵障碍发病机制的关系研究及后续排卵障碍治疗药物的筛选。
本发明中,所述sgRNA由如SEQID No.1和SEQ ID No.2所示人工序列经PCR扩增、体外转录所得;或者所述sgRNA可以直接合成。
在一个实施方案中,本发明还包括对合成的sgRNA进行体外活性检测的步骤。
所述sgRNA的构建和活性检测的方法包括但不限于,将设计的sgRNA连入质粒载体,然后将质粒载体转化,测序验证正确,然后进行活性检测。
与现有技术相比,本发明的有益效果在于:
鉴定为F2代中cyp21a2基因敲除的纯合子即为稳定遗传的cyp21a2基因缺失斑马鱼突变体。
有益效果:
本发明提供了用于特异性敲除斑马鱼cyp21a2基因构建斑马鱼高雄激素和高促黄体激素排卵障碍模型的sgRNA,通过CRISPR/Cas9技术,敲除斑马鱼cyp21a2基因第二外显子上46bp片段,选育出cyp21a2基因缺失型斑马鱼,从而构建斑马鱼高雄激素和高促黄体激素排卵障碍模型;
本发明所构建的斑马鱼排卵障碍模型,同时具备高雄激素和高促黄体激素的内分泌特征,对深入解析内分泌激素调控排卵机制研究提供了良好的模型材料;
本发明提供的斑马鱼高雄激素和高促黄体激素排卵障碍模型为进一步开展cyp21a2突变介导的高雄激素和高促黄体激素与排卵障碍发病机制的关系研究及筛选排卵障碍治疗药物奠定了很好的基础。
附图说明
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为cyp21a2基因上打靶位点在基因组上的序列位置图;
图2为sgRNA电泳检测图(M表示为DNA Marker,从下向上依次为100bp、250bp、500bp、750bp、1000bp、2000bp、3000bp、5000bp);
图3为F2代纯合突变体基因型鉴定电泳图(M表示为DNA Marker;WT为野生型,编号1-13表示为F2代剪鱼尾序号;下标√为F2代纯合突变体);
图4为排卵障碍雌鱼和野生型排卵期雌鱼性腺和卵母细胞形态图(A表示为排卵障碍卵巢形态;B表示为野生型排卵期卵巢形态;C表示为排卵障碍卵巢内卵母细胞形态;D表示为野生型排卵期卵巢内卵母细胞形态);
图5为排卵障碍雌鱼和野生型排卵期雌鱼激素水平比较图(WT表示为野生型;Δ46表示为排卵障碍模型;17-OHP表示为17-羟孕酮,T表示为雄激素,ASD表示为雄烯二酮,21-OH表示为21-羟化酶,LH表示为促黄体激素,Cortisol表示为皮质醇;**表示为显著性差异)。
具体实施方式
下面将结合实施例对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
1.1设计CRISPANT基因敲除靶位点和检测引物
在National Center for Biotechnology Information(NCBI)上查询斑马鱼cyp21a2基因的基因组DNA序列(基因编码为:XM_021466882.1),根据CRISPR/Cas9敲除原理,在网站The ZFIN(http://zfin.org/)上设计cyp21a2基因的靶位点。靶点的选择必须遵循此标准:5’-GG-(N)18-NGG-3’。其中5’端的GG二核苷酸是T7启动子的一部分,设计靶位点时可以不受此限制,但是必须保证靶位点3'端是NGG。靶点的选择位置必须在基因的结构域内,以确保靶位点碱基的插入或缺失可以影响cyp21a2基因的整个结构域,从而来改变基因的表达。待敲除基因的靶位点位于cyp21a2基因的第二外显子(图1),sgRNA对应的DNA序列序列如表1所示。
表1.sgRNA对应的DNA序列
Figure BDA0003553646750000071
取cyp21a2基因的靶位点上下游约200bp的基因组区域于Primer Premier3.0软件中设计引物(如表2所示)。
表2.引物序列
Figure BDA0003553646750000072
Figure BDA0003553646750000081
1.2 sgRNA合成及质检
使用以上设计好的引物,进行PCR实验检测设计好的sgRNA对应的DNA序列是否有误。确认无误后,将设计好的sgRNA对应的DNA序列送往商业公司进行合成。
PCR获得sgRNA的体外转录的模板,体外转录合成sgRNA。
将收到的sgRNA以14000rpm的转速离心10min,沉淀RNA干粉。随后加入15μL的RNase-free双蒸水溶解RNA干粉。对溶解好的sgRNA进行质量检测。
首先,取1μL的sgRNA溶液与loading buffer混合进行琼脂糖凝胶电泳,检测sgRNA是否为单一条带。若sgRNA浓度较高(至少高于600ng/μL),且电泳条带为均一条带(如图2所示),则可进行显微注射实验。
1.3单条sgRNA的活性验证
在进行正式打靶之前,需先测试设计的sgRNA是否能有效编辑。故而进行单条sgRNA的活性验证。将Cas9蛋白和sgRNA(cyp21a2-sgRNA1和cyp21a2-sgRNA2,对应的DNA序列为SEQ ID No.1和SEQ ID No.2所示)按表3体系进行络合,使Cas9蛋白的终浓度为250ng/μL,sgRNA的终浓度为100ng/μL。注射约1nl Cas9蛋白和sgRNA混合液于一细胞期的受精卵内。注射过的受精卵放置在清水中,28℃孵化。在体式显微镜下观察胚胎表型,筛选正常发育的胚胎用于靶位点突变分析。
表3.sgRNA和Cas9蛋白络合体系
Figure BDA0003553646750000082
Figure BDA0003553646750000091
1.4Sanger测序检测sgRNA的有效性
对斑马鱼胚胎进行显微注射之后,挑选部分发育正常的早期胚胎,检测其cyp21a2基因是否存在突变,提前确认此次选择的靶位点是否有效果,显微注射操作是否规范。
a、提取斑马鱼基因组
斑马鱼胚胎受精24小时后(24hpf),分别收集野生型和注射后实验组胚胎于1.5mL的EP管中(每管5颗胚胎),加入裂解液提取基因组DNA。
b、PCR扩增目的序列
提取基因组DNA之后,使用表2引物序列,表4的PCR反应体系扩增出目的DNA片段。
表4.PCR反应体系
Figure BDA0003553646750000092
振荡混匀之后离心,于PCR仪上进行扩增反应。反应条件为:预变性95℃5min,(变性95℃30s,退火58℃30s,延伸72℃30s)35个循环,再72℃8min。待反应结束后,离心PCR产物,取2μL样品点样于1.3%琼脂糖凝胶上进行电泳,检测PCR产物大小是否正确。
c、若PCR产物正确,送PCR产物进行Sanger测序,由测序的峰图来初步获得插入或缺失的信息,经TIDE网站对比后得出sgRNA敲除效率,确定sgRNA有效后,进行正式注射。
1.5斑马鱼胚胎的显微注射
在受精后30min之内,用吸管吸取胚胎转移至用琼脂糖制作的显微注射专用培养皿中。
在进行显微注射之前,将Cas9蛋白和sgRNA充分混匀配成一混合液,使Cas9蛋白的终浓度为250ng/μL,每个sgRNA的终浓度均为10 0ng/μL.注射约1nL Cas9蛋白和sgRNA混合液于1-2细胞期的受精卵内。注射过的受精卵放置于清水中,28℃孵化。在体式显微镜下观察胚胎表型,筛选正常发育的胚胎用于靶位点突变分析。
选取3管胚胎(每管5枚)检测打靶敲除效率,检测步骤同上,确定敲除有效后,将剩余胚胎养大至两月龄。
1.6F0代突变斑马鱼筛选
a、提取斑马鱼基因组
胚胎养至两月龄后,收集斑马鱼成鱼的部分尾鳍组织于1.5mL离心管中,向EP管中加入裂解液提取基因组DNA。
b、PCR扩增目的序列
提取基因组DNA之后,使用表2的引物序列,表4的PCR反应体系扩增出目的DNA片段。反应条件为:预变性95℃5min,(变性95℃30s,退火58℃30s,延伸72℃30s)35个循环,再72℃8min。待反应结束后,离心PCR产物,取2μL样品点样于1.3%琼脂糖凝胶上进行电泳,检测PCR产物大小是否正确。
c、若PCR产物正确,送PCR产物进行Sanger测序,由测序的峰图来获得插入或缺失的信息,筛选出携带有突变的F0代斑马鱼。
1.7获得可遗传的F1代斑马鱼突变体
将F0代突变体分别与野生型斑马鱼杂交得到F1代胚胎,置于28℃培养。养至两月龄后,对每尾F1代斑马鱼成鱼进行剪尾,筛选F1代突变体(具体方法如步骤1.6)。
根据已筛选到的F1代突变体的Sanger测序结果分析,得到cyp21a2基因上46bp的大片段缺失突变体。
1.8获得F2代斑马鱼纯合突变体
将F1代大片段缺失突变体自交得到F2代胚胎,置于28℃培养。养至两月龄后,对每尾F2代斑马鱼成鱼进行剪尾,筛选F2代突变体(具体方法如步骤1.6)。
根据检测结果得到F2代纯合突变体。实验结果如图3所示。
1.9获得高雄激素和高促黄体激素排卵障碍斑马鱼模型
将检测到的F2代纯合突变体养至3月龄,选出雌鱼。对性成熟F2代纯合突变雌鱼和野生型雄鱼进行繁殖配对,获得排卵障碍的F2代纯合突变雌鱼,这些雌鱼表现为排卵失败型排卵障碍即雌鱼卵巢可发育,但成熟卵母细胞不能排入卵巢腔中。
对排卵障碍雌鱼和野生型排卵期雌鱼进行性腺形态学比较,结果证实排卵障碍雌鱼卵巢和卵母细胞能发育,但不能排卵(图4);激素水平比较结果显示,排卵障碍雌鱼雄激素和促黄体激素水平显著性高于野生型排卵期雌鱼(图5)。因此,我们利用这种方法构建的模型是典型的高雄激素和高促黄体激素排卵障碍模型。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。
SEQUENCE LISTING
<110> 中国水产科学研究院北戴河中心实验站
<120> 斑马鱼排卵障碍模型的构建方法、检测方法及应用
<130> PA22003151
<160> 5
<170> PatentIn version 3.3
<210> 1
<211> 23
<212> DNA
<213> cyp21a2-sgRNA1
<400> 1
cctgcattca ctctataagc tct 23
<210> 2
<211> 23
<212> DNA
<213> cyp21a2-sgRNA2
<400> 2
ccaactattt ctggtcctcg ctc 23
<210> 3
<211> 22
<212> DNA
<213> cyp21a2-F
<400> 3
ccaatagctg tttttcccaa ac 22
<210> 4
<211> 20
<212> DNA
<213> cyp21a2-R
<400> 4
aaacaaccat agttgtgctg 20
<210> 5
<211> 46
<212> DNA
<213> cyp21a2基因第二外显子上46bp片段
<400> 5
cattcactct ataagctctt cttcagtacc gtttctccaa ctattt 46

Claims (10)

1.用于斑马鱼cyp21a2基因敲除的sgRNA,其特征在于,所述sgRNA的DNA序列为SEQ IDNo.1和SEQ ID No.2所示。
2.一种CRISPR/Cas9组合物,其特征在于,所述组合物包含权利要求1所述的sgRNA或编码权利要求1所述sgRNA的DNA,以及Cas9蛋白。
3.权利要求1所述的sgRNA或权利要求2所述的CRISPR/Cas9组合物在制备斑马鱼排卵障碍模型的应用;优选地,所述应用为在构建斑马鱼高雄激素和高促黄体激素不孕模型中的应用。
4.一种cyp21a2基因功能缺失的斑马鱼突变体的制备方法,其特征在于,所述方法包括:
(a)将权利要求1所述的sgRNA和Cas9蛋白共同导入斑马鱼受精卵中;
(b)培养获得稳定遗传的cyp21a2基因功能缺失的斑马鱼突变体。
5.根据权利要求4所述的制备方法获得的斑马鱼基因突变体,其特征在于,斑马鱼cyp21a2基因第二外显子上46bp片段被敲除,被敲除的序列如SEQ ID No.5所示。
6.一种斑马鱼排卵障碍模型的构建方法,其特征在于,所述方法包括以下步骤:
(A)设计并合成用于靶向斑马鱼cyp21a2基因第二外显子的sgRNA;所述sgRNA的DNA序列为SEQ ID No.1和SEQ ID No.2所示;
(B)将有活性的sgRNA和Cas9蛋白的组合物经显微注射入斑马鱼受精卵中;
(C)培育显微注射后的受精卵,获得F0代斑马鱼,将阳性斑马鱼与野生型杂交,得到F1代杂合子,自交,得到F2代纯合突变体,即得斑马鱼排卵障碍模型。
7.根据权利要求6所述的构建方法,其特征在于,所述方法还包括将得到的F2代纯合突变体培养至成鱼,选出雌鱼,检测激素水平,获得斑马鱼高雄激素和高促黄体生激素不孕模型。
8.根据权利要求6或7所述的构建方法,其特征在于,所述sgRNA和Cas9蛋白的组合物中,sgRNA的终浓度为80-150ng/μL;Cas9蛋白终浓度为200-300ng/μL;优选地,每个受精卵注射所述组合物的体积为0.8-1.2nL。
9.用于检测权利要求6-8任一项所述的构建方法得到的斑马鱼模型的引物序列,其特征在于,所述引物序列如SEQ ID No.3和SEQ ID No.4所示。
10.权利要求6-8任一项所述构建方法得到的斑马鱼模型在排卵障碍相关的疾病的药物研究或药物筛选中的应用。
CN202210271728.2A 2022-03-18 2022-03-18 斑马鱼排卵障碍模型的构建方法、检测方法及应用 Active CN114774413B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210271728.2A CN114774413B (zh) 2022-03-18 2022-03-18 斑马鱼排卵障碍模型的构建方法、检测方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210271728.2A CN114774413B (zh) 2022-03-18 2022-03-18 斑马鱼排卵障碍模型的构建方法、检测方法及应用

Publications (2)

Publication Number Publication Date
CN114774413A true CN114774413A (zh) 2022-07-22
CN114774413B CN114774413B (zh) 2024-01-30

Family

ID=82424692

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210271728.2A Active CN114774413B (zh) 2022-03-18 2022-03-18 斑马鱼排卵障碍模型的构建方法、检测方法及应用

Country Status (1)

Country Link
CN (1) CN114774413B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117587013A (zh) * 2023-11-27 2024-02-23 湖南师范大学 一种血管发育异常的斑马鱼模型的构建方法
CN117737136A (zh) * 2023-01-20 2024-03-22 中国科学院水生生物研究所 优化的雌鱼育性控制的方法及应用
CN117737122A (zh) * 2023-01-20 2024-03-22 中国科学院水生生物研究所 雌鱼育性控制的方法及应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170262580A1 (en) * 2016-03-09 2017-09-14 Celmatix Inc. Methods and systems for assessing infertility and ovulatory function disorders
US20180305719A1 (en) * 2017-04-19 2018-10-25 The Board Of Trustees Of The University Of Illinois Vectors For Integration Of DNA Into Genomes And Methods For Altering Gene Expression And Interrogating Gene Function
CN109385482A (zh) * 2018-11-19 2019-02-26 中国水产科学研究院北戴河中心实验站 牙鲆育性相关的snp分子标记及其筛选方法和应用
US20190295683A1 (en) * 2018-03-26 2019-09-26 Celmatix Inc. Systems and methods for non-hormonal female contraceptive drug target identification and prioritization
CN111575320A (zh) * 2020-06-22 2020-08-25 赣南师范大学 一种prep基因缺失型斑马鱼的构建方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170262580A1 (en) * 2016-03-09 2017-09-14 Celmatix Inc. Methods and systems for assessing infertility and ovulatory function disorders
US20180305719A1 (en) * 2017-04-19 2018-10-25 The Board Of Trustees Of The University Of Illinois Vectors For Integration Of DNA Into Genomes And Methods For Altering Gene Expression And Interrogating Gene Function
US20190295683A1 (en) * 2018-03-26 2019-09-26 Celmatix Inc. Systems and methods for non-hormonal female contraceptive drug target identification and prioritization
CN109385482A (zh) * 2018-11-19 2019-02-26 中国水产科学研究院北戴河中心实验站 牙鲆育性相关的snp分子标记及其筛选方法和应用
CN111575320A (zh) * 2020-06-22 2020-08-25 赣南师范大学 一种prep基因缺失型斑马鱼的构建方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
HELEN EACHUS等: "Genetic Disruption of 21-Hydroxylase in Zebrafish Causes Interrenal Hyperplasia", ENDOCRINOLOGY, vol. 158, no. 12, pages 4168 *
张乐乐;边力;常青;侯吉伦;陈四清;赵庆;刘琨;葛建龙;刘长琳;: "圆斑星鲽sox9基因的克隆与表达", 渔业科学进展, no. 06, pages 72 - 80 *
杨洁;阮静贤;曾洁;张莹;许培;牛晓华;: "体外受精治疗非典型21-羟化酶缺乏症患者成功妊娠1例", 中华生殖与避孕杂志, no. 10, pages 63 - 68 *
赵超群;王晓黎;苗苗;刘静;李金慧;白杨;关海霞;张锦;单忠艳;: "高雄激素血症患者非经典型21-羟化酶缺陷症与多囊卵巢综合征的鉴别", 中国微生态学杂志, no. 09, pages 1062 - 1065 *
陈戟;胡炜;朱作言;: "鱼类生殖发育调控研究进展", 科学通报, no. 02, pages 103 - 114 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117737136A (zh) * 2023-01-20 2024-03-22 中国科学院水生生物研究所 优化的雌鱼育性控制的方法及应用
CN117737122A (zh) * 2023-01-20 2024-03-22 中国科学院水生生物研究所 雌鱼育性控制的方法及应用
CN117587013A (zh) * 2023-11-27 2024-02-23 湖南师范大学 一种血管发育异常的斑马鱼模型的构建方法

Also Published As

Publication number Publication date
CN114774413B (zh) 2024-01-30

Similar Documents

Publication Publication Date Title
CN114774413B (zh) 斑马鱼排卵障碍模型的构建方法、检测方法及应用
CN108893544B (zh) 与猪经产产仔数相关的snp分子标记、鉴定及其应用
CN106282231B (zh) 粘多糖贮积症ii型动物模型的构建方法及应用
CN108546766B (zh) 与猪产仔性状相关的snp分子标记、鉴定及其组合应用
CN111926017A (zh) 一种csf1ra基因缺失斑马鱼突变体的制备及其应用
CN109680070B (zh) 一种与澳洲白绵羊蹄色极显著相关的snp标记、分子标记及应用
CN111154758A (zh) 敲除斑马鱼slc26a4基因的方法
CN110257435A (zh) 一种prom1-ko小鼠模型的构建方法及其应用
CN110241227B (zh) 一种检测绵羊spata6基因单核苷酸多态性的方法及应用
CN115058424A (zh) 一种irf2bpl基因敲除斑马鱼癫痫模型及其构建方法和应用
CN113817734A (zh) 一种hectd4基因敲除斑马鱼癫痫模型及其构建方法和应用
CN110894510A (zh) 一种基因敲除选育Lgr6基因缺失型斑马鱼的方法
CN114438132A (zh) 尼罗罗非鱼mstnb纯合敲除系的建立方法及以此获得的快速生长品系
CN111100877B (zh) 肥厚型心肌病小鼠模型的制备方法及其应用
CN114480497B (zh) 一种ep400基因敲除斑马鱼心力衰竭模型的构建及其应用的方法
CN110894511A (zh) 一种基因编辑选育ppm1g基因突变型斑马鱼的方法
CN115807037B (zh) 一种遗传可控的四倍体鱼的选育方法及三倍体鱼的制备方法
CN109929876A (zh) Vps28基因敲除小鼠动物模型的构建方法和应用
CN115029352A (zh) 一种基因敲除选育adgrg1基因缺失型斑马鱼的方法
CN115261360A (zh) 一种gata6基因敲除斑马鱼模型的构建方法
CN109694885B (zh) 基于CRISPR/Cas9技术制备PI3Kγ全身敲除模式小鼠方法及其应用和试剂盒
CN113957070A (zh) 一种chd2基因敲除斑马鱼癫痫模型及其构建方法和应用
CN113897361A (zh) 一种eef1b2基因敲除斑马鱼癫痫模型及其构建方法和应用
CN113558011A (zh) 基于γ-分泌酶激活蛋白基因的干燥综合征动物模型的建立方法
CN110438159A (zh) 一种引发肌原纤维肌病的基因突变小鼠模型的构建方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant