CN114764206A - 银系晶体在制备非线性光学器件中的应用 - Google Patents

银系晶体在制备非线性光学器件中的应用 Download PDF

Info

Publication number
CN114764206A
CN114764206A CN202110053786.3A CN202110053786A CN114764206A CN 114764206 A CN114764206 A CN 114764206A CN 202110053786 A CN202110053786 A CN 202110053786A CN 114764206 A CN114764206 A CN 114764206A
Authority
CN
China
Prior art keywords
crystal
nonlinear optical
silver
laser
frequency conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110053786.3A
Other languages
English (en)
Other versions
CN114764206B (zh
Inventor
林哲帅
公丕富
康雷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Technical Institute of Physics and Chemistry of CAS
Original Assignee
Technical Institute of Physics and Chemistry of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Technical Institute of Physics and Chemistry of CAS filed Critical Technical Institute of Physics and Chemistry of CAS
Priority to CN202110053786.3A priority Critical patent/CN114764206B/zh
Publication of CN114764206A publication Critical patent/CN114764206A/zh
Application granted granted Critical
Publication of CN114764206B publication Critical patent/CN114764206B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/355Non-linear optics characterised by the materials used
    • G02F1/3551Crystals
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/12Halides
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/353Frequency conversion, i.e. wherein a light beam is generated with frequency components different from those of the incident light beams
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/39Non-linear optics for parametric generation or amplification of light, infrared or ultraviolet waves

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本发明公开了一种银系晶体在制备非线性光学器件中的应用,所述银系晶体的化学式为Ag2MI4,其中,M选自II B族元素。该银系晶体用于制备非线性光学器件中既具有较大的光学带隙,同时又呈现足够的非线性光学效应。

Description

银系晶体在制备非线性光学器件中的应用
技术领域
本发明涉及非线性光学晶体应用与激光技术领域。更具体地,涉及一种银系晶体在制备非线性光学器件中的应用。
背景技术
非线性光学晶体是全固态激光技术的重要元件,其可以利用非线性光学效应实现激光频率的转换,并能够通过多级频率转换技术,将近红外激光转换至新波段,实现紫外深紫外、红外及中远红外乃至太赫兹波段的激光输出。非线性光学晶体具有转换效率高、可调谐、光束质量好、小型化等优点,已被广泛应用于全固态激光器中,在光谱学、量子光学、通讯和光计算、生物成像、精密制造等科技及工业前沿领域具有重要和广泛的应用。
比如,波长位于3~5微米和8~12微米“大气窗口”的红外激光在激光医疗、红外通讯、红外探测、激光制导、军事对抗等民用和军用领域具有重要应用前景。目前,获得此波段(中红外)激光的重要途径之一就是,利用非线性光学晶体对可见或者近红外波段的激光进行频率转换,例如通过光参量振荡或者光参量放大等手段将近红外波段的激光(1064纳米)延伸至中红外区。当前,该波段的激光变频技术主要应用黄铜矿型结构的非线性光学材料,如AgGaS2和ZnGeP2系列晶体。但是它们的抗激光损伤阈值太低和多光子吸收严重,限制了其在中红外波段的高功率激光应用。因此,探索性能优异的中红外非线性光学晶体材料已经成为当前非线性材料领域探索的前沿热点。
AgGaS2和ZnGeP2系列晶体所遭遇的技术问题,包括抗激光损伤阈值太低和多光子吸收严重等,可以通过增大晶体材料的光学带隙而得以部分解决。为此,一系列大带隙的卤化物材料(比如CsGeCl3系列和NaSb3F10等)被合成和发现。尽管它们的光学带隙得到提升(典型带隙大于3eV),但是其非线性光学效应却降低了很多(大都为KDP量级,即d36~0.39pm/V,而实际需求中需要其非线性光学系数大于10倍KDP,即d>3.9pm/V)。因此,探索既具有较大光学带隙(通常要求其带隙大于3eV),又呈现足够非线性光学效应(非线性光学系数大于3.9pm/V)的卤化物材料成为当前要解决的关键科学问题,其实现有利于可获得高的输出功率。
发明内容
本发明的目的在于提供一种银系晶体在制备非线性光学器件中的应用,该银系晶体用于制备非线性光学器件中既具有较大的光学带隙,同时又呈现足够的非线性光学效应,更重要的,该晶体可承受高的输入功率以及在实际应用中获得高的输出功率。
为达到上述目的,本发明采用下述技术方案:
一种银系晶体在制备非线性光学器件中的应用,所述银系晶体的化学式为Ag2MI4,其中,M选自II B族元素。
进一步地,所述M选自Zn或Cd。
进一步地,M为Zn,所述银系晶体的化学式为Ag2ZnI4,属于正交晶系,Pmn21空间群,晶胞参数为
Figure BDA0002899925290000021
α=β=γ=90°,Z=4,胞体积为
Figure BDA0002899925290000022
Figure BDA0002899925290000023
进一步地,M为Cd,所述银系晶体的化学式为Ag2CdI4,属于四方晶系,I-42m空间群,晶胞参数为
Figure BDA0002899925290000024
α=β=γ=90°,Z=4,单胞体积为
Figure BDA0002899925290000025
进一步地,所述非线性光学器件中包含激光频率转换器件,其中,至少一束入射电磁辐射通过所述激光频率转换器件后产生至少一束频率不同于所述入射电磁辐射的输出辐射。
进一步地,所述激光频率转换器件为所述银系晶体经切割、在同光面抛光后制备得到。
进一步地,所述激光频率转换器件为倍频激光频率转换器件、光参量振荡器件、光参量放大器件中的一种。
进一步地,所述非线性光学器件为红外波段的倍频器件、中红外波段的倍频器件、电光器件、谐波发生器或者光参量器件。
本发明中,对所述银系晶体的来源没有特殊要求,可以购买或根据已有文献的制备方法进行自制。
本发明的有益效果如下:
与现有技术相比,本发明中的银系晶体既具有更大的光学带隙,同时又呈现更强的非线性光学效应,可以实现较AgGaS2晶体更高的抗激光损伤性能和更高的非线性光学转换效率,从而可用于制备非线性光学器件中。一旦生长出大尺寸且光学质量高的该银系晶体,制备得到的器件则可实现具有更高的输出功率的红外激光器。
附图说明
下面结合附图对本发明的具体实施方式作进一步详细的说明。
图1示出Ag2CdI4化合物的理论与实验XRD图谱。
具体实施方式
为了更清楚地说明本发明,下面结合优选实施例和附图对本发明做进一步的说明。附图中相似的部件以相同的附图标记进行表示。本领域技术人员应当理解,下面所具体描述的内容是说明性的而非限制性的,不应以此限制本发明的保护范围。
根据文献《Journal of Physics:Condensed Matter》,Vol.14,2002,13579-13596的记载可制备Ag2ZnI4样品:
将AgI和ZnI2原料按照摩尔比为2:1的比例混合均匀,并在453K进行固相反应,中间进行多次研磨后,经过4周的反应即可得到Ag2ZnI4样品。
得到的Ag2ZnI4样品属于正交晶系,Pmn21空间群,晶胞参数为
Figure BDA0002899925290000026
Figure BDA0002899925290000027
α=β=γ=90°,Z=4,胞体积为
Figure BDA0002899925290000028
根据文献《Journal of Physics:Codensed Matter》,Vol.14,2002,13579-13596的记载可制备Ag2CdI4样品;
将AgI和CdI2原料按照摩尔比为2:1的比例混合均匀,并在373K进行固相反应,中间进行多次研磨后,经过6周的反应即可得到Ag2CdI4样品。
得到的Ag2CdI4晶体属于四方晶系,I-42m空间群,晶胞参数为
Figure BDA0002899925290000031
Figure BDA0002899925290000032
α=β=γ=90°,Z=4,单胞体积为
Figure BDA0002899925290000033
为了准确评估其非线性光学性能,本发明采用成熟可靠的第一性原理计算模拟方法对本发明所述的银系晶体进行了非线性光学性质的计算,为了证明本发明所述理论计算结果的可参考性,已知的商用中红外非线性光学晶体AgGaS2的计算结果被列出作为参照。计算结果见表1,列出了AgGaS2和银系晶体的实验测量与理论计算的非线性光学性质。
表1
Figure BDA0002899925290000034
由表1可见,本发明提供的计算方法能够有效预测红外非线性光学晶体的非线性光学性能和带隙,得到的晶体的非线性光学性质与实验值几乎一致,所以,本发明提供的理论计算方法得出的光学性能的数据结果是真实有效的,具有可参考性。由于Ag2ZnI4和Ag2CdI4的非线性光学性能至今尚未被研究过,我们首次对其进行了计算,并给出了其非线性光学系数的大小。
将上述的银系晶体用于制备非线性光学器件,具体地,将上述制备得到的银系晶体进行晶体生长,对所得到的大尺寸的晶体按所需角度、厚度、截面尺寸切割并在通光面抛光后,制成激光频率转换器件。
非线性光学器件的工作原理为:由激光器发出入射激光束射入上述激光频率转换器件,所产生的出射激光束通过滤波片,而获得所需要的激光束。
具体地,在室温下,用入射波长为2微米的激光器作光源,输出波长为1微米的倍频光,结果可知,当激光频率转换器件为Ag2ZnI4晶体制备得到时,激光强度为相同条件下AgGaS2的0.8倍;当激光频率转换器件为Ag2CdI4晶体制备得到时,激光强度为相同条件下AgGaS2的0.5倍。进一步,与商用AgGaS2晶体相比,Ag2ZnI4晶体与Ag2CdI4晶体的材料带隙均有了明显的提升,其材料带隙的计算值与实验值均超过了3.0eV,且其非线性光学系数超过了3.9pm/V,达到了红外非线性光学材料的性能指标。考虑到材料的带隙与其抗激光损伤阈值呈正相关关系,其材料带隙较商用AgGaS2晶体的提升有利于获得更高的抗激光损伤阈值,从而使材料能够承受更高功率的输入激光,进而获得高的输出功率。
对比例1制备β-Ag2HgI4晶体:
根据文献《Journal of Solid State Chemistry》,Vol.10,1974,20-28的记载可以制备β-Ag2HgI4晶体:
首先制备3.0M K2HgI4的浓缩液,让其首先关于HgI2饱和,再关于AgI饱和。将该溶液移至直径为24mm深度为190mm的试管中,并小心加入蒸馏水。这时溶液会分层,注意不要在两层之间引入混合物。将试管在黑暗处静置4周,在底层溶液中会出现黄色晶体。移去K2HgI4溶液并用蒸馏水清洗晶体,最后得到长薄的黄色针状β-Ag2HgI4晶体。
得到的β-Ag2HgI4晶体属于四方晶系,I-4空间群,晶胞参数为
Figure BDA0002899925290000041
Figure BDA0002899925290000042
α=β=γ=90°,Z=4单胞体积为
Figure BDA0002899925290000043
根据实验数据,β-Ag2HgI4晶体的带隙只有2.27eV,其计算的最大倍频系数为d36=19.82pm/V,与近期《Cryst.Growth Des.》,Vol.20,2020,7470-7476报道的数据相符。
对比商用晶体AgGaS2发现,β-Ag2HgI4虽然具备了更强的非线性光学系数,但是其材料带隙仅为2.27eV,小于AgGaS2的带隙。由于商用AgGaS2晶体较小的带隙是限制其进一步应用的关键因素,β-Ag2HgI4更小的带隙将会使材料能承受的输入激光的功率降低,进而不利于获得高的输出功率。
根据二阶倍频输出的公式:
Figure BDA0002899925290000044
晶体的输出功率与晶体的生长尺寸(光在晶体中传播路径的长度L,这里近似为晶体的长度),晶体的本征性能(有效倍频系数d,这里用计算值取代),以及输入激光的参数(输入功率P1,光束横截面积A)、此外ε0为真空介电常数,c为真空光速,n1是基频光折射率,n2是倍频光折射率,λ2是倍频光波长,△k为波矢。为了方便比较,我们这里假设晶体生长的足够理想,即L相同,折射率在长波段色散很小,即n1=n2,光束面积相同,其他指标均一样,则其最大输出功率的比较主要与倍频系数d、最大输入功率P1(激光损伤阈值)以及折射率所决定。
根据相关数据,Ag2ZnI4、Ag2ZnI4、β-Ag2HgI4的最高二阶倍频输出功率与AgGaS2的比值分别为
Figure BDA0002899925290000045
Figure BDA0002899925290000046
由于材料的带隙与其抗激光损伤阈值呈正相关关系,但是其大小没有严格的对应,我们选取了具有相似结构和带隙的Li2BaGeS4,Li2BaSnS4和Li2BaSnSe4三种化合物的粉末抗激光损伤阈值作为参考,它们的抗激光损伤阈值分别是AgGaS2的11倍、6.5倍和1倍。最终可以粗略估计理想情况下,Ag2ZnI4、Ag2CdI4的最高二阶倍频输出功率分别是130和17倍的AgGaS2,远大于β-Ag2HgI4的2.1倍AgGaS2。很明显,Ag2ZnI4晶体与Ag2CdI4晶体具备高功率激光输出的潜力,其输出极限远大于目前的商用晶体AgGaS2以及同系列的β-Ag2HgI4晶体。
显然,本发明的上述实施例仅仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定,对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动,这里无法对所有的实施方式予以穷举,凡是属于本发明的技术方案所引伸出的显而易见的变化或变动仍处于本发明的保护范围之列。

Claims (8)

1.一种银系晶体在制备非线性光学器件中的应用,其特征在于,所述银系晶体的化学式为Ag2MI4,其中,M选自II B族元素。
2.根据权利要求1所述的应用,其特征在于,所述M选自Zn或Cd。
3.根据权利要求2所述的应用,其特征在于,M为Zn,所述银系晶体的化学式为Ag2ZnI4,属于正交晶系,Pmn21空间群,晶胞参数为
Figure FDA0002899925280000011
α=β=γ=90°,Z=4,胞体积为
Figure FDA0002899925280000012
4.根据权利要求2所述的应用,其特征在于,M为Cd,所述银系晶体的化学式为Ag2CdI4,属于四方晶系,I-42m空间群,晶胞参数为
Figure FDA0002899925280000013
α=β=γ=90°,Z=4,单胞体积为
Figure FDA0002899925280000014
5.根据权利要求1所述的应用,其特征在于,所述非线性光学器件中包含激光频率转换器件,其中,至少一束入射电磁辐射通过所述激光频率转换器件后产生至少一束频率不同于所述入射电磁辐射的输出辐射。
6.根据权利要求5所述的应用,其特征在于,所述激光频率转换器件为所述银系晶体经切割、在同光面抛光后制备得到。
7.根据权利要求5所述的应用,其特征在于,所述激光频率转换器件为倍频激光频率转换器件、光参量振荡器件、光参量放大器件中的一种。
8.根据权利要求5所述的应用,其特征在于,所述非线性光学器件为红外波段的倍频器件、电光器件、谐波发生器或者光参量器件。
CN202110053786.3A 2021-01-15 2021-01-15 银系晶体在制备非线性光学器件中的应用 Active CN114764206B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110053786.3A CN114764206B (zh) 2021-01-15 2021-01-15 银系晶体在制备非线性光学器件中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110053786.3A CN114764206B (zh) 2021-01-15 2021-01-15 银系晶体在制备非线性光学器件中的应用

Publications (2)

Publication Number Publication Date
CN114764206A true CN114764206A (zh) 2022-07-19
CN114764206B CN114764206B (zh) 2024-09-03

Family

ID=82363277

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110053786.3A Active CN114764206B (zh) 2021-01-15 2021-01-15 银系晶体在制备非线性光学器件中的应用

Country Status (1)

Country Link
CN (1) CN114764206B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100074281A1 (en) * 2005-05-02 2010-03-25 Bae Systems Information And Electronic Systems Integration Inc. Thulium Laser Pumped Mid-IR Source With Multi-Spectral Line Output
CN110578173A (zh) * 2019-10-25 2019-12-17 河北大学 一种非线性光学晶体锶锂硅硫及其制备方法与应用
CN111593409A (zh) * 2019-02-20 2020-08-28 北京师范大学 红外非线性光学硫属化合物LixAg1-xGaS2及其制备方法与用途

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100074281A1 (en) * 2005-05-02 2010-03-25 Bae Systems Information And Electronic Systems Integration Inc. Thulium Laser Pumped Mid-IR Source With Multi-Spectral Line Output
CN111593409A (zh) * 2019-02-20 2020-08-28 北京师范大学 红外非线性光学硫属化合物LixAg1-xGaS2及其制备方法与用途
CN110578173A (zh) * 2019-10-25 2019-12-17 河北大学 一种非线性光学晶体锶锂硅硫及其制备方法与应用

Also Published As

Publication number Publication date
CN114764206B (zh) 2024-09-03

Similar Documents

Publication Publication Date Title
Liu et al. CVD-grown MoSe2 with high modulation depth for ultrafast mode-locked erbium-doped fiber laser
Hussaini et al. Growth and high frequency dielectric study of pure and thiourea doped KDP crystals
Kumar et al. The effect of Fe3+ doping in Potassium Hydrogen Phthalate single crystals on structural and optical properties
Anis et al. Effect of sodium metasilicate on structural, optical, dielectric and mechanical properties of ADP crystal
Vasudevan et al. Synthesis, optical and electrical studies of nonlinear optical crystal: L-arginine semi-oxalate
Deekshitha et al. Effect of Na doping on photoluminescence and laser stimulated nonlinear optical features of ZnO nanostructures
CN113872037A (zh) 非线性倍频设备、手性钙钛矿材料及其制备方法与应用
Liu et al. Maintain Raman property in ZnS single crystal waveguide formed by multi-energy He ion implantation at 633 nm
Manimekalai et al. Influence of potassium chloride doping on the properties of potassium dihydrogen phosphate crystal for nonlinear optical applications
Ertap et al. Linear and nonlinear absorption, SHG and photobleaching behaviors of Dy doped GaSe single crystal
Zhou et al. Multi-frequency switch and excellent slow light based on tunable triple plasmon-induced transparency in bilayer graphene metamaterial∗
Guo et al. Recent advances in tellurite molybdate/tungstate crystals
Ahmad et al. In2Se3 saturable absorber for generating tunable Q-switched outputs from a bismuth–erbium doped fiber laser
CN114764206B (zh) 银系晶体在制备非线性光学器件中的应用
Das et al. AgGaGeS4 crystals for nonlinear laser device applications
Shankar et al. Investigation of optical band gap in pyrrolidinomethylphthalimide crystal
Li et al. Blue light emission from an organic nonlinear optical crystal of 4-aminobenzophenone pumped by a laser diode
Kabanov et al. Parametric frequency converters based on new nonlinear crystals
Zhang et al. Electrically controlled tunable optical parametric oscillator (3.0-6.7 μm) based on BaGa4Se7 crystal pumped by a Q-switch Nd: YAG laser
Wang et al. Growth and spectroscopic characteristics of Cr3+: KSc (WO4) 2 Crystal
Dillip et al. Growth and Characterization of Non Linear Optical Material
Hopkins et al. Potential of CdSiP2 for enabling mid-infrared laser sources
Madroñero et al. Tm, Ho: KY (WO4) 2 planar waveguide laser
Majidiyan et al. Optical Properties of the Tysonite Phase of LaF3 Compound in the Ground State by First Principles Calculations
CN114142325B (zh) 一种基于碳化硅单晶的宽带强场太赫兹源

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant