CN114773862B - 一种基于聚磷腈体系的绝热材料、制备方法及应用 - Google Patents

一种基于聚磷腈体系的绝热材料、制备方法及应用 Download PDF

Info

Publication number
CN114773862B
CN114773862B CN202210433572.3A CN202210433572A CN114773862B CN 114773862 B CN114773862 B CN 114773862B CN 202210433572 A CN202210433572 A CN 202210433572A CN 114773862 B CN114773862 B CN 114773862B
Authority
CN
China
Prior art keywords
parts
matrix
polyphosphazene
mixing
insulating material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210433572.3A
Other languages
English (en)
Other versions
CN114773862A (zh
Inventor
惠昆
王乐
闫宁
边城
高潮
关轶文
栾涛
杨燕京
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Modern Chemistry Research Institute
Original Assignee
Xian Modern Chemistry Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Modern Chemistry Research Institute filed Critical Xian Modern Chemistry Research Institute
Priority to CN202210433572.3A priority Critical patent/CN114773862B/zh
Publication of CN114773862A publication Critical patent/CN114773862A/zh
Application granted granted Critical
Publication of CN114773862B publication Critical patent/CN114773862B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L85/00Compositions of macromolecular compounds obtained by reactions forming a linkage in the main chain of the macromolecule containing atoms other than silicon, sulfur, nitrogen, oxygen and carbon; Compositions of derivatives of such polymers
    • C08L85/02Compositions of macromolecular compounds obtained by reactions forming a linkage in the main chain of the macromolecule containing atoms other than silicon, sulfur, nitrogen, oxygen and carbon; Compositions of derivatives of such polymers containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • C08K2003/387Borates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/02Flame or fire retardant/resistant
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/14Polymer mixtures characterised by other features containing polymeric additives characterised by shape
    • C08L2205/16Fibres; Fibrils
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明公开了一种基于聚磷腈体系的绝热材料、制备方法及应用,由以下重量份的原料组成:聚磷腈100份;芳纶纤维5~15份;碳纤维5~15份;酚醛树脂10~30份;气相二氧化硅粉末10~30份;硼酸锌5~15份;石蜡油5~15份;硫0.5~2份;DCP 2~5份。通过使用残炭率高、阻燃特性好的聚磷腈无机‑有机聚合物作为基体,混合功能材料制备了高性能绝热材料,相比于传统三元乙丙绝热材料和硅橡胶绝热材料,线烧蚀率和质量烧蚀率明显降低,耐烧蚀性能明显提高。

Description

一种基于聚磷腈体系的绝热材料、制备方法及应用
技术领域
本发明属于耐烧蚀航天材料技术领域,尤其涉及一种基于聚磷腈体系的绝热材料、制备方法及应用。
背景技术
固体火箭发动机使用烧蚀型聚合物材料作为燃烧室内绝热材料,主要包括三元乙丙橡胶基绝热材料、硅橡胶基绝热材料以及丁腈橡胶基绝热材料。这些绝热材料是以橡胶作为基体材料,掺入酚醛、纤维和其他功能填料,通过混炼和硫化制备成。随着现代战争发展,对高新武器装备提出高速度、远射程、强突防的要求,对发动机性能提出更高要求,导致发动机燃烧室热环境更加恶劣,现有的绝热材料已不能满足武器装备发展的需要。
聚磷腈是一种以P-N为主连、苯、烷烃、烯烃等烃类小分子为支链构成的无机-机化高聚物,自身具有较强的阻燃特性,同时可以作为基体混合其他功能性填料和纤维,是发展新型高性能绝热材料的一个极具潜力的方向。
发明内容
本发明的目的是提供一种基于聚磷腈体系的绝热材料、制备方法及应用,该材料具有良好的抗烧蚀性能和阻燃性。
为实现上述目的,本发明的技术方案包括:
一种基于聚磷腈体系的绝热材料,由以下重量份的原料组成:
聚磷腈100份;
芳纶纤维5~15份;
碳纤维5~15份;
酚醛树脂10~30份;
气相二氧化硅粉末10~30份;
硼酸锌5~15份;
石蜡油5~15份;
硫0.5~2份;
DCP 2~5份。
可选的,由以下重量份的原料组成:
聚磷腈100份、芳纶纤维10份、碳纤维10份、酚醛树脂20份、气相二氧化硅20份、硼酸锌10份、石蜡油10份、硫1.5份和DCP 4.5份。
可选的,制备方法包括:
取配方量的聚磷腈和芳纶纤维,混炼至混合均匀,得到第一基体;
取配方量的酚醛树脂加入到所述的第一基体中,混炼至混合均匀,得到第二基体;
取配方量的气相二氧化硅粉末、石蜡油和硼酸锌,加入到所述的第二基体中,混炼至混合均匀,得到第三基体;
取配方量的碳纤维加入到所述的第三基体中,混炼至混合均匀,得到第四基体;
取配方量的硫和DCP,加入到所述的第四基体,混炼至混合均匀,得到第五基体;
对所述的第五基体进行硫化,硫化温度为140~160℃,硫化时间20~60 min,硫化压力10~15MPa,得到基于聚磷腈体系的绝热材料。
可选的,在所述的混炼过程中,混炼温度不超过20℃。
可选的,所述的硫化时间为30min,硫化压强为12Mpa。
一种基于聚磷腈体系的绝热材料的制备方法,包括以下步骤:
称取100重量份的聚磷腈;
称取5~15重量份的芳纶纤维,加入到所述的聚磷腈中,混炼至混合均匀,得到第一基体;
称取10~30重量份的酚醛树脂加入到所述的第一基体中,混炼至混合均匀,得到第二基体;
称取10~30重量份的气相二氧化硅粉末、5~15重量份的石蜡油和5~15重量份的硼酸锌,加入到所述第二基体中,混炼至混合均匀,得到第三基体;
称取5~15重量份的碳纤维,加入到所述的第三基体中,混炼至混合均匀,得到第四基体;
称取硫0.5~2份和DCP 2~5份,加入到所述的第四基体,混炼至混合均匀,得到第五基体;
对所述第五基体进行硫化,硫化温度为140~160℃,硫化时间20~60 min,硫化压力10~15MPa,得到基于聚磷腈体系的绝热材料。
可选的,在所述的混炼过程中,混炼温度不超过20℃。
可选的,所述的硫化时间为30min,硫化压强为12Mpa。
可选的,所述的芳纶纤维10份,所述的酚醛树脂20份,所述的气相二氧化硅20份,所述的硼酸锌10份,所述的碳纤维10份,所述的石蜡油10份,所述的硫1.5份,所述的DCP4.5份。
本发明所述的基于聚磷腈体系的绝热材料用于制备发动机燃烧室内绝热材料的应用。
本发明的有益效果是:
本发明的绝热材料中使用的聚磷腈聚合物具有较高的高温残炭率和阻燃特性,使聚磷腈绝热材料烧蚀过程中可以在表面形成坚实的炭化层,有力的抵御气流冲刷和粒子侵蚀的机械破坏过程,从而提高绝热材料的抗烧蚀性能。
附图说明
附图是用来提供对本公开的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本公开,但并不构成对本公开的限制。在附图中:
图1为本申请实施例中三元乙丙绝热材料、硅橡胶绝热材料和聚磷腈绝热材料烧蚀率对比图;
图2为本申请实施例1与对比实施例3-5的烧蚀率对比图;
图3为本申请实施例中三元乙丙绝热材料和聚磷腈绝热材料热解对比图。
具体实施方式
下面结合附图和具体实施方式对本发明进行详细说明。
本发明的基于聚磷腈体系的绝热材料,由以下重量份的原料组成:
聚磷腈100份;
芳纶纤维5~15份;
碳纤维5~15份;
酚醛树脂10~30份;
气相二氧化硅粉末10~30份;
硼酸锌5~15份;
石蜡油5~15份;
硫0.5~2份;以及
DCP2~5份。
本发明的基于聚磷腈体系的绝热材料的制备方法,包括以下步骤:
称取100重量份的聚磷腈;
称取5~15重量份的芳纶纤维,加入到所述聚磷腈中,混炼至混合均匀,得到第一基体;
称取10~30重量份的酚醛树脂加入到所述第一基体中,混炼至混合均匀,得到第二基体;
称取10~30重量份的气相二氧化硅粉末、5~15重量份的石蜡油和5~15重量份的硼酸锌,加入到所述第二基体中,混炼至混合均匀,得到第三基体;
称取5~15重量份的碳纤维,加入到所述第三基体中,混炼至混合均匀,得到第四基体;
称取硫和DCP,加入到所述第四基体,混炼至混合均匀,得到第五基体;
对所述第五基体进行硫化,硫化温度为140~160℃,硫化时间20~60 min,得到基于聚磷腈体系的绝热材料。
特别的,在基于聚磷腈体系的绝热材料混炼过程中,应当保证材料温度不超过20℃。在本发明中,为了获得更好的绝热材料,述芳纶纤维选用3mm短切纤维,牌号Kevlar。
本发明中使用的芳纶纤维和碳纤维,一般对纤维的长度没有具体要求,优选可以为短切芳纶纤维,长度3~10mm;短切碳纤维,长度3~10mm。
值得说明的是,在本发明中的芳纶纤维、酚醛树脂、气相二氧化硅粉末、硼酸锌、碳纤维、石蜡油、硫以及DCP的加入方式均是匀量缓慢加入,这样能保证混炼更加均匀,混炼时间最短,节省时间,降低能耗。
通常情况下,得到的基于聚磷腈体系的绝热材料还需要通过模具进行压制才能使用,所以,将得到的绝热材料静置一段时间,如24小时,静止后将其倒入模具中,进行加压成型后再进行使用。
实施例1:
本实施例的基于聚磷腈体系绝热材料,由以下重量份的原料组成:
聚磷腈100份、芳纶纤维10份、碳纤维10份、酚醛树脂20份、气相二氧化硅20份、硼酸锌10份、石蜡油10份、硫1.5份、DCP 4.5份。采用该实施例中的绝热材料组分,其绝热效果最好,且炭化烧蚀率最低。
本实施例中选用短切芳纶纤维,长度3~10mm;短切碳纤维,长度3~10mm。
本实施例的基于聚磷腈体系绝热材料的制备方法,包括以下步骤:
步骤S1、称取聚磷腈,加入XK-160炼胶机中进行混炼,待橡胶包辊后,至透明状态,制备出聚磷腈基体。
步骤S2、称取芳纶纤维加入到聚磷腈基体中,混炼至混合均匀,得到第一基体。
步骤S3、称取酚醛树脂加入到第一基体中,混炼至混合均匀,得到第二基体。
步骤S4、称取气相二氧化硅粉末、石蜡油和硼酸锌,加入第二基体中,混炼至混合均匀,得到第三基体。
步骤S5、称取碳纤维加入第三基体中,混炼至混合均匀,得到第四基体。
步骤S6、称取硫和DCP,加入到第四基体,混炼至混合均匀,得到第五基体。
步骤S7、第五基体静置24小时后将其放入模具中,模具形状可按自身需求自行设计。在平板硫化机内进行加压硫化,硫化条件为160℃,压强12 MPa,硫化时间30min,即可制得基于聚磷腈体系的绝热材料。
特别的,在基于聚磷腈体系的绝热材料混炼过程中,应当保证材料温度不超过20℃。
值得说明的是,在本申请实施例中的芳纶纤维、酚醛树脂、气相二氧化硅粉末、硼酸锌、碳纤维、石蜡油、硫以及DCP的加入方式均是匀量缓慢加入,这样能保证混炼更加均匀,混炼时间最短,节省时间,降低能耗。
通常情况下,得到的基于聚磷腈体系的绝热材料还需要通过模具进行压制才能使用,所以,将得到的绝热材料静置一段时间,如24小时,静止后将其倒入模具中,进行加压成型后再进行使用。
对比实施例1(三元乙丙绝热材料):
本实施例提供一种三元乙丙橡胶绝热材料的制备方法,是由下述原料制备而成:三元乙丙橡胶100份、芳纶纤维10份、酚醛树脂20份、气相二氧化硅粉末20份、硼酸锌10份、石蜡油10份、硫1.5份、DCP 4.5份
其制备方法包括下述步骤:
步骤S11、称取三元乙丙橡胶,加入XK-160炼胶机中进行混炼,待橡胶包辊后,至透明状态,制备出三元乙丙橡胶基体;
步骤S12、称取芳纶纤维加入步骤S11得到的三元乙丙橡胶基体中,混炼至混合均匀,得到第一基体。
步骤S13、称取酚醛树脂加入第一基体中,混炼至混合均匀,得到第二基体。
步骤S14、称取气相二氧化硅粉末、石蜡油和硼酸锌,加入第二基体中,混炼至混合均匀,得到第三基体。
步骤S15、称取硫和DCP,加入得到第三基体中,混炼至混合均匀,得到第四基体。
步骤S16、第四基体放置24小时后将其放入模具中,模具形状可按自身需求自行设计。在平板硫化机内进行加压硫化,硫化条件为160℃,压强12 MPa,硫化时间30min,即可制得三元乙丙橡胶绝热材料。
对比实施例2(硅橡胶绝热材料):
本实施例提供一种硅橡胶绝热材料的制备方法,是由下述原料制备而成:
甲基硅橡胶50份、苯基硅橡胶50份、碳纤维10份、气相二氧化硅粉末30份、羟基硅油5份、DCP 1份。
本对比实施例的制备方法包括下述步骤:
步骤S21、称取甲基硅橡胶和苯基硅橡胶,加入XK-160炼胶机中进行混炼,待橡胶包辊后,至透明状态,制备出硅橡胶基体。
步骤S22、称取碳纤维加入步骤1得到的硅橡胶基体中,混炼至混合均匀,得到第一基体。
步骤S23、称取二氧化硅粉末和羟基硅油加入到第一基体中,混炼至混合均匀,得到第二基体。
步骤S24、称取硫和DCP,加入二基体中,混炼至混合均匀,得到第三基体。
步骤S25、第三基体放置24小时后将其放入模具中,模具形状可按自身需求自行设计。混炼好的硅橡胶绝热材料利用模具在平板硫化机上进行一段硫化,硫化温度为160℃,压力12MPa,硫化时间为15min;将压制成型的硅橡胶绝热材料放入鼓风干燥箱中进行二段硫化,硫化温度为180℃,时间120min。
对比实施例3(聚磷腈绝热材料-N):
本对比实施例与实施例1相比不含芳纶纤维和碳纤维。
对比实施例4(聚磷腈绝热材料-C):
本对比实施例与实施例1相比不含芳纶纤维,含10份碳纤维。
对比实施例5(聚磷腈绝热材料-F):
本对比实施例与实施例1相比不含碳纤维,含10份芳纶纤维。
本申请对上述实施例进行了烧蚀性能测试,试验方法按照GJB 323A/96进行测定,测试结果如下表1所示:
表1 上述绝热材料烧蚀性能对比
线烧蚀率 mm/s 质量烧蚀率 g/m2s
对比实施例1 0.047 7.83
对比实施例2 0.056 9.55
对比实施例3 0.037 6.14
对比实施例4 0.031 5.79
对比实施例5 0.029 5.27
本申请实施例1 0.022 3.74
由表1和图1可知,相较于相同功能提料的三元乙丙绝热材料和典型的硅橡胶绝热材料,聚磷腈体系绝热材料的耐烧蚀性能显著提高,线烧蚀率分别降低了53.19%和60.71%,质量烧蚀率分别降低了52.23%和60.84%。由此可知,本申请实施例的绝热材料相比于传统的三元乙丙绝热材料和硅橡胶绝热材料耐烧蚀性能更强。
由表1和图2可知,相较于其他纤维组分及含量的聚磷腈体系绝热材料,本配方聚磷腈体系绝热材料的耐烧蚀性能也明显较高,线烧蚀率分别降低了40.54%、29.03%和24.14%,质量烧蚀率分别降低了45.11%、35.41%和29.03%。由此可知,本申请实施例的绝热材料相比于其他纤维含量的聚磷腈体系绝热材料和硅橡胶绝热材料耐烧蚀性能更强。
图3三元乙丙绝热材料(EPDM)和聚磷腈绝热材料(PDCP)热解对比图中,表明聚磷腈绝热材料(PDCP)的高温残碳率高,热稳定性好。
以上结合附图详细描述了本公开的优选实施方式,但是,本公开并不限于上述实施方式中的具体细节,在本公开的技术构思范围内,可以对本公开的技术方案进行多种简单变型,这些简单变型均属于本公开的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本公开对各种可能的组合方式不再另行说明。
此外,本公开的各种不同的实施方式之间也可以进行任意组合,只要其不违背本公开的思想,其同样应当视为本公开所公开的内容。

Claims (10)

1.一种基于聚磷腈体系的绝热材料,其特征在于,由以下重量份的原料组成:
聚磷腈100份;
芳纶纤维5~15份;
碳纤维5~15份;
酚醛树脂10~30份;
气相二氧化硅粉末10~30份;
硼酸锌5~15份;
石蜡油5~15份;
硫0.5~2份;
DCP 2~5份。
2.根据权利要求1所述的基于聚磷腈体系的绝热材料,其特征在于,由以下重量份的原料组成:
聚磷腈100份、芳纶纤维10份、碳纤维10份、酚醛树脂20份、气相二氧化硅20份、硼酸锌10份、石蜡油10份、硫1.5份和DCP 4.5份。
3.根据权利要求1或2所述的基于聚磷腈体系的绝热材料,其特征在于,制备方法包括:
取配方量的聚磷腈和芳纶纤维,混炼至混合均匀,得到第一基体;
取配方量的酚醛树脂加入到所述的第一基体中,混炼至混合均匀,得到第二基体;
取配方量的气相二氧化硅粉末、石蜡油和硼酸锌,加入到所述的第二基体中,混炼至混合均匀,得到第三基体;
取配方量的碳纤维加入到所述的第三基体中,混炼至混合均匀,得到第四基体;
取配方量的硫和DCP,加入到所述的第四基体,混炼至混合均匀,得到第五基体;
对所述的第五基体进行硫化,硫化温度为140~160℃,硫化时间20~60 min,硫化压力10~15MPa,得到基于聚磷腈体系的绝热材料。
4.根据权利要求3所述的基于聚磷腈体系的绝热材料,其特征在于,在所述的混炼过程中,混炼温度不超过20℃。
5.根据权利要求3所述的基于聚磷腈体系的绝热材料,其特征在于,所述的硫化时间为30min,硫化压强为12Mpa。
6.一种基于聚磷腈体系的绝热材料的制备方法,其特征在于,包括以下步骤:
称取100重量份的聚磷腈;
称取5~15重量份的芳纶纤维,加入到所述的聚磷腈中,混炼至混合均匀,得到第一基体;
称取10~30重量份的酚醛树脂加入到所述的第一基体中,混炼至混合均匀,得到第二基体;
称取10~30重量份的气相二氧化硅粉末、5~15重量份的石蜡油和5~15重量份的硼酸锌,加入到所述第二基体中,混炼至混合均匀,得到第三基体;
称取5~15重量份的碳纤维,加入到所述的第三基体中,混炼至混合均匀,得到第四基体;
称取硫0.5~2份和DCP 2~5份,加入到所述的第四基体,混炼至混合均匀,得到第五基体;
对所述第五基体进行硫化,硫化温度为140~160℃,硫化时间20~60 min,硫化压力10~15MPa,得到基于聚磷腈体系的绝热材料。
7.根据权利要求6所述的基于聚磷腈体系的绝热材料的制备方法,其特征在于,在所述的混炼过程中,混炼温度不超过20℃。
8.根据权利要求6所述的基于聚磷腈体系的绝热材料的制备方法,其特征在于,所述的硫化时间为30min,硫化压强为12Mpa。
9.根据权利要求6所述的基于聚磷腈体系的绝热材料的制备方法,其特征在于,所述的芳纶纤维10份,所述的酚醛树脂20份,所述的气相二氧化硅20份,所述的硼酸锌10份,所述的碳纤维10份,所述的石蜡油10份,所述的硫1.5份,所述的DCP 4.5份。
10.权利要求1-5任一所述的基于聚磷腈体系的绝热材料用于制备发动机燃烧室内绝热材料的应用。
CN202210433572.3A 2022-04-24 2022-04-24 一种基于聚磷腈体系的绝热材料、制备方法及应用 Active CN114773862B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210433572.3A CN114773862B (zh) 2022-04-24 2022-04-24 一种基于聚磷腈体系的绝热材料、制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210433572.3A CN114773862B (zh) 2022-04-24 2022-04-24 一种基于聚磷腈体系的绝热材料、制备方法及应用

Publications (2)

Publication Number Publication Date
CN114773862A CN114773862A (zh) 2022-07-22
CN114773862B true CN114773862B (zh) 2023-04-18

Family

ID=82433619

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210433572.3A Active CN114773862B (zh) 2022-04-24 2022-04-24 一种基于聚磷腈体系的绝热材料、制备方法及应用

Country Status (1)

Country Link
CN (1) CN114773862B (zh)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102492260B (zh) * 2011-11-29 2013-07-31 广东榕泰实业股份有限公司 耐烧蚀复合材料树脂组合物及耐烧蚀复合材料的制备方法
CN108911720A (zh) * 2018-07-11 2018-11-30 薛向东 一种增韧抗压耐烧蚀材料的制备方法
CN110802848B (zh) * 2019-11-13 2022-04-19 西安近代化学研究所 一种耐烧蚀、低导热橡胶复合材料及其制备方法
CN113861699B (zh) * 2021-10-14 2023-03-21 北京化工大学 一种抗小分子迁移、低发烟阻燃型耐烧蚀绝热材料及其制备方法
CN114230879B (zh) * 2022-01-05 2023-09-12 开滦(集团)有限责任公司 一种阻燃耐烧蚀丁腈绝热材料及其制备方法

Also Published As

Publication number Publication date
CN114773862A (zh) 2022-07-22

Similar Documents

Publication Publication Date Title
CN107189236B (zh) 一种耐热老化、低压变的硫磺硫化三元乙丙橡胶组合物、制备方法、用途及其应用产品
CN108178851B (zh) 一种绝热耐烧蚀丁腈橡胶材料及其制备方法
CN108178892B (zh) 一种高强度低压变氟橡胶材料及其制备方法
WO2021243817A1 (zh) 导热无卤阻燃聚氨酯弹性体及其制备方法
CN110105714B (zh) 碳纤维增强环氧树脂与三元乙丙橡胶复合材料的制备方法
CN113861699B (zh) 一种抗小分子迁移、低发烟阻燃型耐烧蚀绝热材料及其制备方法
CN113292795A (zh) 一种橡胶并用型低烧蚀绝热材料及其制备方法
CN110885662A (zh) 聚氨酯软包电池灌封胶及其制备方法
CN114230879B (zh) 一种阻燃耐烧蚀丁腈绝热材料及其制备方法
CN112321955A (zh) 一种环保型阻燃绝缘橡胶复合材料及其制备方法
CN114773862B (zh) 一种基于聚磷腈体系的绝热材料、制备方法及应用
CN107189126A (zh) 一种机械用抗老化橡胶履带及其制备方法
CN109721858B (zh) 一种中温修补橡胶材料及其制备方法和在推进剂中的应用
CN109369985B (zh) 一种高导热的汽车发动机悬置橡胶材料
CN111732762A (zh) 一种可降低三角带底胶动态生热的配方
CN113308074B (zh) 一种特高压单柱并联电抗器用改性阻尼氟橡胶及其制备方法
CN112812447A (zh) 一种低密度耐烧蚀三元乙丙橡胶材料及制备方法
CN114437416A (zh) 一种减振橡胶及其制备方法
CN114350098A (zh) 一种耐热环保电缆料及其制备方法
CN111117008B (zh) 一种耐低温耐烧蚀顺丁橡胶硫化隔热材料、制备方法及其应用
CN115368650B (zh) 耐高温、耐油柔性橡胶隔声材料及制备方法
CN116376178A (zh) 一种隔热抗烧高耐热输送带用胶料
CN116178807A (zh) 一种使用复合氧化锌硫化天然橡胶的工艺
CN100361797C (zh) 一种高分子合金刹车片的制备方法
CN117844006A (zh) 一种碳纤维增强三元乙丙橡胶与酚醛树脂基材料及方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant