CN114761835A - 光学单元、射束耦合装置以及激光加工机 - Google Patents

光学单元、射束耦合装置以及激光加工机 Download PDF

Info

Publication number
CN114761835A
CN114761835A CN202080082052.1A CN202080082052A CN114761835A CN 114761835 A CN114761835 A CN 114761835A CN 202080082052 A CN202080082052 A CN 202080082052A CN 114761835 A CN114761835 A CN 114761835A
Authority
CN
China
Prior art keywords
optical unit
light
optical
light source
coupling device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202080082052.1A
Other languages
English (en)
Inventor
浅井阳介
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Panasonic Holdings Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Holdings Corp filed Critical Panasonic Holdings Corp
Publication of CN114761835A publication Critical patent/CN114761835A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/1006Beam splitting or combining systems for splitting or combining different wavelengths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0938Using specific optical elements
    • G02B27/0944Diffractive optical elements, e.g. gratings, holograms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0938Using specific optical elements
    • G02B27/095Refractive optical elements
    • G02B27/0955Lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/1086Beam splitting or combining systems operating by diffraction only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/12Beam splitting or combining systems operating by refraction only
    • G02B27/123The splitting element being a lens or a system of lenses, including arrays and surfaces with refractive power
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/14External cavity lasers
    • H01S5/141External cavity lasers using a wavelength selective device, e.g. a grating or etalon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4012Beam combining, e.g. by the use of fibres, gratings, polarisers, prisms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4031Edge-emitting structures
    • H01S5/4062Edge-emitting structures with an external cavity or using internal filters, e.g. Talbot filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4087Array arrangements, e.g. constituted by discrete laser diodes or laser bar emitting more than one wavelength

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Semiconductor Lasers (AREA)

Abstract

本公开提供一种光学单元、射束耦合装置以及激光加工机。对多个光束进行导光的光学单元(4)具备多个光束分别透射的多个透镜部(51)。多个透镜部在与光束透射的光轴方向(Z)交叉的排列方向(X)上排列。各透镜部相对于与光轴方向以及排列方向交叉的厚度方向(Y)倾斜。在光轴方向上的光学单元的两端面之中,一个端面中透镜部排列的间距小于另一个端面中透镜部排列的间距。

Description

光学单元、射束耦合装置以及激光加工机
技术领域
本公开涉及光学单元和具备光学单元的射束耦合装置以及具备射束耦合装置的激光加工机。
背景技术
专利文献1公开了使各个光束叠加来形成耦合射束的波长合成式的激光系统。在专利文献1中公开了如下的内容,即,从增大光输出的观点出发,将来自多个二极管条的光束聚光到光纤。此外,从使激光系统小型化的目的出发,另外包含用于使波长合成中的耦合透镜的配置从焦距偏移的光学系统,或者使射束转子旋转。
在先技术文献
专利文献
专利文献1:美国专利第2016/0048028号说明书
发明内容
发明要解决的问题
本公开提供一种能够提高对多个光束进行导光的设计自由度的光学单元、射束耦合装置以及激光加工机。
用于解决问题的技术方案
本公开涉及的光学单元对多个光束进行导光。光学单元具备多个光束分别透射的多个透镜部。多个透镜部在与光束透射的光轴方向交叉的排列方向上排列。各透镜部相对于与光轴方向以及排列方向交叉的厚度方向倾斜。在光轴方向上的光学单元的两端面之中,一个端面中透镜部排列的间距小于另一个端面中透镜部排列的间距。
本公开的一个方式涉及的射束耦合装置具备:光源,包含能够以彼此不同的波长谐振的多个光源元件;上述的光学单元;以及衍射元件。光源发出来自各光源元件的多个光束。光学单元对来自光源的各光束进行导光。衍射元件对从光源经由光学单元入射的各光束进行衍射,将以不同的波长谐振的多个光束耦合。光学单元将两端面之中的透镜部的间距小的端面朝向衍射元件配置。
本公开的另一个方式涉及的射束耦合装置具备:光源,包含在排列方向以及厚度方向上排列的多个光源元件;多个上述光学单元;以及耦合光学系统。光源发出来自各光源元件的多个光束。多个光学单元按照光源中沿排列方向排列的光源元件的每个组对各光束进行导光。耦合光学系统将被各光学单元导光的多个光束耦合。光学单元将两端面之中的透镜部的间距大的端面朝向耦合光学系统配置。
本公开涉及的激光加工机具备:上述任意的射束耦合装置;以及加工头,将由射束耦合装置耦合后的光束照射到加工对象物。
发明效果
根据本公开涉及的光学单元、射束耦合装置以及激光加工机,能够提高对多个光束进行导光的设计自由度。
附图说明
图1是例示本公开的实施方式1涉及的激光加工机的结构的图。
图2是说明了实施方式1的射束耦合装置中的光束的耦合方法的图。
图3是示出射束耦合装置中的谐振波长的光谱的曲线图。
图4是示出实施方式1涉及的射束耦合装置的结构的图。
图5是例示射束耦合装置中的光学单元的基本结构的图。
图6是示出光学单元中的射束旋转器单元的结构例的立体图。
图7是示出实施方式1中的光学单元的结构例的图。
图8是图7的光学单元中的剖视图。
图9是例示图7的光学单元中的主光线的光路图。
图10是示出实施方式1的射束耦合装置的实施例的图。
图11是例示实施方式2涉及的激光加工机的结构的图。
图12是示出实施方式2涉及的射束耦合装置的结构的图。
图13是示出实施方式2中的光学单元的结构例的图。
图14是图13的光学单元中的剖视图。
图15是例示图13的光学单元中的主光线的光路图。
图16是示出实施方式2的射束耦合装置的实施例的图。
具体实施方式
以下,适当参照附图对实施方式进行详细地说明。但是,有时省略必要以上的详细说明。例如,有时省略已经熟知的事项的详细说明、对实质上相同的结构的重复说明。这是为了避免以下的说明不必要地变得冗长,使本领域技术人员容易理解。
另外,申请人为使本领域技术人员充分地理解本公开而提供附图以及以下的说明,其意图并不在于通过它们来限定请求的范围记载的主题。
(实施方式1)
在实施方式1中,对将光学单元应用于波长合成式的射束耦合装置以及具备该射束耦合装置的激光加工机的例子进行说明。
1.关于激光加工机
利用图1对实施方式1涉及的激光加工机以及射束耦合装置的结构进行说明。图1是示出本实施方式涉及的激光加工机1的结构的图。
图1是例示本实施方式涉及的激光加工机1的结构的图。激光加工机1例如具备射束耦合装置2、传输光学系统10、加工头11和控制器12。激光加工机1是将激光照射到各种各样的加工对象物15进行各种激光加工的装置。各种激光加工例如包含激光焊接、激光切断以及激光穿孔等。
射束耦合装置2例如是为了供给激光加工机1的激光而将单独发出的多个光束耦合的装置。在本实施方式中,射束耦合装置2构成为使多个光束在彼此不同的波长下谐振并进行合成的波长合成式。根据波长合成式的射束耦合装置2,容易获得良好的射束质量,容易缩小射束直径。
在激光加工机1中,传输光学系统10是将来自射束耦合装置2的激光传输到加工头11的光学系统,例如包含光纤。加工头11例如是与加工对象物15对置配置,将从射束耦合装置2传输的激光照射到加工对象物15的装置。
控制器12是对激光加工机1的整体动作进行控制的控制装置。控制器12例如具备与软件协作来实现给定功能的CPU或者MPU。控制器12也可以具备对各种程序以及数据进行存储的内部存储器、以及能够通过使用者的操作来输入振荡条件等的各种界面。控制器12也可以具备实现各种功能的ASIC、FPGA等硬件电路。此外,控制器12也可以与光源的驱动电路一体地构成。
1-1.关于射束耦合装置
例如,如图1所示,本实施方式的射束耦合装置2具备作为光源的一例的LD条3、光学单元4、耦合透镜24、衍射元件25和输出耦合器26。本实施方式的射束耦合装置2构成在LD条3与输出耦合器26之间往返的光路中使光谐振的外部谐振型的光谐振器。
LD条3由包含一维地排列的多个LD(激光二极管)311~315的光源元件的阵列构成。以下,将LD311~315排列的方向设为“X方向”,将LD条3从LD311~315射出的光束的光轴的方向设为“Z方向”,将与X、Z方向正交的方向设为“Y方向”。
在图1中,例示了LD条3中的3个LD311、313、315。LD条3中包含的LD311~315的个数例如为数十个至数百个。多个LD311~315例如具有与LD发光层的材质相应的共同的自然发射光谱(参照图3)。以下,有时将LD311~315总称为“LD31”。各LD31是构成LD条3的发射器的光源元件的一例,分别向+Z侧射出光束。
光学单元4是对来自LD条3的各LD31的多个光束分别进行调整并导光的光学系统。光学单元4配置在LD条3的+Z侧。根据本实施方式的光学单元4,能够提高伴随复杂光学设计的波长合成式的射束耦合装置2中的设计自由度,使射束耦合装置2小型化。关于光学单元4的详情将后述。
耦合透镜24例如在光学单元4的+Z侧隔开距离D1而配置。耦合透镜24的-Z侧的距离D1例如设定为耦合透镜24的焦距。若来自LD条3的各LD31的多个光束经由光学单元4入射到耦合透镜24,则在从耦合透镜24向+Z侧隔开距离D2的位置聚光。耦合透镜24在这样的聚光时分别对各光束进行准直。
衍射元件25例如配置在从耦合透镜24向+Z侧隔开距离D2的位置。衍射元件25例如是形成了透射型的衍射光栅的分散性元件。在本实施方式中,衍射元件25的衍射光栅满足用于将来自多个LD311~315的光束朝向相同的方向射出并耦合的衍射条件。衍射元件25的衍射条件例如如下式(1)那样表示。
sinα+sinβ=mλ/d…(1)
在此,α是入射到衍射元件25的光束的入射角,β是衍射后射出的光束的衍射角。此外,λ是使其衍射的光的波长,对应于谐振波长。d是衍射元件25中的衍射光栅的间距。m表示衍射次数,例如为自然数。
图2是说明了射束耦合装置2的衍射元件25中的光束的耦合方法的图。在衍射元件25中,如图2所示,来自各LD311、313、315的光束的入射角α=α1、α2、α3彼此不同。在本实施方式的射束耦合装置2中,基于上式(1),对各LD311~315设定不同的谐振波长λ,使得各LD311~315的衍射角β变为相同。由此,来自多个LD311~315的光束在衍射后从衍射元件25朝向相同的方向射出,可获得耦合结果的光束。
图3是示出射束耦合装置2中的谐振波长λ的光谱的曲线图。在图3的曲线图中,横轴表示波长[nm],纵轴表示光的强度。
在图3中,示出了LD条3中的多个LD311~315中的各个谐振光谱S1~S3和共同的自然发射光谱S0。各谐振光谱S1、S2、S3表示各个LD311、313、315的谐振波长λ的分布。自然发射光谱S0例如包含955nm~990nm这样的900nm波段的波段。根据谐振光谱S1~S3,根据在LD条3中排列的位置而谐振波长λ从LD311向LD315依次变长。
如图3所示,本实施方式的射束耦合装置2设定射束耦合装置2的各种参数,使得LD条3中的全部的LD311~315的谐振光谱S1~S3收敛于自然发射光谱S0的范围内。射束耦合装置2的各种参数例如为LD条3中的LD311~315的间距、耦合透镜24的焦距、衍射元件25中的衍射光栅的形状、射束耦合装置2的各部分间的距离。
返回到图1,输出耦合器26配置在衍射元件25中被衍射的光束射出的方向上。输出耦合器26例如包含具有给定的透射率以及反射率的反射镜元件等。从衍射元件25向输出耦合器26入射的光束之中,与透射率相应的透射成分作为射束耦合装置2的输出,例如向传输光学系统10射出。另一方面,为了光谐振,与反射率相应的反射成分返回到衍射元件25。也可以在输出耦合器26设置能够调整这样的反射率以及透射率的机构。
根据如以上那样的射束耦合装置2,能够作为外部谐振型的光谐振器进行波长合成式的射束耦合,获得良好的射束质量。另一方面,在进行波长合成式的射束耦合的外部谐振型的光谐振器中存在如下问题,即,光学设计变得复杂,导致装置结构的大型化。与之相对,在本实施方式中,提供能够提高这样的光学设计的设计自由度并使射束耦合装置2小型化的光学单元4。
1-1-1.射束耦合装置的详情
利用图4对本实施方式涉及的射束耦合装置2的结构的详情进行说明。图4的(A)示出从Y方向观察射束耦合装置2的俯视图。图4的(B)示出从X方向观察射束耦合装置2的侧视图。
在本实施方式的射束耦合装置2中,光学单元4例如包含与LD条3对置配置的BTU(射束旋转器单元)40和配置在BTU40的+Z侧的SAC(慢轴准直仪)45。耦合透镜24例如由在X方向上具有正的光焦度的柱面透镜构成。另外,也可BTU40和SAC45以分体的方式提供,在该情况下,BTU40为本实施方式中的光学单元的一例。
在本实施方式中,如上所述,从来自LD条3的各光束的准直的观点出发,例如从光学单元4的BTU40到耦合透镜24的距离D1设定为耦合透镜24的焦距Df。另一方面,可认为,从将各光束聚光到衍射元件25的观点出发来设定从耦合透镜24到衍射元件25的距离D2。
在此,在如来自LD条3的多个光束彼此平行地入射到耦合透镜24的情况下,从上述聚光的观点出发,到衍射元件25的距离D2也需要取为焦距Df,装置结构会大型化。因此,在本实施方式中,通过光学单元4的BTU40控制来自LD条3的多个光束的朝向。
在图4的(A)、(B)中,分别例示了来自LD条3中的外侧的LD311的光束的主光线L11和来自中央的LD313的光束的主光线L13。在本实施方式的射束耦合装置2中,例如,中央的LD313具有在光学单元4以及耦合透镜24中直线前进且与Z方向平行的主光线L13。
根据本实施方式的BTU40,如图4的(A)所示,使来自LD条3中的外侧的LD311的光束的主光线L11在X方向上向内。由此,例如,在与耦合透镜24相距比焦距Df短的距离D2处,各主光线L11、L13交叉,能够使多个光束聚光。因而,能够使到衍射元件25的距离D2比焦距Df短,从而能够使射束耦合装置2小型化。
此外,通过BTU40控制多个光束的主光线方向,从而能够改变耦合透镜24的配置。例如,关于耦合透镜24的焦距Df,从上述的准直的观点出发能够设定为适当的长度,例如还能够设定为1m以上等。另一方面,还可获得如通过BTU40和耦合透镜24的协作来实现聚光的功能这样的设计自由度。
此外,根据本实施方式的光学单元4,通过BTU40而在X方向上向内的主光线L11如图4的(B)所示,能够使得在Y方向上不特别向内或向外。在此,在外部谐振型的光谐振器中,若光束的光线角度在Y方向上偏移,则光束相对于输出耦合器26(参照图1)的入射角度改变,可认为是光谐振产生不良状况的事态。与之相对,根据本实施方式的光学单元4,能够不干扰Y方向上的光线角度地控制X方向上的光线方向,能够避免如上述那样的不良状况。如以上,根据本实施方式的光学单元4,能够提高射束耦合装置2中的各种光学设计的设计自由度。
2.关于光学单元
以下,对本实施方式中的射束耦合装置2的光学单元4的详情进行说明。
2-1.光学单元的基本结构
首先,利用图5~图6对光学单元4的基本结构进行说明。图5例示光学单元4的基本结构。
图5的(A)示出基本结构中的光学单元4的俯视图。图5的(B)示出图5的(A)的光学单元4的侧视图。在图5的(A)、(B)中,例示了来自如中央的LD313的一个LD31的光束的光路。
光学单元4中的BTU40包含BT(射束旋转器)50和FAC(快轴准直仪)41。在光学单元4中,例如从LD31附近向+Z侧依次配置FAC41、BT50以及SAC45。
在本实施方式中,LD31发出具有快轴Af以及慢轴As的光束。光束的快轴Af比慢轴As更迅速地扩大射束直径,并且更容易得到良好的射束质量。在LD31的光束入射到光学单元4之前,光束的快轴Af朝向Y方向,慢轴As朝向X方向。
FAC41为了在快轴Af上对光束进行准直而设置,例如由具有正的光焦度的柱面透镜构成。例如,如图5的(A)、(B)所示,FAC41将长边方向朝向X方向,配置在从LD条3的+Z侧起焦距的位置。在本例中,来自LD31的光束通过FAC41而在Y方向(即,快轴Af)上被准直,入射到BT50。
在图6中示出BT50的结构例。BT50例如是使多个光束分别旋转的光学元件,包含多个斜行的透镜部51。在BT50中,斜行透镜部51是构成每个LD31的透镜的部分,例如构成柱面透镜。另外,也可BT50和FAC41以分体的方式提供,在该情况下,BT50是本实施方式中的光学单元的一例。
BT50例如形成为在X方向上以给定的间距排列多个斜行透镜部51。在本结构例中,斜行透镜部51相对于排列方向(即,X方向)以及BT50的厚度方向(即,Y方向)的双方倾斜了45°。BT50中的斜行透镜部51的倾斜可以未必为45°,例如可以相对于Y方向为40°~50°。
在图5的(A)、(B)的例子中,BT50使从LD31经由FAC41入射的光束在XY平面中旋转旋转角度90°。由此,从BT50射出的光束的慢轴As变为朝向Y方向,快轴Af变为朝向X方向。此外,BT50射出时的光束在Y方向上成为发散光,在X方向上成为平行光。
SAC45为了在慢轴As上对光束进行准直而设置,例如由具有正的光焦度的柱面透镜构成。例如,如图5的(A)、(B)所示,SAC45将长边方向朝向X方向,配置在从BTU40的+Z侧起焦距的位置。在本例中,来自BT50的光束通过SAC45而在Y方向(即,慢轴As)上被准直,从光学单元4射出。
根据以上的光学单元4,从LD条3的各LD31发出的光束基本上在快轴Af以及慢轴As上被准直。但是,通过光的波动性的作用,尤其是在快轴Af上作为来自BT50的+Z侧的面等的波的影响,射束直径可能扩大。与之相对,在本实施方式的射束耦合装置2中,通过耦合透镜24对各光束的准直,能够抑制上述的影响。
2-2.关于光学单元的BT
在本实施方式中,边利用如以上那样的光学单元4的各部分的基本功能边调整BT50中的斜行透镜部51的配置,由此实现各种主光线的控制。以下,对这样的光学单元4的结构例进行说明。
图7示出本实施方式中的光学单元4的BT50的结构例。图7连同多个LD311、312、313、314、315一起示出了从-Z侧观察的光学单元4的前视图。来自LD311~315的光束例如将Z方向作为光轴方向,分别从-Z侧向+Z侧透射对置的透镜部51。在本实施方式的BT50中,构成为使斜行透镜部51的间距在来自各LD31的光束的射出侧和入射侧即±Z侧的两端面之间偏移。
图8示出图7的BT50中的XZ平面的剖视图。本结构例的BT50构成为+Z侧的端面中的斜行透镜部51间的间距Wo小于-Z侧的端面中的间距Wi。-Z侧的间距Wi例如设定为与LD条3中的LD31间的间距相同。在本结构例的BT50中,例如,中央的斜行透镜部51的中心在±Z侧的两面一致。
间距Wi、Wo间的差例如设定为与各间距Wi、Wo相比足够小,例如为各间距Wi、Wo的0.1倍以下。间距Wi、Wo间的差也可以考虑斜行透镜部51或LD31的个数来设定。间距Wi、Wo间的差例如为各间距Wi、Wo的0.0001倍以上。
图9的(A)~(C)例示本结构例的光学单元4中的光路。图9的(A)与图7的光学单元4中的A-A剖面对应。A-A剖面是LD条3的各LD311~315所在的XZ平面。图9的(B)、(C)分别与图9的(A)中的B-B剖视图和C-C剖视图对应。B-B剖面是中央的LD313所在的YZ平面。C-C剖面是外侧的LD315所在的YZ平面。
根据本实施方式的光学单元4,如图9的(A)~(C)所示,来自各LD31的光束的主光线从入射到FAC41后至到达BT50的+Z侧的面之前,沿着Z方向直线前进。在BT50的+Z侧的面,由于比-Z侧的面小的斜行透镜部51的间距Wo,从而在X方向上越是位于外侧的LD31A,主光线La在X方向上越向内,并且在Y方向上也能够倾斜。
各主光线La、Lc若从BT50射出则到达SAC45。在此,SAC45进行Y方向上的光束的准直,因此如图9的(C)所示,Y方向上的主光线Lc的倾斜在SAC45中被校正。
如以上那样,根据本实施方式的光学单元4,能够将X方向上的外侧的LD31C的主光线Lc限制在X方向上使其向内。
2-3.实施方式1的实施例
以下,对与如以上那样的本实施方式的射束耦合装置2及其光学单元4的结构例有关的实施例进行说明。
作为本实施方式的射束耦合装置2的数值性的实施例,进行了利用上述的结构例的光学单元4的数值仿真。在本仿真中,SAC45的焦距设定为50mm,耦合透镜24的焦距设定为1130mm,LD条3的LD31间的间距设定为0.225000mm。在这样的仿真环境中,作为本实施例,将BT50的+Z侧的间距Wo设定为比-Z侧的间距Wi小230nm。此外,BT50的-Z侧的间距Wi设定为与LD条3的LD间的间距相同。
图10的(A)示出本实施方式的射束耦合装置2的仿真结果。在本仿真中,为了确认在上述的设定下使BT50的间距Wi、Wo偏移的效果,进行了+X侧的主光线的数值计算。图中的各行按照从物体侧(即,-Z侧)向像侧(即,+Z侧)的每个面编号,示出主光线通过射束耦合装置2的各部分时的数值计算结果。作为数值计算结果,“X”表示X坐标,“Y”表示Y坐标,“TANX”用tan函数表示XZ平面中的倾斜,“TANY”用tan函数表示YZ平面中的倾斜。另外,与进行了数值计算的主光线对应的LD31的位置为X坐标4mm。
根据图10的(A)的仿真结果,LD31射出时为零值的“TANX”在SAC45射出后成为正值“-0.00346”,+X侧的主光线向内。进而,“TANY”在SAC45射出以后至到达衍射元件25为止维持为零值。因而,确认到根据BT50的Wi、Wo的偏移,能够抑制Y方向的影响地使X方向外侧的主光线在X方向上向内。
图10的(B)示出相对于图10的(A)的比较例的仿真结果。在该比较例中,不使BTU的间距在±Z侧的两面偏移,取而代之在XY平面内使BTU旋转了的情况下进行了与图10的(A)同样的数值计算。通过如BTU那样的光学元件的旋转而使外侧主光线向内的技术以往是已知的(例如专利文献1)。BTU的旋转角度设定为0.008°。
根据图10的(B)的仿真结果,SAC射出后的“TANX”的值“-0.00346”与图10的(A)的例子为同等。另一方面,“TANY”在SAC射出后具有值“0.0007”。即,在该比较例中,当使外侧主光线在X方向上向内时,出现了产生Y方向上的倾斜的影响。根据以上确认到,根据本实施方式的光学单元4,与现有技术相比能够抑制对Y方向的影响地实现外侧主光线向X方向的向内。
3.总结
如以上那样,本实施方式中的光学单元4对多个光束进行导光。光学单元4的BT50作为多个光束分别透射的多个透镜部的一例而具备多个斜行透镜部51。多个斜行透镜部51在与光束透射的光轴方向(例如Z方向)交叉的排列方向(例如X方向)上排列。各斜行透镜部51相对于与光轴方向以及排列方向交叉的厚度方向(例如Y方向)倾斜。在本实施方式的光学单元4中,在光轴方向上的BT50的两端面之中,作为一个端面的一例的+Z侧的端面中斜行透镜部51排列的间距Wo,小于作为另一个端面的-Z侧的端面中斜行透镜部51排列的间距Wi。
根据以上的光学单元4,例如在与BT50的-Z侧的斜行透镜部51的间距Wi相同的间距下,多个光束从-Z侧入射时,在+Z侧斜行透镜部51的间距Wo变小,因此能够使X方向外侧的光束的主光线L11向内。因而,能够实现以将多个光束聚光的方式进行导光的光线方向的控制。这样,通过光学单元4的BT50能够提高对多个光束进行导光的设计自由度。
在本实施方式中,光学单元4的BTU40具备FAC41作为第1准直透镜的一例。FAC41与作为BT50的±Z侧的两端面之中的一个端面的-Z侧的端面对置配置,使光束从该端面向斜行透镜部51入射。根据本实施方式的BTU40,能够控制从FAC41入射的多个光束的光线方向。
在本实施方式中,光学单元4还具备SAC45作为第2准直透镜的一例。在BT50的两端面之中,SAC45与作为FAC41所对置的端面的相反侧的+Z侧的端面对置配置,对从该端面射出的光束进行准直。根据SAC45,能够校正从FAC41入射并在BT50中变更了光线方向的光束的光线方向,能够容易进行多个光束的光线方向的控制。
本实施方式中的射束耦合装置2具备作为光源的一例的LD条3、光学单元4和衍射元件25。LD条3包含作为能够以彼此不同的波长谐振的多个光源元件的LD311~313,发出来自各LD311~313的多个光束。光学单元4对来自LD条3的各光束进行导光。衍射元件25对从LD条3经由光学单元4入射的各光束进行衍射,将以不同的波长谐振的多个光束耦合。光学单元4将BT50的两端面之中的斜行透镜部51的间距Wo小的+Z侧的端面朝向衍射元件25配置。
根据以上的射束耦合装置2,在由衍射元件25衍射以不同的波长谐振的多个光束并进行耦合时,通过光学单元4能够将多个光束聚光到衍射元件25。由于这样的设计自由度的提高,能够使射束耦合装置2的装置结构小型化。
在本实施方式中,每个LD31的经由衍射元件25的谐振的波长,根据作为排列方向的X方向上的各LD31的位置而逐渐变化。例如,从+X侧的LD311向-X侧的LD315,谐振波长λ变长。由此,能够经由衍射元件25将来自各LD31的光束耦合。
在本实施方式中,排列方向上的多个LD31间的间距,与光学单元的BTU40的两端面之中的作为靠近光源的一方的-Z侧的端面中斜行透镜部51排列的间距Wi一致。由此,能够适当地控制来自各LD31的光束。
本实施方式中的激光加工机1具备射束耦合装置2和将由射束耦合装置2耦合后的光束照射到加工对象物的加工头11。本实施方式的激光加工机1能够利用因为由光学单元4对多个光束进行导光的设计自由度的提高而小型化了的波长合成式的射束耦合装置2来构成。
(实施方式2)
以下,利用图11~图16来说明实施方式2。在实施方式2中,对将光学单元应用于空间合成式的射束耦合装置以及具备该射束耦合装置的激光加工机的例子进行说明。
以下,适当省略与实施方式1涉及的激光加工机1、射束耦合装置2以及光学单元4同样的结构、动作的说明来说明本实施方式涉及的激光加工机、射束耦合装置以及光学单元。
1.关于激光加工机
图11是例示实施方式2涉及的激光加工机1A的结构的图。本实施方式的激光加工机1在与实施方式1的激光加工机1同样的结构下,代替波长合成式的射束耦合装置2而具备空间合成式的射束耦合装置2A。
本实施方式中的射束耦合装置2A具备激光光源30、多个光学单元4A-1~4A-3和耦合光学系统20。在本实施方式中,激光光源30包含多个LD条3-1~3-3。LD条3-1~3-3各自例如与实施方式1的LD条3同样地构成。以下,有时将LD条3-1~3-3总称为“LD条3”,将光学单元4A-1~4A-3总称为“光学单元4A”。
在射束耦合装置2A中,多个LD条3例如使各个LD的排列方向平行而设为X方向,并在与X方向正交的Y方向上并排配置。射束耦合装置2A中的LD条3的个数图示了3个的例子,但没有特别限定,也可以为2个或者4个以上。
本实施方式的射束耦合装置2A构成为将激光光源30中空间性地配置的多个LD条3的各LD31发出的多个光束耦合的空间合成式。在本实施方式中,提供能够在小的射束直径下高密度地进行射束耦合的射束耦合装置2A。
在本实施方式的射束耦合装置2A中,多个光学单元4A例如设置LD条3的个数份。一个光学单元4A将来自一个LD条3的各LD的光束导光至耦合光学系统20。耦合光学系统20是射束耦合装置2A中的将来自各光学单元4A的光束耦合的光学系统。
1-1.关于射束耦合装置
图12是示出实施方式2涉及的射束耦合装置2A的结构的图。图12的(A)示出从X方向观察射束耦合装置2A的侧视图。图12的(B)示出从Y方向观察射束耦合装置2A的俯视图。
在本实施方式的射束耦合装置2A中,例如,如图12的(A)所示,各LD条3配置在各自的光学单元4A的-Z侧。在本实施方式的光学单元4A中,BTU40A的结构与实施方式1的光学单元4的结构不同。耦合光学系统20配置在光学单元4A的+Z侧,包含轴对称的聚光透镜21以及配置在聚光透镜21与光学单元4A之间的柱面透镜22。
在图12的(B)中,例示了LD条3中的5个LD31a、31b、31c、31d、31e。在本实施方式中,各个LD31a~31e的谐振波长可以相同。LD条3中的多个LD31a~31e是本实施方式的激光光源30中的1组的光源元件的一例。以下,有时将LD31a~31e总称为“LD31”。
在图12的(A)、(B)中,例示作为射束耦合装置2A对光束的耦合结果的射束耦合位置P1。射束耦合位置P1例如设定在包含从全部的LD条3-1~3-3的各LD31a~31e发出的光束的射束直径成为最小的位置。例如,在射束耦合位置P1配置上述的传输光学系统10的光纤的入射端。
在图12的(A)中,例示了来自Y方向上的外侧的LD条3-1的光束的主光线L1和来自中央的LD条3-2的光束的主光线L2。在图12的(B)中,例示了来自X方向上的外侧的LD31a的光束的主光线La和来自中央的LD31c的光束的主光线Lc。在本实施方式的射束耦合装置2A中,例如X、Y方向上的中央的LD31c与实施方式1同样地具有与Z方向平行的主光线Lc。
在本实施方式中,例如从空间合成所带来的射束耦合装置2A的高输出化的观点出发,如图12的(A)所示,使沿Y方向排列的多个LD条3中的外侧的LD条3-1发出的光束的主光线L1向内。通过使外侧的光学单元4A-1的朝向倾斜,或者使SAC45的配置向内侧偏移,从而可进行这样的光线控制。例如,图中上侧(+Y侧)的光学单元4A使光束的主光线L1从Z方向朝下侧(-Y侧)倾斜。在该情况下,LD条3间主光线L1、L2相交的Y方向上的射束耦合位置P1位于比聚光透镜21的焦点位置P0更靠-Z侧。
另一方面,如图12的(B)所示,在按照每个LD条3沿X方向排列的多个LD31a~31e中,本实施方式的射束耦合装置2A的光学单元4A构成为使来自外侧的LD31a的光束的主光线La向外。由此,能够使多个光束交叉的位置接近聚光透镜21的焦点,减小各光束耦合时的射束直径自身,能够提高向耦合光学系统20入射的光束的密度。进而,根据耦合光学系统20的柱面透镜22,关于射束耦合位置P1,能够在X方向和Y方向上使射束耦合位置P1一致。
2.关于光学单元
以下,对实施方式2涉及的射束耦合装置2A的光学单元4A进行说明。
图13示出实施方式2中的光学单元4A的BT50A的结构例。本实施方式的光学单元4A在实施方式1的光学单元4中,代替与-Z侧的间距Wi相比+Z侧的间距Wo小的BT50而具备例如图13的结构例的BT50A。
图14示出图13的BT50A中的XZ平面的剖视图。在本结构例的BT50A中,-Z侧的间距Wi小于+Z侧的间距Wo。换言之,本结构例的BT50A构成为+Z侧的端面中的斜行透镜部51间的间距Wo比-Z侧的端面中的间距Wi大。在本结构例的BT50A中,+Z侧的端面中的斜行透镜部51的曲面形状例如能够设定为将-Z侧的曲面形状延长。
此外,在本结构例中,-Z侧的间距Wi例如与实施方式1的BT50同样地,设定为与LD条3中的LD31间的间距匹配。此外,间距Wi、Wo间的差的大小也可以在与实施方式1同样的范围内。本实施方式的BT50A以及BTU40A也与实施方式1同样地分别是光学单元的一例。
图15的(A)~(C)与图9的(A)~(C)同样地例示本实施方式的光学单元4A中的光路。图15的(A)与图13的A-A剖面对应。图15的(B)、(C)分别与图15的(A)中的B-B剖视图和C-C剖视图对应。本实施方式的BT50A与实施方式1同样地,在+Z侧与SAC45对置,在-Z侧与FAC41对置。
根据本实施方式的光学单元4A,如图15的(A)~(C)所示,来自各LD31的光束的主光线在BT50A的+Z侧的端面,由于比LD31间的间距大的斜行透镜部51的间距Wo,在X方向上越是位于外侧的LD31a,主光线La在X、Y方向上越向外。如图15的(C)所示,Y方向上的主光线La的倾斜在SAC45中与实施方式1同样地被校正。
如以上那样,根据本实施方式的光学单元4A,能够将X方向上的外侧的LD31c的主光线Lc限制在X方向上使其向外。
2-1.实施方式2的实施例
图16示出作为实施方式2的射束耦合装置2A的实施例的仿真结果。在本仿真中,在空间合成式的射束耦合装置2A的仿真环境下,进行了与实施方式1同样的数值计算。在本仿真中,多个光学单元4A间的间隔设定为4.8mm,SAC45的焦距设定为15mm,聚光透镜21的焦距设定为50mm。
在本仿真中,在使BT50A的+Z侧的间距Wo比-Z侧的间距Wi大318nm的设定下,进行了与实施方式1同样的数值计算。另外,BT50A的-Z侧的间距Wi以及LD条3的LD间的间距与实施方式1同样地为0.225000mm。
根据图16的仿真结果,“TANX”在SAC45射出后成为正值“0.00443”,+X侧的主光线向外。此外,此时的“TANY”的值“0.00003”与上述的“TANX”相比足够小。因而,确认到对于X方向外侧的主光线,能够使Y方向的倾斜停留在轻微的程度地在X方向上向外。
3.总结
如以上那样,在本实施方式的光学单元4A中,在光轴方向上的BT50的两端面之中,作为一个端面的一例的-Z侧的端面中斜行透镜部51排列的间距Wi,小于作为另一个端面的一例的+Z侧的端面中斜行透镜部51排列的间距Wo。
根据以上的光学单元4A,例如在与BT50A的-Z侧的斜行透镜部51的间距Wi相同的间距下,多个光束从-Z侧入射时,在+Z侧斜行透镜部51的间距Wo变大,因此能够使X方向外侧的光束的主光线La向外。这样,通过光学单元4A的BT50A能够提高对多个光束进行导光的设计自由度。
本实施方式中的射束耦合装置2A具备作为光源的一例的激光光源30、多个光学单元4A和耦合光学系统20。激光光源30例如包含LD31,该LD31是沿X方向以及Y方向排列的多个光源元件的一例。多个光学单元4A按照作为激光光源30中沿X方向排列的LD31a~LD31e的组的每个LD条3,对各光束进行导光。耦合光学系统20将被各光学单元4A导光的多个光束耦合。光学单元4A将BT50的两端面之中的斜行透镜部51的间距Wo大的+Z侧的端面朝向耦合光学系统20配置。
根据以上的射束耦合装置2A,在将多个光束耦合时,通过光学单元4A使X方向外侧的主光线L11向外,由此能够减小射束耦合位置P1处的射束直径自身。这样,由于光学单元4A所实现的设计自由度的提高,在空间合成式的射束耦合装置2A中能够使射束质量变得良好。
(其他实施方式)
如以上那样,作为在本申请中公开的技术例示,对实施方式1~2进行了说明。然而,本公开中的技术并不限定于此,还能够应用于适当地进行了变更、置换、附加、省略等的实施方式。此外,将在上述各实施方式中说明的各构成要素组合起来,也能够作为新的实施方式。因此,以下例示其他实施方式。
在上述的实施方式1中,对波长合成式的射束耦合装置2的一例进行了说明,但射束耦合装置2的结构不特别限定于该例。例如,对在射束耦合装置2中使用透射型的衍射元件25的例子进行了说明,但衍射元件25不限于透射型,也可以为反射型。此外,在图3中作为LD31发出的波段例示了900nm波段,但LD31的波段没有特别限定,例如也可以为400nm波段。根据本实施方式的光学单元4,即使在这样的各种波长合成式的射束耦合装置2的光学设计下,也能够由BT50承担聚光的功能等控制光束的光线方向,能够提高设计自由度。
此外,在上述的实施方式2中,对空间合成式的射束耦合装置2A的一例进行了说明,但射束耦合装置2A的结构不特别限定于该例。例如,对使Y方向上的外侧的主光线L1向内的射束耦合装置2A进行了说明,但也可以不使该主光线L1向内,例如可以使其向外。此外,对在耦合光学系统20中使用柱面透镜22的例子进行了说明,但也可以省略柱面透镜22。根据本实施方式的光学单元4A,即使在这样的各种空间合成式的射束耦合装置2A的光学设计下,也能够提高设计自由度。
此外,在上述的各实施方式中,对将光学单元4、4A应用于波长合成式或空间合成式的射束耦合装置2、2A的例子进行了说明。本实施方式的光学单元不限于波长合成式或空间合成式,也可以应用于各种射束耦合装置。本实施方式的光学单元还能够应用于将波长合成式和空间合成式进行了适当组合的射束耦合装置。
如以上那样,作为本公开中的技术例示,对实施方式进行了说明。为此,提供了附图以及详细的说明。
因此,在附图以及详细的说明中记载的构成要素之中,不仅包含为了解决问题所必须的构成要素,为了例示上述技术,还可能包含不是为了解决问题所必须的构成要素。因而,不应该以这些非必须的构成要素记载于附图、详细的说明中为由而直接认定为这些非必须的构成要素是必须的。
此外,上述的实施方式用于例示本公开中的技术,因此能够在请求的范围或其等同的范围中进行各种各样的变更、置换、附加、省略等。
产业上的可利用性
本公开能够应用于将多个光束耦合使用的各种用途,例如能够应用于各种激光加工技术。

Claims (8)

1.一种光学单元,对多个光束进行导光,
所述光学单元具备所述多个光束分别透射的多个透镜部,
所述多个透镜部在与所述光束透射的光轴方向交叉的排列方向上排列,
各所述透镜部相对于与所述光轴方向以及所述排列方向交叉的厚度方向倾斜,
在所述光轴方向上的所述光学单元的两端面之中,一个端面中所述透镜部排列的间距小于另一个端面中所述透镜部排列的间距。
2.根据权利要求1所述的光学单元,其中,还具备:
第1准直透镜,与所述两端面之中的一个端面对置配置,使光束从该端面向所述透镜部入射。
3.根据权利要求2所述的光学单元,其中,还具备:
第2准直透镜,与所述两端面之中的所述第1准直透镜所对置的端面的相反侧的端面对置配置,对从该端面射出的光束进行准直。
4.一种射束耦合装置,具备:
光源,包含能够以彼此不同的波长谐振的多个光源元件,发出来自各光源元件的多个光束;
权利要求1~3中任一项所述的光学单元,对来自所述光源的各光束进行导光;以及
衍射元件,对从所述光源经由所述光学单元入射的各光束进行衍射,将以不同的波长谐振的多个光束耦合,
所述光学单元将所述两端面之中的所述透镜部的间距小的端面朝向所述衍射元件配置。
5.根据权利要求4所述的射束耦合装置,其中,
每个所述光源元件的经由所述衍射元件的谐振的波长,根据所述排列方向上的所述各光源元件的位置而逐渐变化。
6.一种射束耦合装置,具备光源、作为权利要求1~3中任一项所述的光学单元的多个光学单元以及耦合光学系统,
所述光源包含在所述排列方向以及所述厚度方向上排列的多个光源元件,发出来自各光源元件的多个光束,
所述多个光学单元按照所述光源中沿所述排列方向排列的光源元件的每个组对各光束进行导光,
所述耦合光学系统将被各光学单元导光的多个光束耦合,
所述光学单元将所述两端面之中的所述透镜部的间距大的端面朝向所述耦合光学系统配置。
7.根据权利要求4~6中任一项所述的射束耦合装置,其中,
所述排列方向上的所述多个光源元件间的间距,与所述光学单元的两端面之中的靠近所述光源的一方的端面中所述透镜部排列的间距一致。
8.一种激光加工机,具备:
权利要求4~7中任一项所述的射束耦合装置;以及
加工头,将由所述射束耦合装置耦合后的光束照射到加工对象物。
CN202080082052.1A 2019-11-28 2020-07-01 光学单元、射束耦合装置以及激光加工机 Pending CN114761835A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2019-215505 2019-11-28
JP2019215505 2019-11-28
PCT/JP2020/025876 WO2021106257A1 (ja) 2019-11-28 2020-07-01 光学ユニット、ビーム結合装置およびレーザ加工機

Publications (1)

Publication Number Publication Date
CN114761835A true CN114761835A (zh) 2022-07-15

Family

ID=76130448

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202080082052.1A Pending CN114761835A (zh) 2019-11-28 2020-07-01 光学单元、射束耦合装置以及激光加工机

Country Status (5)

Country Link
US (1) US11867919B2 (zh)
EP (1) EP4067947A4 (zh)
JP (1) JP7479396B2 (zh)
CN (1) CN114761835A (zh)
WO (1) WO2021106257A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6246524B1 (en) * 1998-07-13 2001-06-12 Semiconductor Energy Laboratory Co., Ltd. Beam homogenizer, laser irradiation apparatus, laser irradiation method, and method of manufacturing semiconductor device
US20020036904A1 (en) * 2000-08-25 2002-03-28 Haruna Kawashima Illumination system with plural light sources, and exposure apparatus having the same
CN102089943A (zh) * 2008-05-08 2011-06-08 奥兰若光子公司 高亮度二极管输出方法和装置
CN102809822A (zh) * 2012-08-22 2012-12-05 温州泛波激光有限公司 一种激光二极管阵列的光束耦合聚焦装置
JP2015057765A (ja) * 2013-08-12 2015-03-26 大日本印刷株式会社 照明装置、投射装置、レンズアレイおよび光学モジュール
CN106873167A (zh) * 2011-11-04 2017-06-20 应用材料公司 使用微透镜阵列而产生线路的光学设计
CN108604016A (zh) * 2016-02-09 2018-09-28 三菱电机株式会社 光束整形装置以及激光振荡器
CN109417270A (zh) * 2016-08-26 2019-03-01 松下知识产权经营株式会社 激光模块
CN110383607A (zh) * 2017-03-09 2019-10-25 三菱电机株式会社 波长耦合激光器装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1006382B1 (de) * 1998-10-30 2002-09-18 Lissotschenko, Vitalij Anordnung und Vorrichtung zur optischen Strahltransformation
JP2006171348A (ja) 2004-12-15 2006-06-29 Nippon Steel Corp 半導体レーザ装置
US8536110B2 (en) 2011-07-02 2013-09-17 Brad Drost Molded solid industrial cleaning block
US9746679B2 (en) 2012-02-22 2017-08-29 TeraDiode, Inc. Wavelength beam combining laser systems utilizing lens roll for chief ray focusing
EP3761463A4 (en) 2018-02-26 2021-04-21 Panasonic Intellectual Property Management Co., Ltd. LIGHT RESONATOR AND LASER PROCESSING MACHINE

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6246524B1 (en) * 1998-07-13 2001-06-12 Semiconductor Energy Laboratory Co., Ltd. Beam homogenizer, laser irradiation apparatus, laser irradiation method, and method of manufacturing semiconductor device
US20020036904A1 (en) * 2000-08-25 2002-03-28 Haruna Kawashima Illumination system with plural light sources, and exposure apparatus having the same
CN102089943A (zh) * 2008-05-08 2011-06-08 奥兰若光子公司 高亮度二极管输出方法和装置
CN106873167A (zh) * 2011-11-04 2017-06-20 应用材料公司 使用微透镜阵列而产生线路的光学设计
CN102809822A (zh) * 2012-08-22 2012-12-05 温州泛波激光有限公司 一种激光二极管阵列的光束耦合聚焦装置
JP2015057765A (ja) * 2013-08-12 2015-03-26 大日本印刷株式会社 照明装置、投射装置、レンズアレイおよび光学モジュール
CN108604016A (zh) * 2016-02-09 2018-09-28 三菱电机株式会社 光束整形装置以及激光振荡器
CN109417270A (zh) * 2016-08-26 2019-03-01 松下知识产权经营株式会社 激光模块
CN110383607A (zh) * 2017-03-09 2019-10-25 三菱电机株式会社 波长耦合激光器装置

Also Published As

Publication number Publication date
US20220260842A1 (en) 2022-08-18
WO2021106257A1 (ja) 2021-06-03
EP4067947A1 (en) 2022-10-05
JPWO2021106257A1 (zh) 2021-06-03
EP4067947A4 (en) 2023-03-08
JP7479396B2 (ja) 2024-05-08
US11867919B2 (en) 2024-01-09

Similar Documents

Publication Publication Date Title
US11353715B2 (en) Wavelength beam combining laser systems utilizing lens roll for chief ray focusing
US9331457B2 (en) Semiconductor laser apparatus
US8817832B2 (en) Multi-wavelength diode laser array
JP2021524161A (ja) 波長合成技術用レーザシステムにおけるパワー及びスペクトラムのモニタリング
US11914166B2 (en) Systems and methods for alignment of wavelength beam combining resonators
US11682882B2 (en) Laser system with staircased slow-axis collimators
CN111819740A (zh) 光谐振器以及激光加工机
CN114761835A (zh) 光学单元、射束耦合装置以及激光加工机
US20240176156A1 (en) Optical system and laser device, collimator lens
US20230163550A1 (en) Laser system
JPWO2020081335A5 (zh)
JP2024038535A (ja) 光共振器及びレーザ加工装置
CN114746799A (zh) 射束耦合装置以及激光加工机
WO2015191451A1 (en) Wavelength beam combining laser systems utilizing lens roll for chief ray focusing

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination