CN114773053A - 一种Al/Ga/In+Ta共掺杂TiO2基巨介电陶瓷、制备方法及其应用 - Google Patents

一种Al/Ga/In+Ta共掺杂TiO2基巨介电陶瓷、制备方法及其应用 Download PDF

Info

Publication number
CN114773053A
CN114773053A CN202210482586.4A CN202210482586A CN114773053A CN 114773053 A CN114773053 A CN 114773053A CN 202210482586 A CN202210482586 A CN 202210482586A CN 114773053 A CN114773053 A CN 114773053A
Authority
CN
China
Prior art keywords
sample
dielectric ceramic
preparation
ceramic
doped tio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210482586.4A
Other languages
English (en)
Inventor
徐东
蒋志
李永涛
刘娟
程亚芳
左如忠
钟素娟
郝庆乐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anhui Polytechnic University
Anhui University of Technology AHUT
China Innovation Academy of Intelligent Equipment Co Ltd CIAIE
Original Assignee
Anhui Polytechnic University
Anhui University of Technology AHUT
China Innovation Academy of Intelligent Equipment Co Ltd CIAIE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anhui Polytechnic University, Anhui University of Technology AHUT, China Innovation Academy of Intelligent Equipment Co Ltd CIAIE filed Critical Anhui Polytechnic University
Priority to CN202210482586.4A priority Critical patent/CN114773053A/zh
Publication of CN114773053A publication Critical patent/CN114773053A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3286Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • C04B2235/662Annealing after sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

本发明涉及介电陶瓷制备技术领域,具体涉及一种Al/Ga/In+Ta共掺杂TiO2基巨介电陶瓷的制备方法,闪烧法制备了Al/Ga/In+Ta共掺杂TiO2基巨介电陶瓷。在快速烧结时,试样置于管式炉中,试样两端连接直流电源提供电场,以10℃/min的加热速率加热,当样品温度达到1200℃时,保持5min后施加550V/cm的电场,初始预设电流为1.0A,当施加电场时,电流每3min增加0.1A直到达到限制电流1.5A,然后关闭直流电源,将样品冷却至室温得到这种Al/Ga/In+Ta共掺杂TiO2基巨介电陶瓷。这种制备方法不仅对进一步研究共掺杂TiO2巨介电陶瓷材料具有重要意义,而且为其他先进功能陶瓷的制备提供了参考。

Description

一种Al/Ga/In+Ta共掺杂TiO2基巨介电陶瓷、制备方法及其 应用
技术领域
本发明涉及介电陶瓷制备技术领域,具体涉及一种Al/Ga/In+Ta共掺杂TiO2基巨介电陶瓷、制备方法及其应用。
背景技术
开发具有稳定的频率和温度稳定性、巨大的介电常数和低介电损耗的介电材料是满足微电子器件小型化和高能量密度存储应用的迫切问题。最近,研究了大量的巨介电陶瓷材料,如BaTiO3掺杂钙钛矿、NiO掺杂、CaCu3Ti4O12(CCTO)。但由于这些材料温度稳定性差、介电损耗大,难以满足高性能电容器设备的需求。现有研究中报道有(In,Nb)共掺杂金红石型 TiO2巨介电陶瓷材料,该材料具有高介电常数(>104)、低介电损耗(<0.05)以及在宽温度范围 (80-450K)内良好的频率和温度稳定性。他们提出了电子钉扎缺陷偶极子(EPDD)来解释共掺杂金红石型TiO2巨介电陶瓷良好的巨大介电性能。除了EPDD机制外,还提出了内部势垒层电容效应(IBLC)和表面势垒层电容效应(SBLC)来解释这种巨大的介电行为。因此,有必要进一步探索TiO2基陶瓷巨介电性能的来源。
研究发现掺杂元素的离子半径对材料的介电性能影响较大。王等人在Correlation between the radius of acceptor ion and the dielectricpropertiesof co-doped TiO2 ceramics(Ceramics International 45(2019)14625–14633)的研究中表明在(M0.5Nb0.5)0.01Ti0.99O2(M=Al,In,Eu)陶瓷中随着掺杂元素离子半径的增加,晶格畸变的增加,陶瓷的介电性能提高。然而,TiO2基巨介电陶瓷的制备通常需要高的烧结温度(>1400℃)和长的烧结时间(>4h),这将导致晶粒粗大和电性能进一步恶化。李等人使用火花等离子体烧结(SPS)来降低加工温度、缩短烧结时间并提高TiO2基巨介电陶瓷的介电性能。然而,以这种方式制备巨介电陶瓷的能量和成本得到了显着提高。因此,寻找一种新的烧结方法对降低烧结温度、缩短加工时间、提高电性能具有重要意义。
“闪烧”由于其烧结温度较低、烧结时间短和致密化速度快,引起了广泛的关注。彭等人在Influence of the electric field on flash-sintered(Zr+Ta)co-doped TiO2colossal permittivity ceramics(Ceramics International,2021)中发现在共掺杂的TiO2基巨介电陶瓷中,闪烧可以获得与传统固相烧结相近的电性能。Zhang等人在Effectsof phase and doping on flash sintering of TiO2(Journal of the Ceramic Societyof Japan 124(2016)296-300)中研究了不同掺杂(未掺杂、V掺杂和N掺杂)对锐钛矿和金红石TiO2体系中闪烧初始温度、电导率和微观结构的影响。杨等人在Effects of incubationon microstructure gradient in flash-sintered TiO2(Scripta Material 207(2022))中通过在恒定场和瞬时场下快速烧结TiO2陶瓷样品,研究了孵育时间对陶瓷微观结构的影响。这些研究主要集中在用闪烧法制备纯TiO2陶瓷材料,采用闪烧技术制备共掺杂TiO2陶瓷材料及对及介电性能的研究鲜有报道。
鉴于上述缺陷,本发明创作者经过长时间的研究和实践终于获得了本发明。
发明内容
本发明的目的在于解决高温下较长的烧结时间会导致晶粒异常生长,从而导致烧结样品的最终电学性能变差的问题,提供了一种Al/Ga/In+Ta共掺杂TiO2基巨介电陶瓷、制备方法及其应用。
为了实现上述目的,本发明公开了一种Al/Ga/In+Ta共掺杂TiO2基巨介电陶瓷、制备方法及其应用,包括以下步骤:
S1:将氧化物粉末混合物在ZrO2介质的乙醇中球磨24h,然后在80℃下干燥24h得到预煅烧粉末;
S2:将步骤S1中球磨后的预煅烧粉末煅烧4h;
S3:在与预煅烧粉末相同的球磨条件下将步骤S2得到的煅烧粉末进行二次球磨,然后在 80℃下干燥24h;
S4:向步骤S3中得到的干燥粉末中加入粘合剂,在310MPa下,将混合粉末单轴压制成圆盘;
S5:将步骤S4中得到的圆盘在600℃下烘烤2h以去除粘合剂;
S6:将步骤S5中得到的试样置于管式炉中,试样两端接直流电源提供电场,以10℃/min 的加热速率加热;
S7:当样品温度达到1200℃时,保持5min后施加550V/cm的电场,初始预设电流为1.0A,当施加电场时,电流每5min增加0.1A直到达到限制电流1.5A,然后关闭直流电源,将样品冷却至室温;
S8:闪烧的样品在900℃下以2℃/min的加热速率退火5h。
所述步骤S2中煅烧温度为1100℃,煅烧时间为4h。
所述步骤S4中粘合剂为5wt.%聚乙烯醇。
所述步骤S4中圆盘厚度为2mm,直径为7mm。
所述步骤S5中升温速率为2℃/min。
本发明还公开了通过上述制备方法制得的Al/Ga/In+Ta共掺杂TiO2基巨介电陶瓷以及这种Al/Ga/In+Ta共掺杂TiO2基巨介电陶瓷在电容器小型化和高储能密度化中的应用。
本发明通过研究离子半径对TiO2基巨介电陶瓷闪速烧结行为、相结构、显微组织和电学性能的影响,一方面,较大的离子半径会导致第二相的形成,使电性能恶化,使分析更加困难。另一方面,Ta比Nb多一个电子壳层,更容易降低介质损耗,本发明通过研究不同离子半径的三价离子(Al、Ga或In)与Ta共掺杂TiO2巨介电陶瓷,随着离子半径的增加,Ti3+离子和电子的含量增加,导致界面极化增强,即内部阻挡层电容效应,因此,介电常数逐渐增加。
与现有技术比较本发明的有益效果在于:本发明所有闪烧样品均为单一金红石结构,在 1kHz时,ATTO的介电损耗最低为0.2,而ITTO的介电常数最大为8100,XPS分析证实Ti3+含量随着离子半径的增加而逐渐增加,这可能会产生更多的电子并导致更强的界面极化。阻抗谱分析表明,所有快速烧结陶瓷均由半导体晶粒和绝缘晶界组成,这种巨大的介电行为归因于内部阻挡层电容效应。
附图说明
图1为550V/cm电场下,不同样品的快速烧结参数随时间的变化,(a)电流,(b)电场, (c)功率密度,(d)估计的试样温度;
图2为闪烧(M0.5Ta0.5)0.05Ti0.95O2(M=Al,Ga,In)陶瓷样品的XRD图(a)和25°-30°范围内放大的XRD图((b),虚线代表纯金红石TiO2);
图3为闪烧(M0.5Ta0.5)0.05Ti0.95O2(M=Al,Ga,In)陶瓷样品的SEM图,(a)ATTO,(b)GTTO,(c)ITTO;
图4为闪烧(M0.5Ta0.5)0.05Ti0.95O2(M=Al,Ga,In)陶瓷样品的介电特性;
图5为MTTO陶瓷的介电常数和介电损耗随温度在1kHz时的变化(a)和不同频率下ITTO陶瓷的介电常数和介电损耗随温度的变化(b);
图6为ATTO、GTTO和ITTO陶瓷的XPS光谱,(a)Al 2p,(b)Ga 2p,(c)In 3d, (d)Ta4f;
图7为O 1s的XPS光谱,(a)ATTO,(b)GTTO,(c)ITTO,(d)MTTO陶瓷;
图8为Ti 2p的XPS光谱,(a)ATTO,(b)GTTO,(c)ITTO,(d)MTTO陶瓷,(d) MTTO陶瓷的Ti3+离子浓度;
图9(a)为等效电路模型和(b)所有MTTO陶瓷的室温阻抗谱;
图10为MTTO陶瓷巨介电特性示意图。
具体实施方式
以下结合附图,对本发明上述的和另外的技术特征和优点作更详细的说明。
一、生坯准备
TiO2基巨介电陶瓷通过闪烧制备,标称成分为:(M0.5Ta0.5)0.05Ti0.95O2(MTTO),其中M=Al、 Ga、In。将粉末称重,然后以200r/min的速度球磨12h,然后放入烘箱中24h。粉末、乙醇和ZrO2球团的质量比为1:8:20。将粉末在1100℃下以10℃/min的升温速率煅烧4h,然后在与第一次相同的条件下进行第二次球磨。粉末混合物在鼓风干燥器中干燥后,加入5wt.%粘合剂(5wt.%PVA溶解在去离子水中)。混合后的粉末在单轴作用下被压制成直径约7mm、厚度约2.3mm的圆柱状片材。将制备的样品在600℃下煅烧2h以去除PVA粘合剂。
二、烧结工艺
闪烧装置包括管式炉、铂丝和直流电源。将制备好的样品置于改良的管式炉中,两端用铂丝连接直流电源。当样品以10℃/min的升温速率加热到1200℃时,在炉温保持5min后施加恒定电场(550V/cm)。电流逐渐增加0.1A(初始电流1.0A,极限电流1.5A)并保持3 分钟,如图1(a)所示。然后断开电源,将样品在炉中冷却至室温。最后,快速烧结的样品在900℃下以2℃/min的加热速率退火5h。
三、表征
通过X射线衍射(XRD,D8 Advance,德国)分析样品的相结构。通过扫描电子显微镜(SEM,NANO SEM430,USA)表征快速烧结样品的横截面微观结构。通过标准阿基米德方法测量样品的相对密度。介电特性和阻抗谱(IS)由Agilent E4990A测试。元素的价态和含量由X射线光电子能谱(XPS,ESCALAB250)表征。
四、结果
图1显示了电流、电场、功率密度和估计样品温度随时间变化的曲线。如图1(a)所示,电流以梯度方式增加,以避免在闪烧过程中形成热结(局部击穿或局部烧结)。电场对闪烧的孵化时间有很大影响。电场越大,闪烧的保温时间越短。在这项研究中,由于高电场,孵化时间几乎为零。如图1(b)所示,当施加550V/cm的电场时,样品的电导率发生剧烈变化,电场立即下降到332V/cm、295V/cm和271V/cm,然后电场保持在大约70V/cm。
由于闪烧具有烧结时间短、升温快的特点,难以直接测量样品温度。使用黑体辐射模型 (BBR)来预测样本温度,假设对流和传导到环境的损失可以忽略不计。此外,预测的快速烧结样品的温度可以通过以下公式计算:
Figure BDA0003628162950000041
其中Tf是炉温,单位为℃,ζ是Stefan-Boltzmann常数(5.67×10-8W·m-2·K-4),WV是功率密度,单位mW·mm-3,V/A是以毫米为单位的体积-表面积比。
如图1(c)和(d)所示,估计的样品温度和功率密度呈正相关,表明陶瓷样品的烧结强烈依赖于快速烧结过程中的焦耳热。在快速烧结过程中,峰值估计样品温度高于1600℃,如表1所示,这与先前的研究一致。此外,超高加热速率(>104℃/min)在样品的快速致密化中也发挥了关键作用。高加热速率和焦耳加热导致TiO2基陶瓷的高密度。
图2描述了闪烧共掺杂TiO2巨介电陶瓷的XRD谱。陶瓷样品的晶面指数与纯金红石型TiO2标准卡一致,未产生第二相,说明掺杂离子已取代Ti进入TiO2晶格。当掺杂离子进入TiO2的晶格时,会产生氧空位和Ti3+以保持电荷平衡。不同的掺杂离子半径会产生不同程度的晶格畸变。图2(b)是(110)衍射峰的放大图。从图2(b)可以看出,随着离子半径的增加,(110)的衍射峰逐渐向小角度移动,这可能是由于Al、Ga、In和Ta掺杂引起的晶格膨胀。注意到ATTO陶瓷的(110)衍射峰也有轻微的左偏,这可能是因为虽然Al3+离子的半径较小,但与Ti4+离子相比,Ta5+和Ti3+的离子半径较大。
图3描绘了闪烧(M0.5Ta0.5)0.05Ti0.95O2(M=Al,Ga,In)陶瓷样品的SEM截面图。显然,在所有陶瓷中都可以看到致密的微观结构。所有陶瓷的密度和平均晶粒尺寸总结在表1中。
表1 闪烧结果汇总
Figure BDA0003628162950000051
随着离子半径的增加,相对密度逐渐增加。ATTO陶瓷中有微小的孔洞(见图2(a)),这可能导致密度相对较低。一般来说,晶粒尺寸的增加与晶界的熔化有关。据报道,掺杂受体离子和更高的电场会产生氧空位,这将促进晶界熔化并导致晶粒尺寸增加。随着离子半径的增加,平均晶粒尺寸逐渐减小,这可能是由于不同离子半径的掺杂会导致不同的氧空位含量,这也可以在CCTO中找到。
图4显示了闪烧TiO2基巨介电陶瓷在室温下的频率相关介电常数εr和介电损耗tanδ。所有制备的陶瓷在整个测试频率范围内都实现了巨大的介电性能。可以看出,在低频范围内,闪烧样品的介电损耗tanδ随着频率的降低而逐渐增加,这可能归因于直流电导的主导作用。在103-105Hz的频率范围内,介电常数随着频率的增加而减小,对应一个介电损耗峰值,表明存在与界面极化相关的介电弛豫过程。在室温下,ATTO、GTTO和ITTO陶瓷的介电常数分别为4704、6005和8100,相应的介电损耗tanδ在1kHz时分别为0.2、0.32和0.33。一般来说,介电常数与电子在材料中跳跃的能力有关。电子越多,电子跳跃距离越长,介电常数越大,介电损耗越高。
图5(a)揭示了TiO2基巨介电陶瓷在1kHz下的介电常数εr和介电损耗tanδ的温度依赖性。如图5(a)所示,所有的快速烧结陶瓷都表现出优异的温度稳定性。可以清楚地看到,闪烧陶瓷样品的介电常数随着温度的升高而逐渐增加,这可能归因于空间电荷极化或离子位移极化。一般认为介电温度稳定性的恶化与外界效应有关,如界面极化和电子跳跃。注意到在300℃附近有一个高温介电弛豫峰,这可能归因于maxwell Wagner界面极化。值得注意的是,ITTO陶瓷具有最好的介电性能。图5(b)为介电常数和介电常数曲线ITTO陶瓷随温度在不同频率下的损耗。可以清楚地看到,随着频率的增加,介电常数在整个温度范围内逐渐减小,这可能归因于极化衰减。
图6显示了ATTO、GTTO和ITTO陶瓷样品的XPS光谱(a)Al 2p,(b)Ga 2p,(c) In 3d和(d)Ta 4f。从图6(a)可以看出,Al 2p的结合能为74eV,表明Al以+3价的形式存在于ATTO陶瓷中。在GTTO陶瓷中,Ga 2p1/2和Ga 2p3/2的结合能分别为1114.3eV 和1117.46eV,表明Ga元素的价态为+3(见图6(b))。图6(c)描绘了In 3d的XPS光谱。In 3d5/2和In 3d3/2对应的结合能分别为444.09eV和451.68eV,表明In主要以+3价的形式存在。观察到Ta4f的两个特征峰分别为27.39eV和25.51eV,分别对应于Ta 4f5/2和 Ta 4f7/2,表明Ta以+5价存在。如上所述,所有受体都具有+3价化学态。
当给体和受体离子掺杂到TiO2陶瓷中时,掺杂离子和Ti离子的不同价态会导致Ti3 +和氧空位的形成。O1s的XPS光谱如图7所示。如图7(a)、(b)、(c)所示,所有样品的O1s 光谱可以用四个峰拟合在一起,它们的位置略有不同由于不同的掺杂离子。主峰的结合能约为529.5eV,对应于[TiO6]八面体中的Ti-O键。约530.5eV的峰值对应于M/Ta-O(M=Al, Ga,In)键,主要来自共掺杂TiO2陶瓷的主相。约531.9eV的峰代表氧空位。大约533.2eV 的峰代表表面羟基(O-H)。显然,氧空位含量随着离子半径的增加而增加(见图7(d))。
图8显示了所有MTTO陶瓷的XPS光谱。如图8(a)-(c)所示,TiO2基巨介电陶瓷的XPS光谱可以拟合四个峰。两个主峰的结合能分别约为464eV和458.3eV,表明存在Ti4+离子。此外,还拟合了主峰附近的两个小峰,结合能分别约为459.4eV和457.1eV,表明存在Ti3+离子。一般来说,用Ta5+代替Ti4+会产生额外的电子,如化学方程式(2)和(3)所示。同时,Ti4+被三价离子取代会产生氧空位,如化学方程式(4)所示。在MTTO陶瓷中,相同掺杂浓度下Ti3+和氧空位浓度理论上相同,但实际上不同,这可能是受主离子半径不同所致。如图7和图8(d)所示,Ti3+和氧空位的浓度随着离子半径的增加而逐渐增加,主要是因为离子半径的增加会加剧晶格畸变从而增强氧空位捕获电子的能力和缺陷结构。因此,ITTO陶瓷具有较高的介电常数和介电损耗。
2TiO2+Ta2O5→Ti′Ti+2Ta′Ti+7OO+O2 (2)
Ti4++e-→Ti3+ (3)
M2O3+2TiO2→2M′Ti+2V″O+3O2 (4)
根据图3所示,陶瓷样品的微观结构由晶粒和晶界组成。在室温下研究了所有TiO2基陶瓷的典型Nyquist图。所有快速烧结陶瓷的典型Nyquist图都由等效电路拟合(见图9(a))。如图9(b)所示,阻抗谱仅由部分半圆弧组成。表2给出了MTTO陶瓷样品的晶粒、全电阻拟合结果。
表2 MTTO陶瓷样品晶粒及全电阻拟合结果
R<sub>g</sub>(Ω·cm) R<sub>bulk</sub>(Ω·cm)
ATTO 16 3.8×10<sup>5</sup>
GTTO 6 6.9×10<sup>5</sup>
ITTO 4 2.9×10<sup>5</sup>
如表2所示,晶界的电阻远大于晶粒的电阻,说明陶瓷由半导体晶粒和绝缘晶界组成。 ITTO陶瓷的总电阻最低,对应于低频范围内的较高介电损耗。
根据XPS和IS分析,晶粒具有高电导率,这是由于陶瓷材料中存在Ti3+离子(见化学方程式(2)和(3))。由于Ti4+离子与被俘获电子的结合能相对较弱,电子可以在不同的Ti离子之间以较弱的活化能迁移,导致晶界处的界面极化相对较强。考虑到这一点,基于TiO2的巨介电陶瓷的巨大介电性能归因于IBLC机制,它由半导体晶粒和绝缘晶界组成(见图10)。如图10所示,随着离子半径的增加,Ti3+离子和电子的含量增加,导致界面极化增强,即IBLC效应,因此,介电常数逐渐增加。
以上所述仅为本发明的较佳实施例,对本发明而言仅仅是说明性的,而非限制性的。本专业技术人员理解,在本发明权利要求所限定的精神和范围内可对其进行许多改变,甚至等效,但都将落入本发明的保护范围内。

Claims (7)

1.一种Al/Ga/In+Ta共掺杂TiO2基巨介电陶瓷的制备方法,其特征在于,包括以下步骤:
S1:将氧化物粉末混合物在ZrO2介质的乙醇中球磨24h,然后在80℃下干燥24h得到预煅烧粉末;
S2:将步骤S1中球磨后的预煅烧粉末煅烧4h;
S3:在与预煅烧粉末相同的球磨条件下将步骤S2得到的煅烧粉末进行二次球磨,然后在80℃下干燥24h;
S4:向步骤S3中得到的干燥粉末中加入粘合剂,在310MPa下,将混合粉末单轴压制成圆盘;
S5:将步骤S4中得到的圆盘在600℃下烘烤2h以去除粘合剂;
S6:将步骤S5中得到的试样置于管式炉中,试样两端接直流电源提供电场,以10℃/min的加热速率加热;
S7:当样品温度达到1200℃时,保持5min后施加550V/cm的电场,初始预设电流为1.0A,当施加电场时,电流每5min增加0.1A直到达到限制电流1.5A,然后关闭直流电源,将样品冷却至室温;
S8:闪烧的样品在900℃下以2℃/min的加热速率退火5h。
2.如权利要求1所述的一种Al/Ga/In+Ta共掺杂TiO2基巨介电陶瓷的制备方法,其特征在于,所述步骤S2中煅烧温度为1100℃,升温速率为10℃/min。
3.如权利要求1所述的一种Al/Ga/In+Ta共掺杂TiO2基巨介电陶瓷的制备方法,其特征在于,所述步骤S4中粘合剂为5wt.%聚乙烯醇。
4.如权利要求1所述的一种Al/Ga/In+Ta共掺杂TiO2基巨介电陶瓷的制备方法,其特征在于,所述步骤S4中圆盘厚度为2mm,直径为7mm。
5.如权利要求1所述的一种Al/Ga/In+Ta共掺杂TiO2基巨介电陶瓷的制备方法,其特征在于,所述步骤S5中升温速率为2℃/min。
6.一种采用如权利要求1~5任一项所述的制备方法制得的Al/Ga/In+Ta共掺杂TiO2基巨介电陶瓷。
7.一种如权利要求6所述的Al/Ga/In+Ta共掺杂TiO2基巨介电陶瓷在电容器小型化和高储能密度化中的应用。
CN202210482586.4A 2022-05-05 2022-05-05 一种Al/Ga/In+Ta共掺杂TiO2基巨介电陶瓷、制备方法及其应用 Pending CN114773053A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210482586.4A CN114773053A (zh) 2022-05-05 2022-05-05 一种Al/Ga/In+Ta共掺杂TiO2基巨介电陶瓷、制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210482586.4A CN114773053A (zh) 2022-05-05 2022-05-05 一种Al/Ga/In+Ta共掺杂TiO2基巨介电陶瓷、制备方法及其应用

Publications (1)

Publication Number Publication Date
CN114773053A true CN114773053A (zh) 2022-07-22

Family

ID=82434136

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210482586.4A Pending CN114773053A (zh) 2022-05-05 2022-05-05 一种Al/Ga/In+Ta共掺杂TiO2基巨介电陶瓷、制备方法及其应用

Country Status (1)

Country Link
CN (1) CN114773053A (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102863210A (zh) * 2012-10-12 2013-01-09 武汉理工大学 高致密、高导电氧化锡锑陶瓷的制备方法
CN105732020A (zh) * 2016-01-19 2016-07-06 陕西师范大学 一种巨介电、低损耗二氧化钛基复合陶瓷的制备方法
CN111410527A (zh) * 2020-03-20 2020-07-14 广东风华高新科技股份有限公司 一种复相巨介电陶瓷材料及其制备方法
CN113831121A (zh) * 2021-09-25 2021-12-24 天津理工大学 一种高击穿场强的复相巨介电陶瓷材料及其制备方法
CN113831144A (zh) * 2021-10-26 2021-12-24 中国工程物理研究院材料研究所 一种多场耦合超快速烧结制备陶瓷材料的方法
CN114262223A (zh) * 2021-12-29 2022-04-01 安徽工业大学 一种In+Ta共掺杂TiO2基巨介电陶瓷、制备方法及其应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102863210A (zh) * 2012-10-12 2013-01-09 武汉理工大学 高致密、高导电氧化锡锑陶瓷的制备方法
CN105732020A (zh) * 2016-01-19 2016-07-06 陕西师范大学 一种巨介电、低损耗二氧化钛基复合陶瓷的制备方法
CN111410527A (zh) * 2020-03-20 2020-07-14 广东风华高新科技股份有限公司 一种复相巨介电陶瓷材料及其制备方法
US20220127197A1 (en) * 2020-03-20 2022-04-28 Guangdong Fenghua Advanced Technology Holding Co., Ltd. Multiphase ceramic material with giant dielectric constant, and preparation method thereof
CN113831121A (zh) * 2021-09-25 2021-12-24 天津理工大学 一种高击穿场强的复相巨介电陶瓷材料及其制备方法
CN113831144A (zh) * 2021-10-26 2021-12-24 中国工程物理研究院材料研究所 一种多场耦合超快速烧结制备陶瓷材料的方法
CN114262223A (zh) * 2021-12-29 2022-04-01 安徽工业大学 一种In+Ta共掺杂TiO2基巨介电陶瓷、制备方法及其应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHENWEI LI ET AL: ""Colossal permittivity in titanium dioxide ceramics modified by tantalum and trivalent elements"", 《ACTA MATERIALIA》 *

Similar Documents

Publication Publication Date Title
Zhu et al. Effects of grain size and temperature on the energy storage and dielectric tunability of non-reducible BaTiO3-based ceramics
Li et al. Remarkably enhanced dielectric stability and energy storage properties in BNT—BST relaxor ceramics by A-site defect engineering for pulsed power applications
Wang et al. Dielectric and ferroelectric properties of SrTiO3-Bi0. 54Na0. 46TiO3-BaTiO3 lead-free ceramics for high energy storage applications
Ren et al. Energy storage density and tunable dielectric properties of BaTi0. 85Sn0. 15O3/MgO composite ceramics prepared by SPS
Li et al. BaTiO3-based ceramics with high energy storage density
Zhao et al. The properties of Al2O3 coated fine‐grain temperature stable BaTiO3‐based ceramics sintered in reducing atmosphere
Yan et al. Enhanced energy storage property and dielectric breakdown strength in Li+ doped BaTiO3 ceramics
Dhak et al. Dielectric and impedance spectroscopy study of Ba 0.8 Bi 2.133 Nb 1.6 Ta 0.4 O 9 ferroelectric ceramics, prepared by chemical route
Gong et al. Effect of Mg on the dielectric and electrical properties of BaTiO 3-based ceramics
Silva et al. Multifuncional translucent ferroelectric Ba1− xCaxTiO3 ceramics produced by laser sintering
CN114262223A (zh) 一种In+Ta共掺杂TiO2基巨介电陶瓷、制备方法及其应用
Wang et al. Fabrication of BaTiO3@ FeO core-shell nanoceramics for dielectric capacitor applications
Wang et al. Enhanced energy storage performance in (1-x) Bi0. 85Sm0. 15FeO3-xCa0. 5Sr0. 5Ti0. 9Zr0. 1O3 relaxor ceramics
Zeng et al. NiNb2O6‐BaTiO3 Ceramics for Energy‐Storage Capacitors
Chen et al. Microstructure, dielectric and ferroelectric properties of (1− x) BaTiO 3–x BiYbO 3 ceramics fabricated by conventional and microwave sintering methods
CN105753471A (zh) 一种高电卡效应铌酸锶钡陶瓷的制备方法
Xie et al. Structural evolution and dielectric properties of (Bi, Mg, Zr)-doped BaTiO3 ceramics for X8R-MLCC application
Fujii et al. Effect of oxygen partial pressure during firing on the high AC field response of BaTiO3 dielectrics
Xu et al. The colossal permittivity effect on BaTiO3 induced by different sinter atmosphere
Sarraf et al. Enhanced electrocaloric response and energy storage performance of Li‐substituted BaTiO3 ceramics
Yao et al. Thermal stability and enhanced electrical properties of Er 3+-modified Na 0.5 Bi 4.5 Ti 4 O 15 lead-free piezoelectric ceramics
Lin et al. Novel barium zirconate titanate-based lead-free ceramics with stably high energy storage performance over a broad temperature and frequency range
CN115093215B (zh) 一种Sr+Sb共掺杂TiO2基巨介电陶瓷、制备方法及其应用
CN114773053A (zh) 一种Al/Ga/In+Ta共掺杂TiO2基巨介电陶瓷、制备方法及其应用
Rajabtabar-Darvishi et al. Effects of synthesis technique on dielectric properties of CaCu3Ti4O12 ceramic

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20220722