CN114763368A - 一种芳香族氨基酸卤化修饰的直接光化学方法 - Google Patents

一种芳香族氨基酸卤化修饰的直接光化学方法 Download PDF

Info

Publication number
CN114763368A
CN114763368A CN202110047611.1A CN202110047611A CN114763368A CN 114763368 A CN114763368 A CN 114763368A CN 202110047611 A CN202110047611 A CN 202110047611A CN 114763368 A CN114763368 A CN 114763368A
Authority
CN
China
Prior art keywords
aromatic amino
amino acid
ultraviolet light
protein
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110047611.1A
Other languages
English (en)
Other versions
CN114763368B (zh
Inventor
王方军
罗盼
刘哲益
肖春雷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian Institute of Chemical Physics of CAS
Original Assignee
Dalian Institute of Chemical Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian Institute of Chemical Physics of CAS filed Critical Dalian Institute of Chemical Physics of CAS
Priority to CN202110047611.1A priority Critical patent/CN114763368B/zh
Publication of CN114763368A publication Critical patent/CN114763368A/zh
Application granted granted Critical
Publication of CN114763368B publication Critical patent/CN114763368B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/107General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length by chemical modification of precursor peptides
    • C07K1/1072General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length by chemical modification of precursor peptides by covalent attachment of residues or functional groups
    • C07K1/1077General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length by chemical modification of precursor peptides by covalent attachment of residues or functional groups by covalent attachment of residues other than amino acids or peptide residues, e.g. sugars, polyols, fatty acids

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明涉及一种芳香族氨基酸氯化、溴化或碘化修饰的直接光化学方法。该方法利用紫外光直接作用于含有卤化盐的蛋白质、多肽或氨基酸样品溶液,实现对样品中芳香族氨基酸的高效卤化修饰。本发明操作简便,无需添加复杂的催化剂或配体便可实现芳香族氨基酸的直接快速卤化修饰。

Description

一种芳香族氨基酸卤化修饰的直接光化学方法
技术领域
本发明属于氨基酸紫外光化学反应领域,具体涉及一种基于紫外光诱导的芳香族氨基酸的氯化、溴化或碘化修饰新方法。
背景技术
卤代反应是有机物生物合成中最重要的转变之一。在过去的十年里,科学家对芳香族和脂肪族的C-H卤代反应非常感兴趣。目前生物体内氨基酸的卤代方法主要是通过基因突变、酶催化反应等方法实现的。在体外化学合成反应中,目前的芳香族氨基酸的卤代方法主要是通过过渡金属催化的亲电取代反应实现的,例如使用Co(II)和Fe(III)催化剂催化的芳香C(sp2)-H键卤化反应。虽然目前体外的芳香族氨基酸的氯化、溴化或碘化化学反应已经极为普遍,但是这些催化反应耗时很长,反应体系由于添加了催化剂以及各种配体因此非常复杂,并不适合进行生物兼容性体系的反应。本发明提出一种新型生物兼容的紫外光诱导的化学修饰方法,利用紫外光照射产生的氯自由基、溴自由基或碘自由基对芳香族氨基酸的直接卤化修饰。此外,氯化和溴化修饰由于独特的同位素峰在质谱图中极易被鉴别出来,在蛋白质化学修饰的鉴定中有其独特优势。
发明内容
本发明旨在提出一种基于紫外光诱导的芳香族氨基酸的氯化、溴化或碘化修饰新方法,利用紫外光源产生的紫外光作用于含有氯化盐、溴化盐或碘化盐的蛋白质、多肽或氨基酸样品溶液,从而实现如图1所示的样品中芳香族氨基酸的直接氯化、溴化或碘化修饰。根据紫外光能量以及紫外光照射时间不同,所得产物应是对芳香环上不同C-H键取代后的混合物。本发明操作简便,反应迅速,无需添加复杂的催化剂或配体便可实现体外生物可兼容性体系中芳香族氨基酸的直接氯化、溴化或碘化修饰。
本发明提供但不限制于下述基于紫外光诱导的芳香族氨基酸氯化、溴化或碘化修饰方法:
(1)蛋白样品溶于pH为5~10浓度为1mM~1M的氯化盐、溴化盐或碘化盐卤化盐中,样品浓度在0.0001~100mg/mL,体积为0.1μL~1000mL之间;
(2),紫外光源产生的紫外光垂直照射于蛋白质样品溶液,紫外光照射时间为1s~10h;
(3)对上述步骤得到的化学修饰后的样品溶液和未经修饰的对照组样品使用色谱和质谱进行相应的分析检测;
步骤(1)所述的蛋白质溶液中包括单一蛋白质、蛋白质酶解液、蛋白质混合物、蛋白质-分子混合物或蛋白质-蛋白质复合物;
步骤(1)所述的氯化盐、溴化盐或碘化盐包括但不限于氯化钠、氯化钾、溴化钠、溴化钾、碘化钠、碘化钾等水溶性盐;
步骤(2)所述的紫外光波长为100~500nm,能量为1μJ~100mJ;
本发明具有稳定高效、快速简便且生物兼容的优点,利用紫外光源产生的紫外光直接作用于含有水溶性氯化盐、溴化盐或碘化盐的蛋白质溶液,从而对芳香族氨基酸进行直接卤化修饰,避免了常规芳香族氨基酸卤化反应体系中的各种复杂的催化剂、配体以及苛刻的反应条件。体现本发明特征与优点的典型实施例将在以下的说明中详细叙述。
以下描述的实施例只是本发明的一部分实施例,而不是全部的实施例。所描述的实施例仅用于图示说明,而不是对本发明范围的限制。基于本发明的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
附图说明
图1为基于紫外光诱导的芳香族氨基酸的氯化、溴化或碘化修饰方法示意图;
图2为标肽GGGGYG的紫外光照射前后的MALDI质谱图;
图3为标肽GGGGHG的紫外光照射前后的MALDI质谱图;
图4为溶菌酶酶解液紫外光照射前后的MALDI质谱图;
图5为肌红蛋白完整蛋白紫外光照射前后的高分辨质谱图;
图6为肌红蛋白完整蛋白紫外光照射前后的高分辨质谱图去卷积结果;
图7为复杂鼠肝蛋白酶解液体系紫外光照射后二级图谱示意图。
具体实施方式
实施例1
标肽GGGGYG的溴化修饰:
(1)标肽样品GGGGYG溶于pH为5(5M盐酸调制),浓度为500mmol/L的溴化钾中,样品浓度为10mg/mL,体积为1mL;
(2)150nm紫外光光源产生的紫外光垂直照射于步聚(1)标肽样品溶液,紫外光能量为10mJ,照射时间为100s;
以未经紫外光照射的步聚(1)标肽样品溶液为对照组;
(3)对上述步骤得到的紫外光照射后的样品溶液以及未经紫外光照射的对照组样品点靶后进行AB Sciex 5800飞行时间质谱仪检测。
分析结果:由图2可见,与对照组相比,紫外光照射后产生了溴取代后的质谱峰,且谱峰呈现明显的同位素峰特征,包括取代一个溴的质谱峰m/z=567.2&m/z=569.2,取代两个溴的质谱峰m/z=645.1&m/z=646.1&m/z=647.1。理论上溴天然同位素峰的强度分布为Br-79(50.69%)和Br-81(49.31),约为1:1,因此当酪氨酸被一个溴取代后的同位素峰强度分布为Br-79:Br-81=1:1,当酪氨酸被两个溴取代后的同位素峰强度分布为Br-79:Br-79+Br-81:Br-81=1:2:1。由于理论预测到的结果与实验得到的质谱峰相符,进一步证明了酪氨酸在紫外光照射下发生了直接溴代反应,利用质谱峰的强度计算得产率为60%。
实施例2
标肽GGGGHG的碘化修饰:
(1)标肽样品GGGGHG溶于pH为10(10M氢氧化钠调制),浓度为5mmol/L的碘化钾中,样品浓度在0.01mg/mL,体积为5μL;
(2)300nm紫外光光源产生的紫外光垂直照射于步聚(1)标肽样品溶液,紫外光能量为1μJ,照射时间为1000s;
以未经紫外光照射的步聚(1)标肽样品溶液为对照组;
(3)对上述步骤得到的紫外光照射后的样品溶液以及未经紫外光照射的对照组样品点靶后进行AB Sciex 5800飞行时间质谱仪检测。
分析结果:由图3可见,与对照组相比,紫外光照射后产生了碘取代后的质谱峰,包括取代一个碘的质谱峰m/z=615.1,取代两个碘的质谱峰m/z=741.0。理论预测到的结果与实验得到的质谱峰相符,进一步证明了组氨酸在紫外光照射下发生了直接碘代反应,利用质谱峰的强度计算得产率为50%。
实施例3
溶菌酶酶解液溴化修饰:
(1)溶菌酶chemotrypsin酶解液溶于pH为6(1M盐酸调制),浓度为100mmol/L的溴化钠中,样品浓度在1mg/mL,体积为20μL;
(2)400nm紫外光光源产生的紫外光垂直照射于步聚(1)酶解液样品溶液,紫外光能量为50mJ,照射时间为1s;
以未经紫外光照射的步聚(1)酶解液样品溶液为对照组;
(3)对上述步骤得到的紫外光照射后的样品溶液以及未经紫外光照射的对照组样品点靶后进行AB Sciex 5800飞行时间质谱仪检测以及后续除盐后进行高分辨液相色谱质谱分离分析。
分析结果:图4为飞行时间质谱仪分析所得结果的一部分区域,与对照组相比,紫外光照射后产生了明显的溴取代后的具有溴同位素分布特征的质谱峰,证明在紫外光照射下确实发生了直接溴代反应。对后续样品进行进一步液质分析后发现化学修饰位点为四种芳香族氨基酸,包括苯丙氨酸、酪氨酸、组氨酸和色氨酸,利用质谱峰的强度计算得产率分别为10%,50%,60%,100%。
实施例4
肌红蛋白完整蛋白的碘化修饰:
(1)肌红蛋白溶于pH为7(6M氨水调制),浓度为150mmol/L的碘化钠中,样品浓度在2mg/mL,体积为50μL;
(2)190nm紫外光光源产生的紫外光垂直照射于步聚(1)蛋白质样品溶液,紫外光能量为20mJ,,照射时间为30s;
以未经紫外光照射的步聚(1)蛋白质样品溶液为对照组;
(3)对上述步骤得到的紫外光照射后的样品溶液以及未经紫外光照射的对照组样品利用高分辨质谱检测并对得到的谱图进行去卷积;
(4)对剩余的紫外光照射后的样品溶液以及未经紫外光照射的对照组样品trypsin酶解除盐后进行高分辨液相色谱质谱分离分析。
分析结果:由图5可见,与对照组相比,紫外光照射后,肌红蛋白的质谱峰发生了明显的碘取代加成。图6为将质谱峰进一步去卷积得到的结果,可以更加清晰地看到紫外光照射后肌红蛋白发生了明显的碘取代加成。对酶解除盐样品进行进一步液质分析后发现化学修饰位点为四种芳香族氨基酸,包括苯丙氨酸、酪氨酸、组氨酸和色氨酸,,利用质谱峰的强度计算得产率分别为20%,80%,40%,70%。
实施例5
复杂鼠肝蛋白酶解液碘化修饰:
(1)复杂鼠肝蛋白trypsin酶解液溶于pH为8(3M氢氧化钠调制),浓度为1M的碘化钠中,样品浓度在100mg/mL,体积为0.1μL;
(2)500nm紫外光源产生的紫外光垂直照射于步聚(1)酶解液样品溶液,紫外光能量为1μJ,照射时间为10hour;
以未经紫外光照射的步聚(1)酶解液样品溶液为对照组;
(3)对上述步骤得到的紫外光照射后的样品溶液以及未经紫外光照射的对照组样品除盐后进行高分辨液相色谱质谱分离分析。
分析结果:图7为搜库得到的众多二级谱图的其中一张谱图,由这张二级图谱可以看出肽段VLVAQHDAYK在紫外光照射后,组氨酸和酪氨酸上均发生了碘取代修饰,证明这个复杂蛋白质体系在紫外光照射下确实发生了碘取代修饰。分析后发现化学修饰位点为四种芳香族氨基酸,包括苯丙氨酸、酪氨酸、组氨酸和色氨酸,利用质谱峰的强度计算得产率分别为10%,90%,30%,60%。

Claims (10)

1.一种芳香族氨基酸卤化修饰的直接光化学方法,其特征在于:利用紫外光照射(不添加催化剂或其它配体的)含有芳香族氨基酸样品溶液,于卤素离子存在下,对芳香族氨基酸中的芳香环(如:苯环)进行卤化修饰,样品为含有芳香族氨基酸的肽、含有芳香族氨基酸的蛋白质或芳香族氨基酸中一种或二种以上。
2.根据权利要求1所述的方法,其特征为:利用紫外光源产生的紫外光照射含有氯化盐、溴化盐或碘化盐中的一种或二种以上的芳香族氨基酸、含有芳香族氨基酸的肽、含有芳香族氨基酸的蛋白质样品中一种或二种以上的溶液,实现对芳香族氨基酸、含有芳香族氨基酸的肽或含有芳香族氨基酸的蛋白质样品中芳香族氨基酸中的芳香环的直接氯化、溴化或碘化修饰中的一种或二种以上。
3.根据权利要求1或2所述的方法,其特征为:芳香族氨基酸包括苯丙氨酸、酪氨酸、组氨酸和色氨酸中的一种或二种以上。
4.根据权利要求1或2所述的方法,其特征为:所述的紫外光波长为100~500nm,照射时间为1ns~10hour,产率为10%~100%。
5.根据权利要求4所述的方法,其特征为:所述的紫外光能量为1μJ~1000mJ;产生所述紫外光的紫外光源包括紫外激光、紫外灯等中的一种或二种以上;
所述产率的计算方式为在反应过后的样品溶液质谱图中卤化样品质谱峰强度之和除以未标记样品和卤化样品质谱峰强度的总和。
6.根据权利要求1或2所述的方法,其特征在于:所述的蛋白质溶液中包括单一蛋白质、蛋白质酶解液、蛋白质-分子混合物或蛋白质-蛋白质复合物。
7.根据权利要求6所述的方法,其特征在于:所述单一蛋白质为溶液只存在一种蛋白质;所述酶具体包括但并不限于trypsin、chemotrypsin等中的一种或二种进行蛋白酶解的酶;所述分子具体包括但并不限于药物、抑制剂等中的一种或二种;所述复合物为两个以上蛋白质相互作用形成的复合体。
8.根据权利要求1或2或4所述的方法,其特征在于:所述样品溶液体积为0.1μL~1000mL,样品浓度为0.0001~100mg/mL;
所述提供卤素离子的物质为卤化盐,卤化盐包括氯化盐、溴化盐或碘化盐中的一种或二种以上,具体但不限于氯化钠、氯化钾、溴化钠、溴化钾、碘化钠、碘化钾等水溶性盐中的一种或二种以上,溶液pH值为5~10,卤化盐浓度为1mM~1M。
9.根据权利要求8所述的方法,其特征为:溶液pH使用包括但不限于盐酸、氢氧化钠、氨水中的一种或二种以上的酸碱进行调制,酸碱浓度为1M~10M。
10.根据权利要求1或2所述的方法,其特征为:所述的芳香族氨基酸的芳香环包括但不限于酪氨酸的苯环,苯丙氨酸的苯环,组氨酸的咪唑环,色氨酸的苯环和吡咯部分中的一种或二种以上。
CN202110047611.1A 2021-01-14 2021-01-14 一种芳香族氨基酸卤化修饰的直接光化学方法 Active CN114763368B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110047611.1A CN114763368B (zh) 2021-01-14 2021-01-14 一种芳香族氨基酸卤化修饰的直接光化学方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110047611.1A CN114763368B (zh) 2021-01-14 2021-01-14 一种芳香族氨基酸卤化修饰的直接光化学方法

Publications (2)

Publication Number Publication Date
CN114763368A true CN114763368A (zh) 2022-07-19
CN114763368B CN114763368B (zh) 2024-03-12

Family

ID=82363889

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110047611.1A Active CN114763368B (zh) 2021-01-14 2021-01-14 一种芳香族氨基酸卤化修饰的直接光化学方法

Country Status (1)

Country Link
CN (1) CN114763368B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0947230A (ja) * 1995-08-07 1997-02-18 Morinaga Milk Ind Co Ltd 低芳香族アミノ酸含量のペプチド混合物の製造法
WO2000077520A1 (en) * 1999-06-09 2000-12-21 Proteosys Ag Labelling of peptides and proteins
CN1720229A (zh) * 2002-12-06 2006-01-11 苏威氟有限公司 光化学卤化方法
US20120091355A1 (en) * 2010-10-19 2012-04-19 Rao Chebrolu P Selective detection of aromatic alpha-amino acids and derivatives thereof
EP3656857A1 (en) * 2018-11-21 2020-05-27 Danmarks Tekniske Universitet Utilization of phosphoketolase for production of aromatic amino acid derived products

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0947230A (ja) * 1995-08-07 1997-02-18 Morinaga Milk Ind Co Ltd 低芳香族アミノ酸含量のペプチド混合物の製造法
WO2000077520A1 (en) * 1999-06-09 2000-12-21 Proteosys Ag Labelling of peptides and proteins
CN1720229A (zh) * 2002-12-06 2006-01-11 苏威氟有限公司 光化学卤化方法
US20120091355A1 (en) * 2010-10-19 2012-04-19 Rao Chebrolu P Selective detection of aromatic alpha-amino acids and derivatives thereof
EP3656857A1 (en) * 2018-11-21 2020-05-27 Danmarks Tekniske Universitet Utilization of phosphoketolase for production of aromatic amino acid derived products

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
丁亚楠;李轶;吴乾元;胡洪营;: "酪氨酸氯化过程中光谱变化特征及消毒副产物的生成规律", 环境工程学报, no. 08 *

Also Published As

Publication number Publication date
CN114763368B (zh) 2024-03-12

Similar Documents

Publication Publication Date Title
Schlosser et al. Five‐membered ring formation in unimolecular reactions of peptides: a key structural element controlling low‐energy collision‐induced dissociation of peptides
Illés et al. Ketoprofen removal by O3 and O3/UV processes: Kinetics, transformation products and ecotoxicity
Lanucara et al. Top‐down mass spectrometry for the analysis of combinatorial post‐translational modifications
Bilusich et al. Fragmentations of (M–H)− anions of underivatised peptides. Part 2: Characteristic cleavages of Ser and Cys and of disulfides and other post‐translational modifications, together with some unusual internal processes
Antoine et al. Electron photodetachment dissociation for structural characterization of synthetic and bio‐polymer anions
Liu et al. A tris (2-carboxyethyl) phosphine (TCEP) related cleavage on cysteine-containing proteins
Gao et al. Effect of dissolved organic matters and inorganic ions on TiO 2 photocatalysis of diclofenac: mechanistic study and degradation pathways
Wang et al. Visible-light-mediated catalyst-free synthesis of unnatural α-amino acids and peptide macrocycles
EP2041105A2 (en) Methods, mixtures, kits and compositions pertaining to analyte determination
Diedrich et al. Facile identification of phosphorylation sites in peptides by radical directed dissociation
US20160356786A1 (en) Novel Isobaric Tandem Mass Tags for Quantitative Proteomics and Peptidomics
Bane et al. Photo-oxidation of IgG1 and model peptides: detection and analysis of triply oxidized His and Trp side chain cleavage products
Roeser et al. Oxidative protein labeling in mass-spectrometry-based proteomics
Todorovski et al. Synthesis of peptides containing 5‐hydroxytryptophan, oxindolylalanine, N‐formylkynurenine and kynurenine
Cydzik et al. Derivatization of peptides as quaternary ammonium salts for sensitive detection by ESI‐MS
Miyahara et al. Effect of UVC irradiation on the oxidation of histidine in monoclonal antibodies
Zhang et al. Ozonation treatment increases chlorophenylacetonitrile formation in downstream chlorination or chloramination
Feeney et al. Proteomic approaches to analyze protein tyrosine nitration
Liu et al. Effectiveness and intermediates of microcystin-LR degradation by UV/H 2 O 2 via 265 nm ultraviolet light-emitting diodes
Sakai et al. Change in haloacetic acid formation potential during UV and UV/H2O2 treatment of model organic compounds
CN114763368A (zh) 一种芳香族氨基酸卤化修饰的直接光化学方法
Raspopov et al. Infrared multiphoton dissociation in quadrupole time-of-flight mass spectrometry: top-down characterization of proteins
JP3976048B2 (ja) スルフェニル化合物、ラベル化試薬、及びペプチドの解析方法
Fujihara et al. Enantioselective collision-activated dissociation of gas-phase tryptophan induced by chiral recognition of protonated l-alanine peptides
Leinisch et al. UV oxidation of cyclic AMP receptor protein, a global bacterial gene regulator, decreases DNA binding and cleaves DNA at specific sites

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant