CN114760424A - Signal forwarding method, circuit, device and signal distribution testing device - Google Patents
Signal forwarding method, circuit, device and signal distribution testing device Download PDFInfo
- Publication number
- CN114760424A CN114760424A CN202210299599.8A CN202210299599A CN114760424A CN 114760424 A CN114760424 A CN 114760424A CN 202210299599 A CN202210299599 A CN 202210299599A CN 114760424 A CN114760424 A CN 114760424A
- Authority
- CN
- China
- Prior art keywords
- signal
- circuit
- analog video
- forwarding
- stage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000012360 testing method Methods 0.000 title claims abstract description 50
- 238000009826 distribution Methods 0.000 title claims abstract description 24
- 238000000034 method Methods 0.000 title claims abstract description 23
- 238000011084 recovery Methods 0.000 claims abstract description 45
- 238000012545 processing Methods 0.000 claims abstract description 20
- 230000008054 signal transmission Effects 0.000 claims description 63
- 230000002457 bidirectional effect Effects 0.000 claims description 22
- 230000008878 coupling Effects 0.000 claims description 16
- 238000010168 coupling process Methods 0.000 claims description 16
- 238000005859 coupling reaction Methods 0.000 claims description 16
- 238000006243 chemical reaction Methods 0.000 claims description 11
- 238000001914 filtration Methods 0.000 claims description 8
- 230000001360 synchronised effect Effects 0.000 claims description 4
- 230000005540 biological transmission Effects 0.000 abstract description 12
- 238000005070 sampling Methods 0.000 description 17
- 238000010586 diagram Methods 0.000 description 9
- 238000012544 monitoring process Methods 0.000 description 6
- 230000003321 amplification Effects 0.000 description 5
- 238000003199 nucleic acid amplification method Methods 0.000 description 5
- 230000009286 beneficial effect Effects 0.000 description 4
- 239000003990 capacitor Substances 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 230000032683 aging Effects 0.000 description 2
- 239000003985 ceramic capacitor Substances 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000007689 inspection Methods 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 238000012827 research and development Methods 0.000 description 2
- 238000013329 compounding Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000005315 distribution function Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N5/00—Details of television systems
- H04N5/222—Studio circuitry; Studio devices; Studio equipment
- H04N5/262—Studio circuits, e.g. for mixing, switching-over, change of character of image, other special effects ; Cameras specially adapted for the electronic generation of special effects
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N17/00—Diagnosis, testing or measuring for television systems or their details
- H04N17/002—Diagnosis, testing or measuring for television systems or their details for television cameras
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N5/00—Details of television systems
- H04N5/38—Transmitter circuitry for the transmission of television signals according to analogue transmission standards
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- General Health & Medical Sciences (AREA)
- Closed-Circuit Television Systems (AREA)
Abstract
Description
技术领域technical field
本发明属于信号处理技术领域,尤其涉及一种信号转发方法、电路、装置及信号分发测试装置。The invention belongs to the technical field of signal processing, and in particular relates to a signal forwarding method, circuit, device and signal distribution testing device.
背景技术Background technique
目前,视频信号按类型可划分为数字视频信号和模拟视频信号,如典型的模拟摄像机,输出的视频信号就是采用模拟的CVBS(Composite Video Broadcast Signal,复合视频广播信号)进行数据传输。At present, video signals can be divided into digital video signals and analog video signals according to types. For example, a typical analog camera, the output video signal uses analog CVBS (Composite Video Broadcast Signal, composite video broadcast signal) for data transmission.
CVBS信号具有复合的特点,即是将生成视频信号需要的所有成分组合在同一信号中,具体地,信号里面由每一场串行组成,每场的信号中包含了行信号、场同步、场消隐、同轴线控等成分,每行的信号中又包含了行同步、色彩分量、亮度分量、行消隐等成分。The CVBS signal has the characteristics of compounding, that is, it combines all the components required to generate a video signal in the same signal. Specifically, the signal is composed of each field serially. Blanking, coaxial line control and other components, the signal of each line also contains components such as line synchronization, color component, luminance component, line blanking and so on.
在视频监控领域的开发和测试领域,需要对模拟视频信号的接收终端连接对应的发送终端进行性能测试,例如如图1中作为接收终端的硬盘录像机,一台16通道的硬盘录像机接入作为发送终端的16台模拟摄像机,16台模拟摄像机作为监控前端,分别采集各自监控现场的实时视频数据,输出模拟视频信号接入到后端的模拟高清硬盘录像机的各视频端口进行各通道视频的预览监控和录像等。其中,模拟视频信号需一对一连接传输,为保证测试结果准确,故在设备研发领域的测试环节以及设备制造领域的产测质检环节,操作人员必须搭设足够数量的摄像机,然后一对一接入到视频录像机的每个视频输入端口。In the field of development and testing in the field of video surveillance, it is necessary to perform performance testing on the receiving terminal of the analog video signal connected to the corresponding sending terminal. For example, as shown in Figure 1, the DVR is used as the receiving terminal, and a 16-channel DVR is connected as the sending terminal. The 16 analog cameras of the terminal, 16 analog cameras are used as the monitoring front-end to collect real-time video data of their respective monitoring sites, and output analog video signals to be connected to the video ports of the back-end analog high-definition hard disk video recorder for preview monitoring and monitoring of each channel video. video, etc. Among them, analog video signals need to be connected and transmitted one-to-one. In order to ensure accurate test results, operators must set up a sufficient number of cameras in the testing process in the field of equipment research and development and in the production testing and quality inspection process in the field of equipment manufacturing. Access to each video input port of the video recorder.
要接满录像机的所有通道需要搭设16台摄像机,故在研发和制造领域,每个开发和测试人员需配备16台摄像机,如此便会占用较多的测试资源和办公区域,尤其在测试环节中,这个情形就更加凸显,设备样机的老化测试通常需要搭设10套左右的数量规模,因此对于16通道的机型来说,老化测试的环境架设需要160台的摄像机,现场线束布置难免错综复杂,如此一来便严重占用了测试设备和大面积的测试区域,且后期的巡检和维护工作费时费力,运营和维护均不具备便捷性、效率低下。To connect all the channels of the recorder, 16 cameras need to be set up. Therefore, in the R&D and manufacturing fields, each developer and tester needs to be equipped with 16 cameras, which will occupy more testing resources and office space, especially in the testing process. , this situation is more prominent, the aging test of the equipment prototype usually needs to set up about 10 sets in quantity, so for the 16-channel model, the environment for the aging test needs 160 cameras, and the on-site wiring harness layout is inevitably complicated, so As a result, the test equipment and a large area of the test area are seriously occupied, and the later inspection and maintenance work is time-consuming and labor-intensive, and the operation and maintenance are not convenient and low-efficiency.
发明内容SUMMARY OF THE INVENTION
本发明的目的在于提供一种信号转发方法,旨在解决终端设备测试时存在成本高、效率低的问题,同时实现高保真信号转发。The purpose of the present invention is to provide a signal forwarding method, which aims to solve the problems of high cost and low efficiency in terminal equipment testing, and at the same time realize high-fidelity signal forwarding.
本发明实施例的第一方面提出了一种信号转发方法,应用于信号转发电路,多个所述信号转发电路级联,每一所述信号转发电路连接一接收终端,所述信号转发方法包括:A first aspect of the embodiments of the present invention provides a signal forwarding method, which is applied to a signal forwarding circuit. A plurality of the signal forwarding circuits are cascaded, and each of the signal forwarding circuits is connected to a receiving terminal. The signal forwarding method includes: :
获取发送终端或者前级所述信号转发电路输出的模拟视频信号,以及获取并解析本级连接的所述接收终端输出的线控信号或者获取后级所述信号转发电路输出的线控信号;Acquire the analog video signal output by the sending terminal or the signal forwarding circuit of the previous stage, and obtain and analyze the wire control signal output by the receiving terminal connected at the current stage or obtain the wire control signal output by the signal forwarding circuit of the latter stage;
对所述模拟视频信号进行线性补偿并分发为n1+1路,并分别进行信号处理后输出n2路所述模拟视频信号至本级连接的所述接收终端的n2个信号端口以及输出一路所述模拟视频信号至后级所述信号转发电路,其中,n1≧n2≧2;Perform linear compensation on the analog video signal and distribute it into n1+1 channels, and after signal processing respectively, output the n2 channels of the analog video signal to the n2 signal ports of the receiving terminal connected to this stage and output one channel of the analog video signal. The analog video signal is sent to the signal forwarding circuit of the latter stage, wherein n1≧n2≧2;
将所述线控信号反向输出至所述发送终端或者前级所述信号转发电路。The wire control signal is reversely output to the sending terminal or the signal forwarding circuit at the previous stage.
可选地,所述获取并解析本级连接的所述接收终端输出的线控信号具体包括:Optionally, the acquiring and parsing the wire-controlled signal output by the receiving terminal connected at the current level specifically includes:
解码所述模拟视频信号,并生成驱动信号;decoding the analog video signal and generating a drive signal;
对模拟视频信号中场消隐识别,并生成使能信号;Identify the field blanking in the analog video signal and generate an enable signal;
对所述驱动信号和所述使能信号进行线控脉冲叠加并解析生成所述线控信号。The drive signal and the enable signal are superimposed by line control pulses and analyzed to generate the line control signal.
本发明实施例的第二方面提出了一种信号转发电路,包括:A second aspect of the embodiments of the present invention provides a signal forwarding circuit, including:
补偿恢复电路,所述补偿恢复电路用于连接发送终端或者前级所述信号转发电路,并获取所述发送终端或者前级所述信号转发电路输出的模拟视频信号,并进行信号线性补偿以及分发为n1+1路;Compensation recovery circuit, which is used to connect the sending terminal or the signal forwarding circuit of the previous stage, and obtain the analog video signal output by the sending terminal or the signal forwarding circuit of the preceding stage, and perform signal linearity compensation and distribution For n1+1 way;
与所述补偿恢复电路的输出端共接并一一接收n1+1路所述模拟视频信号的n1+1路双向信号传输电路;其中,n1+1 bidirectional signal transmission circuits that are connected with the output end of the compensation recovery circuit and receive n1+1 analog video signals one by one; wherein,
n1路所述双向信号传输电路中的n2路所述双向信号传输电路与本级连接的接收终端的n2个信号端口连接,并对各路所述模拟视频信号分别进行信号处理后输出n2路所述模拟视频信号至本级连接的所述接收终端,以及获取并解析本级连接的所述接收终端输出的线控信号;Among the n1 channels of the bidirectional signal transmission circuits, the n2 channels of the bidirectional signal transmission circuits are connected to the n2 signal ports of the receiving terminal connected to the current stage, and the analog video signals of each channel are processed separately and then output to the n2 channels. sending the analog video signal to the receiving terminal connected at the same level, and acquiring and parsing the wire-controlled signal output by the receiving terminal connected at the same level;
另一路所述双向信号传输电路,用于对所述补偿恢复电路输出的模拟视频信号进行信号处理后输出至后级所述信号转发电路,以及获取后级信号转发电路输出的线控信号;The other channel of the bidirectional signal transmission circuit is used for performing signal processing on the analog video signal output by the compensation recovery circuit and outputting it to the signal forwarding circuit of the subsequent stage, and obtaining the wire control signal output by the signal forwarding circuit of the subsequent stage;
各所述线控信号通过所述补偿恢复电路反向输出至所述发送终端。Each of the wire-controlled signals is reversely output to the transmitting terminal through the compensation recovery circuit.
可选地,各所述双向信号传输电路包括:Optionally, each of the bidirectional signal transmission circuits includes:
第一信号传输电路,所述第一信号传输电路的第一端与所述补偿恢复电路连接,所述第一信号传输电路的第二端与本级所述接收终端或者后级所述信号转发电路连接,所述第一信号传输电路用于将所述补偿恢复电路输出的模拟视频信号进行信号处理后输出至本级所述接收终端或者后级所述信号转发电路;A first signal transmission circuit, the first end of the first signal transmission circuit is connected to the compensation recovery circuit, and the second end of the first signal transmission circuit is connected to the receiving terminal of the current stage or the signal forwarding of the subsequent stage circuit connection, the first signal transmission circuit is used for performing signal processing on the analog video signal output by the compensation recovery circuit and then outputting it to the receiving terminal of the current stage or the signal forwarding circuit of the subsequent stage;
第二信号传输电路,所述第二信号传输电路的第一端与所述补偿恢复电路连接,所述第二信号传输电路的第二端与与本级所述接收终端或者后级所述信号转发电路连接,所述第二信号传输电路用于解析本级连接的所述接收终端输出的线控信号或者获取后级信号转发电路输出的线控信号,并通过所述补偿恢复电路反向输出至所述发送终端或者前级所述信号转发电路。A second signal transmission circuit, the first end of the second signal transmission circuit is connected to the compensation recovery circuit, and the second end of the second signal transmission circuit is connected to the receiving terminal of the current stage or the signal of the subsequent stage is connected to a forwarding circuit, the second signal transmission circuit is used to analyze the wire-controlled signal output by the receiving terminal connected to the current stage or obtain the wire-controlled signal output by the signal forwarding circuit of the subsequent stage, and reverse the output through the compensation recovery circuit to the sending terminal or the preceding signal forwarding circuit.
可选地,所述第一信号传输电路包括:Optionally, the first signal transmission circuit includes:
交流耦合电路,所述交流耦合电路与补偿恢复电路连接,并将所述模拟视频信号耦合输出;an AC coupling circuit, the AC coupling circuit is connected to the compensation recovery circuit, and couples and outputs the analog video signal;
与所述交流耦合电路连接的滤波驱动电路,所述滤波驱动电路,用于对耦合输出的模拟视频信号进行滤波放大处理并输出;a filter drive circuit connected to the AC coupling circuit, the filter drive circuit is used for filtering, amplifying and outputting the coupled output analog video signal;
与所述滤波驱动电路连接、以及与本级所述接收终端或者后级所述信号转发电路连接的线性调整电路,所述线性调整电路用于将滤波放大后的模拟视频信号线性调整,并输出预设幅值的模拟视频信号。A linear adjustment circuit connected to the filter driving circuit and connected to the receiving terminal of the current stage or the signal forwarding circuit of the subsequent stage, the linear adjustment circuit is used to linearly adjust the filtered and amplified analog video signal, and output An analog video signal with a preset amplitude.
可选地,所述第二信号传输电路包括:Optionally, the second signal transmission circuit includes:
与本级所述接收终端或者后级所述信号转发电路连接的线控解码电路,所述线控解码电路,用于解析模拟视频信号中反向的线控信号,并生成驱动信号;a wire-controlled decoding circuit connected to the receiving terminal of the current stage or the signal forwarding circuit of the subsequent stage, the wire-controlled decoding circuit is used to analyze the reverse wire-controlled signal in the analog video signal and generate a driving signal;
与所述线控解码电路连接的场消隐同步电路,所述场消隐同步电路,用于对所述模拟视频信号中场消隐识别,并生成使能信号;a vertical blanking synchronization circuit connected to the wire-controlled decoding circuit, the vertical blanking synchronization circuit is used to identify the vertical blanking in the analog video signal and generate an enable signal;
与所述线控解码电路、所述场消隐同步电路和所述补偿恢复电路分别连接的脉冲叠加电路,用于对所述驱动信号和所述使能信号进行线控脉冲叠加并输出所述线控信号。A pulse superposition circuit connected to the line control decoding circuit, the vertical blanking synchronization circuit and the compensation recovery circuit respectively, is used for performing line control pulse superposition on the drive signal and the enable signal and outputting the wire control signal.
可选地,所述信号转发电路还包括:Optionally, the signal forwarding circuit further includes:
连接于所述补偿恢复电路前级的第一静电防护电路,所述第一静电防护电路,用于对输入的模拟视频信号或者输出的线控信号进行静电防护;a first electrostatic protection circuit connected to the front stage of the compensation recovery circuit, the first electrostatic protection circuit is used for electrostatic protection of the input analog video signal or the output wire control signal;
第二静电防护电路,所述第二静电防护电路的第一端与本级所述接收终端或者后级所述信号转发电路连接,所述第二静电防护电路的第二端分别与所述第一信号传输电路和所述第二信号传输电路连接,所述第二静电防护电路,用于对输出的所述模拟视频信号或者输入的线控信号进行静电防护。The second electrostatic protection circuit, the first end of the second electrostatic protection circuit is connected to the receiving terminal of the current stage or the signal forwarding circuit of the subsequent stage, and the second end of the second electrostatic protection circuit is respectively connected to the second electrostatic protection circuit. A signal transmission circuit is connected to the second signal transmission circuit, and the second electrostatic protection circuit is used for electrostatic protection for the output analog video signal or the input wire control signal.
可选地,所述信号转发电路还包括:Optionally, the signal forwarding circuit further includes:
电源转换电路,所述电源转换电路,用于转换输出对应电压大小的工作电源至所述双向信号传输电路。A power conversion circuit, the power conversion circuit is used for converting and outputting a working power supply of a corresponding voltage size to the bidirectional signal transmission circuit.
本发明实施例的第三方面提出了一种信号转发装置,包括如上所述的信号转发电路。A third aspect of the embodiments of the present invention provides a signal forwarding apparatus, including the above-mentioned signal forwarding circuit.
本发明实施例的第四方面提出了一种信号分发测试装置,包括m个如上所述的信号转发装置,m个所述信号转发装置级联设置;A fourth aspect of the embodiments of the present invention provides a signal distribution test device, including m signal transponders as described above, where m of the signal transponders are cascaded;
位于首级的所述信号转发装置与发送终端连接,每一所述信号转发装置与接收终端的n2个信号端口连接。The signal forwarding device at the first stage is connected to the sending terminal, and each of the signal forwarding devices is connected to n2 signal ports of the receiving terminal.
本发明实施例与现有技术相比存在的有益效果是:上述的信号转发方法通对输入的模拟视频信号进行线性补偿,实现对信号一对多路转发后引起的信号幅度下降进行对应补偿恢复,同时,分发的n2路模拟视频信号通过信号处理后输出至接收终端,并解析接收终端反向传输的线控信号,同时,将模拟视频信号转发至后级的信号转发电路以及接收后级反向传输的线控信号,一个接收终端仅需连接一路信号转发电路和一个发送终端即可完成测试,m个接收终端仅需连接m路信号转发电路和一个发送终端即可完成测试,降低了测试成本,提高了测试效率,同时实现了模拟视频信号的高保真输出以及线控信号的反向传输。Compared with the prior art, the embodiments of the present invention have the following beneficial effects: the above-mentioned signal forwarding method performs linear compensation on the input analog video signal, so as to realize the corresponding compensation and recovery of the signal amplitude drop caused by the one-to-multiple forwarding of the signal. At the same time, the distributed n2 channels of analog video signals are output to the receiving terminal after signal processing, and analyze the wire control signal reversely transmitted by the receiving terminal. For the transmitted wire-controlled signal, one receiving terminal only needs to connect one signal forwarding circuit and one sending terminal to complete the test, and m receiving terminals only need to connect m signal forwarding circuits and one sending terminal to complete the test, which reduces the test time. cost, improve the test efficiency, and at the same time realize the high-fidelity output of analog video signals and the reverse transmission of wire-controlled signals.
附图说明Description of drawings
图1为传统的发送终端和测试终端的测试示意图;Fig. 1 is the test schematic diagram of traditional sending terminal and test terminal;
图2为本发明实施例提供的信号转发电路的第一种结构示意图;FIG. 2 is a first structural schematic diagram of a signal forwarding circuit provided by an embodiment of the present invention;
图3为本发明实施例提供的信号转发方法的流程示意图;3 is a schematic flowchart of a signal forwarding method provided by an embodiment of the present invention;
图4为本发明实施例提供的信号转发方法中步骤S10的具体流程示意图;FIG. 4 is a specific flowchart of step S10 in the signal forwarding method provided by an embodiment of the present invention;
图5为本发明实施例提供的信号转发电路的第二种结构示意图;5 is a schematic diagram of a second structure of a signal forwarding circuit provided by an embodiment of the present invention;
图6为本发明实施例提供的信号转发电路的第三种结构示意图;FIG. 6 is a third schematic structural diagram of a signal forwarding circuit provided by an embodiment of the present invention;
图7为本发明实施例提供的信号转发电路的第四种结构示意图;7 is a schematic diagram of a fourth structure of a signal forwarding circuit provided by an embodiment of the present invention;
图8为本发明实施例提供的信号转发电路的第五种结构示意图;FIG. 8 is a fifth structural schematic diagram of a signal forwarding circuit provided by an embodiment of the present invention;
图9为本发明实施例提供的信号转发电路的第六种结构示意图;FIG. 9 is a sixth schematic structural diagram of a signal forwarding circuit provided by an embodiment of the present invention;
图10为本发明实施例提供的信号转发电路的电路示意图;10 is a schematic circuit diagram of a signal forwarding circuit provided by an embodiment of the present invention;
图11为本发明实施例提供的信号分发测试装置的结构示意图。FIG. 11 is a schematic structural diagram of a signal distribution test apparatus provided by an embodiment of the present invention.
具体实施方式Detailed ways
为了使本发明所要解决的技术问题、技术方案及有益效果更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。In order to make the technical problems, technical solutions and beneficial effects to be solved by the present invention clearer, the present invention will be further described in detail below with reference to the accompanying drawings and embodiments. It should be understood that the specific embodiments described herein are only used to explain the present invention, but not to limit the present invention.
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。In addition, the terms "first" and "second" are only used for descriptive purposes, and should not be construed as indicating or implying relative importance or implying the number of indicated technical features. Thus, a feature defined as "first" or "second" may expressly or implicitly include one or more of that feature. In the description of the present invention, "plurality" means two or more, unless otherwise expressly and specifically defined.
本发明实施例的第一方面提出了一种信号转发方法,应用于信号转发电路1,如图2所示,多个信号转发电路1级联,每一信号转发电路1连接一接收终端3。The first aspect of the embodiments of the present invention proposes a signal forwarding method, which is applied to a
其中,如图3所示,对应于信号转发电路1的信号转发方法包括:Wherein, as shown in FIG. 3 , the signal forwarding method corresponding to the
步骤S10、获取发送终端2或者前级信号转发电路1输出的模拟视频信号,以及获取并解析本级连接的接收终端3输出的线控信号或者获取后级信号转发电路1输出的线控信号。Step S10: Acquire the analog video signal output by the sending
步骤S20、对模拟视频信号进行线性补偿并分发为n1+1路,并分别进行信号处理后输出n2路模拟视频信号至本级连接的接收终端3的n2个信号端口以及输出一路模拟视频信号至后级信号转发电路1,其中,n1≧n2≧2;Step S20, perform linear compensation on the analog video signal and distribute it into n1+1 channels, and after signal processing respectively, output n2 channels of analog video signals to the n2 signal ports of the receiving
步骤S30、将线控信号反向输出至发送终端2或者前级信号转发电路1。Step S30 , outputting the wire control signal inversely to the sending
本实施例中,对应于信号接收、分发、转发功能,信号转发电路1设置有用于连接发送终端2或者前级信号转发电路1的第一端口IO1,连接接收终端3的第二端口IO2以及连接后级信号转发电路1的转发端口IO3。In this embodiment, corresponding to the functions of signal reception, distribution, and forwarding, the
信号转发电路1采用信号转发方法,实现模拟视频信号的分发及转发,同时,实现线控信号的解析以及反向输出。The
即通过第一端口IO1接收发送终端2发出的模拟视频信号或者前级的信号转发电路1转发输出的模拟视频信号,同时为了获得信号一对多路转发处理的高保真度,根据CVBS信号的建立原理和构成特性,改进了信号转发取样点VA的位置,将信号转发的星型取样点VA前移,设置在线性补偿之后,星型取样点VA处的信号幅度变化只与分发数量相关,即只与转发路数相关,同时,星型取样点VA处设置了对应补偿模块实现了线性补偿,实现对信号一对多路转发后引起的信号幅度下降进行对应补偿恢复,从而实现了取样点VA处的信号保真,并且由于取样点VA前移,故先行补偿的补偿参数调配按照转发路数可灵活调配,提高了兼容性。That is, the analog video signal sent by the sending
其中,模拟视频信号在星型取样点VA处进行补偿恢复还原成原始信号后,分发多路,每一路模拟视频信号经过滤波放大、线性调整等优化处理,得到预期的高保真的模拟视频信号,并分别通过第二端口IO2输出至发送终端2的n2个信号端口,以使接收终端3进行视频监控或者数据统计工作。Among them, the analog video signal is compensated and restored to the original signal at the star sampling point VA, and then distributed to multiple channels. Each channel of analog video signal is optimized by filtering, amplification, linear adjustment, etc. to obtain the expected high-fidelity analog video signal. The signals are respectively output to the n2 signal ports of the sending
同时,高保真的模拟视频信号还通过转发端口IO3转发至后级信号转发电路1,以提供模拟视频信号至后级各信号转发电路1,实现模拟视频信号的逐级转发。At the same time, the high-fidelity analog video signal is also forwarded to the rear-stage
同时,模拟视频信号由多成分高度复合构成,其不仅包含正向传输的视频信号,还会在场消隐区调制线控信号进行反向传输,如摄像机会将反向的线控信号调制到CVBS信号的场消隐区域用来完成录像机对模拟摄像机的反向控制,实现屏幕菜单显示和远程的参数配置等功能。At the same time, the analog video signal is composed of multiple components and is highly composited, which not only includes the forward transmission video signal, but also modulates the wire control signal in the vertical blanking area for reverse transmission. For example, the camera will modulate the reverse wire control signal to CVBS. The field blanking area of the signal is used to complete the reverse control of the video recorder to the analog camera, and realize the functions of on-screen menu display and remote parameter configuration.
因此,为了实现线控信号的反向输出,信号转发方法通过第二端口IO2或者第三端口接收以及解析对应的线控信号,即第二端口IO2信号分发时,控制信号转发电路1解析本级连接的接收终端3反向输出的线控信号,同时,通过转发端口IO3接收后级信号转发电路1输出的线控信号,并控制信号转发电路1对线控信号进行相应的信号处理后,反向输出至第一端口IO1,进而输出至发送终端2或者前级的信号转发电路1。Therefore, in order to realize the reverse output of the wire control signal, the signal forwarding method receives and parses the corresponding wire control signal through the second port IO2 or the third port, that is, when the second port IO2 signal is distributed, the control
其中,解析模拟视频信号中的线控信号可通过对应的解析方法具体实现,可选地,如图4所示,获取并解析本级连接的接收终端3输出的线控信号具体包括:Wherein, parsing the line control signal in the analog video signal can be specifically realized by a corresponding analysis method. Optionally, as shown in FIG. 4 , acquiring and analyzing the line control signal output by the receiving
步骤S11、解码模拟视频信号,并生成驱动信号;Step S11, decoding the analog video signal, and generating a driving signal;
步骤S12、对模拟视频信号中场消隐识别,并生成使能信号;Step S12, identifying the field blanking in the analog video signal, and generating an enabling signal;
步骤S13、对驱动信号和使能信号进行线控脉冲叠加并解析生成线控信号。Step S13 , superimpose the drive signal and the enable signal by line control pulses, and analyze and generate the line control signal.
本实施例中,通过对应解码模块解析模拟视频信号中反向的线控信号,实现从模拟视频信号中捕获线控信号,生成驱动信号,同时,设置对应的场消隐模块完成对模拟视频信号中场消隐识别,生成使能信号并输出123,为脉冲叠加模块提供工作基准,脉冲叠加模块完成对输入信号进行线控脉冲叠加,使接收终端3的线控信号通过解码、同步后,反向传输至第一端口IO1以及发送终端2。In this embodiment, the reversed line control signal in the analog video signal is analyzed by the corresponding decoding module, so as to capture the line control signal from the analog video signal and generate the driving signal. At the same time, the corresponding vertical blanking module is set to complete the analog video signal Midfield blanking identification, generating an enable signal and outputting 123 to provide a working reference for the pulse superposition module. The pulse superposition module completes the wire-controlled pulse superposition of the input signal, so that the wire-controlled signal of the receiving
通对输入的模拟视频信号进行线性补偿,实现对信号一对多路转发后引起的信号幅度下降进行对应补偿恢复,同时,分发的n2路模拟视频信号通过信号处理后输出至接收终端3,并解析接收终端3反向传输的线控信号,同时,将模拟视频信号转发至后级的信号转发电路1以及接收后级反向传输的线控信号,一个接收终端3仅需连接一路信号转发电路1和一个发送终端2即可完成测试,m个接收终端3仅需连接m路信号转发电路1和一个发送终端2即可完成测试,降低了测试成本,提高了测试效率,同时实现了模拟视频信号的高保真输出以及线控信号的反向传输。By performing linear compensation on the input analog video signal, the corresponding compensation and recovery of the signal amplitude drop caused by one-to-multiple forwarding of the signal is realized. At the same time, the distributed n2 channels of analog video signals are output to the receiving
其中,信号转发电路1内部结构可根据信号处理、分发、转发功能,对应设置,具体结构不限。The internal structure of the
基于信号转发方法的工作原理,如图5所示,本发明实施例的第二方面提出了一种信号转发电路1,包括:Based on the working principle of the signal forwarding method, as shown in FIG. 5 , a second aspect of the embodiments of the present invention provides a
补偿恢复电路200,补偿恢复电路200用于连接发送终端2或者前级信号转发电路1,并获取发送终端2或者前级信号转发电路1输出的模拟视频信号,并进行信号线性补偿以及分发为n1+1路;
与补偿恢复电路200的输出端共接并一一接收n1+1路模拟视频信号的n1+1路双向信号传输电路100;其中,The n1+1 bidirectional
n1路双向信号传输电路100中的n2路双向信号传输电路100与本级连接的接收终端3的n2个信号端口连接,并对各路模拟视频信号分别进行信号处理后输出n2路模拟视频信号至本级连接的接收终端3,以及获取并解析本级连接的接收终端3输出的线控信号;The n2 channels of bidirectional
另一路双向信号传输电路100,用于对补偿恢复电路200输出的模拟视频信号进行信号处理后输出至后级信号转发电路1,以及获取后级信号转发电路1输出的线控信号;The other bidirectional
各线控信号通过补偿恢复电路200反向输出至发送终端2。Each wire control signal is reversely output to the sending
本实施例中,信号转发电路1实现一对多分发和转发功能,实现模拟视频信号的高保真转发,以及线控信号的反向输出,对应于信号接收、分发、转发功能,信号转发电路1设置有用于连接发送终端2或者前级信号转发电路1的第一端口IO1,连接接收终端3的第二端口IO2以及连接后级信号转发电路1的转发端口IO3。In this embodiment, the
信号转发电路1采用信号转发方法,实现模拟视频信号的分发及转发,同时,实现线控信号的解析以及反向输出。The
即通过第一端口IO1接收发送终端2发出的模拟视频信号或者前级的信号转发电路1转发输出的模拟视频信号,同时为了获得信号一对多路转发处理的高保真度,根据CVBS信号的建立原理和构成特性,改进了信号转发取样点VA的位置,将信号转发的星型取样点VA前移,设置在补偿恢复电路200之后,星型取样点VA处的信号幅度变化只与分发数量相关,即只与转发路数相关,同时,星型取样点VA处设置了对应补偿恢复电路200实现了线性补偿,实现对信号一对多路转发后引起的信号幅度下降进行对应补偿恢复,从而实现了取样点VA处的信号保真,并且由于取样点VA前移,故补偿恢复电路200的补偿参数调配按照转发路数可灵活调配,提高了兼容性。That is, the analog video signal sent by the sending
其中,模拟视频信号在星型取样点VA处进行补偿恢复还原成原始信号后,分发多路,每一路模拟视频信号经过各双向信号传输电路100滤波放大、线性调整等优化处理,得到预期的高保真的模拟视频信号,并分别通过第二端口IO2输出至发送终端2的n2个信号端口,以使接收终端3进行视频监控或者数据统计工作。Among them, after the analog video signal is compensated and restored to the original signal at the star-shaped sampling point VA, it is distributed to multiple channels. Each channel of analog video signal is optimized by filtering, amplifying, and linear adjustment by each bidirectional
同时,高保真的模拟视频信号还通过一路双向信号传输电路100转发端口IO3转发至后级信号转发电路1,以提供模拟视频信号至后级各信号转发电路1,实现模拟视频信号的逐级转发,从而在测试时,多个接收终端3搭配一个发送终端2和多个信号转发电路1即可完成性能测试,降低了测试成本,并提高了测试效率。At the same time, the high-fidelity analog video signal is also forwarded to the rear-stage
同时,模拟视频信号由多成分高度复合构成,其不仅包含正向传输的视频信号,还会在场消隐区调制线控信号进行反向传输,如摄像机会将反向的线控信号调制到CVBS信号的场消隐区域用来完成录像机对模拟摄像机的反向控制,实现屏幕菜单显示和远程的参数配置等功能。At the same time, the analog video signal is composed of multiple components and is highly composited, which not only includes the forward transmission video signal, but also modulates the wire control signal in the vertical blanking area for reverse transmission. For example, the camera will modulate the reverse wire control signal to CVBS. The field blanking area of the signal is used to complete the reverse control of the video recorder to the analog camera, and realize the functions of on-screen menu display and remote parameter configuration.
因此,为了实现线控信号的反向输出,双向信号传输电路100通过第二端口IO2或者第三端口接收以及解析对应的线控信号,即第二端口IO2信号分发时,双向信号传输电路100解析本级连接的接收终端3反向输出的线控信号,同时,通过转发端口IO3接收后级信号转发电路1输出的线控信号,并对线控信号进行相应的信号处理后,反向输出至第一端口IO1,进而输出至发送终端2或者前级的信号转发电路1,最终实现对发送终端2的反向控制,完成参数配置、变焦控制等操作。Therefore, in order to realize the reverse output of the wire control signal, the bidirectional
其中,一个信号转发电路1可连接至少一个接收终端3,并且可匹配连接信号端口P1~Pn2数量为2~n1个的不同类型的接收终端3,提高了测试兼容性,信号转发电路1的第二端口IO2和双向信号传输电路100的数量可根据接收终端3对应设置。Among them, one
模拟视频信号由一路输入后经过多路转发,星型取样点VA处的输入阻抗会变小,引起信号幅度相应变小,补偿恢复电路200用来弥补星型取样点VA处输入阻抗的变小量,对输入信号的幅度完成线性补偿,可选地,补偿恢复电路200由电阻构成,分发路数不同、滤波驱动器U1型号不同,星型取样点VA处的输入阻抗变小量也会相应不同,可选地,如图10所示,补偿恢复电路200包括串联的第二电阻R2和第三电阻R3。The analog video signal is input from one channel and then forwarded by multiple channels, the input impedance at the star sampling point VA will become smaller, causing the signal amplitude to decrease accordingly. The
双向信号传输电路100的具体结构可根据模拟视频信号和线控信号的信号处理需求对应设置,可对应设置补偿电路、解码电路等,具体结构不限。The specific structure of the bidirectional
如图6所示,可选地,各双向信号传输电路100包括:As shown in FIG. 6, optionally, each bidirectional
第一信号传输电路110,第一信号传输电路110的第一端与补偿恢复电路200连接,第一信号传输电路110的第二端与本级接收终端3或者后级信号转发电路1连接,第一信号传输电路110用于将补偿恢复电路200输出的模拟视频信号进行信号处理后输出至本级接收终端3或者后级信号转发电路1;The first
第二信号传输电路120,第二信号传输电路120的第一端与补偿恢复电路200连接,第二信号传输电路120的第二端与与本级接收终端3或者后级信号转发电路1连接,第二信号传输电路120用于解析本级连接的接收终端3输出的线控信号或者获取后级信号转发电路1输出的线控信号,并通过补偿恢复电路200反向输出至发送终端2或者前级信号转发电路1。The second
本实施例中,第一信号传输电路110完成模拟视频信号的正向分发工作,第二信号传输电路120实现线控信号的反向传输工作,第一信号传输电路110完成对模拟信号的滤波放大、线性调整等信号处理,从而实现视频信号的最大保真度,第二信号传输电路120完成模拟视频信号线控解码、场消隐同步、脉冲叠加等操作,从而实现线控信号回传至发送终端2。In this embodiment, the first
其中,第一信号传输电路110和第二信号传输电路120根据信号正向分发功能和线控信号的反向传输功能具体设置,具体结构不限。The first
如图7所示,可选地,第一信号传输电路110包括:As shown in FIG. 7 , optionally, the first
交流耦合电路111,交流耦合电路111与补偿恢复电路200连接,并将模拟视频信号耦合输出;
与交流耦合电路111连接的滤波驱动电路112,滤波驱动电路112,用于对耦合输出的模拟视频信号进行滤波放大处理并输出;A
与滤波驱动电路112连接、以及与本级接收终端3或者后级信号转发电路1连接的线性调整电路113,线性调整电路113用于将滤波放大后的模拟视频信号线性调整,并输出预设幅值的模拟视频信号。A
本实施例中,交流耦合电路111用于实现模拟视频信号的耦合输出,并配合滤波驱动电路112获取低噪声性能,如图8所示,可选地,交流耦合电路111包括电容C1,电容C1串联于第一端口IO1和滤波驱动电路112之间。In this embodiment, the
滤波驱动电路112对交流耦合电路111输出的信号一方面进行电源、线路、电缆等引入的高频噪声的滤波,另一方面完成信号放大,线性调整电路113适配滤波驱动电路112的放大能力,将复合视频信号线性调整至预设大小,其中,如图10所示,滤波驱动电路112包括滤波驱动器U1,线性调整电路113包括第一电阻R1,第一电阻R1串接在滤波驱动器U1和第二端口IO2或者转发端口IO3之间。The
同时,根据模拟视频信号的类型和分辨率选择相应型号的滤波驱动器U1,交流耦合电路111的电容C1值根据滤波驱动器U1的耦合带宽选取,第一电阻R1根据滤波驱动器U1的放大倍数选取,并对应调整第一电阻R1的阻值和电容C1的容值,从而使得滤波驱动器U1的输入信号与线性调整电路113的输出信号的幅值接近。At the same time, the filter driver U1 of the corresponding model is selected according to the type and resolution of the analog video signal, the value of the capacitor C1 of the
同时,如图7所示,可选地,第二信号传输电路120包括:Meanwhile, as shown in FIG. 7 , optionally, the second
第二信号传输电路120包括:The second
与本级接收终端3或者后级信号转发电路1连接的线控解码电路121,线控解码电路121,用于解析模拟视频信号中反向的线控信号,并生成驱动信号;The wire-controlled
与线控解码电路121连接的场消隐同步电路122,场消隐同步电路122,用于对模拟视频信号中场消隐识别,并生成使能信号;The vertical
与线控解码电路121、场消隐同步电路122和补偿恢复电路200分别连接的脉冲叠加电路123,用于对驱动信号和使能信号进行线控脉冲叠加并输出线控信号。The
本实施例中,为了解析模拟视频信号中反向的线控信号,增加了线控解码电路121,线控解码电路121从模拟视频信号中捕获线控信号,生成驱动信号并输出至脉冲叠加电路123,可选地,如图10所示,线控解码电路121由单通道的高速比较器U3构成。In this embodiment, in order to analyze the reversed line control signal in the analog video signal, a line
具体地,由于反向的线控信号是处于场消隐区的若干组脉冲周期波,电平幅度通常设计在1V左右,为增强兼容性,将高速比较器U3的反向输入端参考电压V1设定在800mV,输出信号接入比较器U3的正向输入端。Specifically, since the reverse wire control signal is several groups of pulse periodic waves in the vertical blanking area, the level amplitude is usually designed to be around 1V. Set at 800mV, the output signal is connected to the positive input terminal of the comparator U3.
场消隐同步电路122完成对模拟视频信号中场消隐识别,生成使能信号并输出至脉冲叠加电路123,为脉冲叠加电路123提供工作基准,可选地,场消隐同步电路122由单通道的高速比较器U3构成,即高速比较器U3完成线控信号解码、场消隐同步的信号转换共组偶。The vertical
具体地,由于场消隐信号的电平幅度在300mV,场消隐同步电路122的比较器U3参考电压V2需要设置高于300mV,可选地,参考电压V2设置为330mV。Specifically, since the level amplitude of the vertical blanking signal is 300mV, the reference voltage V2 of the comparator U3 of the vertical
脉冲叠加电路123完成对输入信号进行线控脉冲叠加,使接收终端3的线控信号通过解码、同步后,反向传输至第一端口IO1以及发送终端2,可选地,如图10所示,脉冲叠加电路123由模拟开关U2、NPN型三极管Q1和第六电阻R6构成。The
如图8所示,可选地,信号转发电路1还包括:As shown in FIG. 8, optionally, the
连接于补偿恢复电路200前级的第一静电防护电路300,第一静电防护电路300,用于对输入的模拟视频信号或者输出的线控信号进行静电防护;The first
第二静电防护电路400,第二静电防护电路400的第一端与本级接收终端3或者后级信号转发电路1连接,第二静电防护电路400的第二端分别与第一信号传输电路110和第二信号传输电路120连接,第二静电防护电路400,用于对输出的模拟视频信号或者输入的线控信号进行静电防护。The second
本实施例中,第一静电防护电路300和第二静电防护电路400用于对对应端口进行静电防护,通过对端口引入的静电放电,防止外部静电进入造成电路损坏,其中,静电防护电路分布于信号转发电路1的输入端和输出端,静电防护电路可选择单向TVS管,或者其他类型的防护器件。In this embodiment, the first
如图9所示,可选地,信号转发电路1还包括:As shown in FIG. 9, optionally, the
电源转换电路500,电源转换电路500,用于转换输出对应电压大小的工作电源至双向信号传输电路100。The
本实施例中,电源转换电路500通过电源端口IO4获取外部电源并转换输出至少一路工作电源至信号转发电路1内部的各电路,以使内部电路实现对应的信号处理、传输等工作。In this embodiment, the
电源转换电路500可采用升降压电路、稳压电路、DC/DC转换电路等结构,具体结构不限。The
同时,电源转换电路500还可内设对应的滤波电路,实现平面滤波功能,滤波电路可由贴片陶瓷电容构成,贴片瓷片电容的容值根据电源转换电路500和滤波驱动器U1的工作频率范围综合选取,具体大小不限。At the same time, the
本发明还提出一种信号转发装置1000,如图11所示,该信号转发装置1000包括信号转发装置1000,该信号转发装置1000的具体结构参照上述实施例,由于本信号转发装置1000采用了上述所有实施例的全部技术方案,因此至少具有上述实施例的技术方案所带来的所有有益效果,在此不再一一赘述。The present invention also provides a
本实施例中,第一端口IO1、第二端口IO2和转发端口IO3集成设置于信号转发装置1000上,并采用对应端口结构以连接发送终端2、接收终端3以及后级信号转发装置1000,信号转发电路1内的各电路设置于信号转发装置1000的电路板上,并与对应端口电连接,实现模拟视频信号和线控信号的发送和接收工作。In this embodiment, the first port IO1, the second port IO2 and the forwarding port IO3 are integrated on the
同时,采用信号转发装置1000进行接收终端3的测试时,一个接收终端3仅需连接一路信号转发装置1000和一个发送终端2即可完成测试,m个接收终端3仅需连接m路信号转发装置1000和一个发送终端2即可完成测试,降低了测试成本,提高了测试效率。At the same time, when the
本发明还提出一种信号分发测试装置,该信号分发测试装置包括m个信号转发装置1000,该信号转发装置1000的具体结构参照上述实施例,由于本信号分发测试装置采用了上述所有实施例的全部技术方案,因此至少具有上述实施例的技术方案所带来的所有有益效果,在此不再一一赘述。其中,m个信号转发装置1000级联设置;The present invention also provides a signal distribution test device, the signal distribution test device includes
位于首级的信号转发装置1000与发送终端2连接,每一信号转发装置1000与接收终端3的n2个信号端口P1~Pn2连接。The
本实施例中,信号转发装置1000级联形成信号分发测试装置,形成发送终端2和多个接收终端3的一对多连接以及信号分发工作,同时搭配一个发送终端2形成测试装置,实现对多个接收终端3的同步测试,m个接收终端3仅需连接m路信号转发装置1000和一个发送终端2即可完成测试,降低了测试成本,提高了测试效率,同时,每一接收终端3还可通过对应信号转发装置1000发送线控信号至发送终端2,实现多对一的分时控制。In this embodiment, the
以上所述实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围,均应包含在本发明的保护范围之内。The above-mentioned embodiments are only used to illustrate the technical solutions of the present invention, but not to limit them; although the present invention has been described in detail with reference to the foregoing embodiments, those of ordinary skill in the art should understand that: it is still possible to implement the foregoing implementations. The technical solutions described in the examples are modified, or some technical features thereof are equivalently replaced; and these modifications or replacements do not make the essence of the corresponding technical solutions deviate from the spirit and scope of the technical solutions of the embodiments of the present invention, and should be included in the within the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210299599.8A CN114760424A (en) | 2022-03-25 | 2022-03-25 | Signal forwarding method, circuit, device and signal distribution testing device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210299599.8A CN114760424A (en) | 2022-03-25 | 2022-03-25 | Signal forwarding method, circuit, device and signal distribution testing device |
Publications (1)
Publication Number | Publication Date |
---|---|
CN114760424A true CN114760424A (en) | 2022-07-15 |
Family
ID=82326591
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210299599.8A Pending CN114760424A (en) | 2022-03-25 | 2022-03-25 | Signal forwarding method, circuit, device and signal distribution testing device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114760424A (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2048655U (en) * | 1989-04-11 | 1989-11-29 | 王迁唐 | Video allocation amplifier |
CN1564591A (en) * | 2004-04-09 | 2005-01-12 | 南京大学 | Method and appts. for duplex transmitting video signal and controlling data |
CN201491136U (en) * | 2009-09-16 | 2010-05-26 | 青岛海信电器股份有限公司 | Video signal distributor |
CN105791752A (en) * | 2014-12-26 | 2016-07-20 | 浙江大华技术股份有限公司 | Method and device for signal common cable transmission |
CN112702577A (en) * | 2020-12-24 | 2021-04-23 | 江苏卓茂智能科技有限公司 | Fusion video monitoring system accessed by multi-protocol video monitoring equipment |
CN214751995U (en) * | 2020-12-22 | 2021-11-16 | 西安北方光电科技防务有限公司 | Video generation circuit and device for video detection of recorder |
-
2022
- 2022-03-25 CN CN202210299599.8A patent/CN114760424A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2048655U (en) * | 1989-04-11 | 1989-11-29 | 王迁唐 | Video allocation amplifier |
CN1564591A (en) * | 2004-04-09 | 2005-01-12 | 南京大学 | Method and appts. for duplex transmitting video signal and controlling data |
CN201491136U (en) * | 2009-09-16 | 2010-05-26 | 青岛海信电器股份有限公司 | Video signal distributor |
CN105791752A (en) * | 2014-12-26 | 2016-07-20 | 浙江大华技术股份有限公司 | Method and device for signal common cable transmission |
CN214751995U (en) * | 2020-12-22 | 2021-11-16 | 西安北方光电科技防务有限公司 | Video generation circuit and device for video detection of recorder |
CN112702577A (en) * | 2020-12-24 | 2021-04-23 | 江苏卓茂智能科技有限公司 | Fusion video monitoring system accessed by multi-protocol video monitoring equipment |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6518744B1 (en) | General purpose oscilloscope having digital television signal display capability | |
US8810729B2 (en) | Method and apparatus for automatic compensation of signal losses from transmission over conductors | |
US20080106643A1 (en) | Method and apparatus for video transmission over long distances using twisted pair cables | |
CN105791895A (en) | Audio and video processing method and system based on time stamp | |
US20090251602A1 (en) | System and Method for Providing Video and Audio Signals to Multiple Displays | |
US20070296868A1 (en) | Method and apparatus for automatic compensation of skew in video transmitted over multiple conductors | |
US7538589B2 (en) | Cable driver using signal detect to control input stage offset | |
CN101419261A (en) | High resolution multimedia interface test system | |
CN104135643A (en) | Long-distance high-definition transmission method and equipment | |
CN114760424A (en) | Signal forwarding method, circuit, device and signal distribution testing device | |
CN105120192A (en) | Method of processing panoramic video and apparatus thereof | |
CN211580072U (en) | High-definition analog camera and cascade system thereof | |
CN102196154A (en) | Method and device for sharing terminal in component color difference port and composite video port | |
US8270398B2 (en) | System and method for signal processing | |
KR101360996B1 (en) | Long-distance transmission apparatus of high quality digital(hd type video) image signal using the unshielded twisted-pair cable | |
EP1374579A4 (en) | LATERAL CHANNEL WITH HIGH RESOLUTION GRAPHICS IN VIDEOCONFERENCE | |
CN210518617U (en) | Monitoring system | |
CN103391405A (en) | Signal switching device and electronic device with signal switching device | |
CN117560460B (en) | Conversion circuit for video analog signal transmission | |
CN206332762U (en) | A kind of loop-through circuit and digital video recorder equipment | |
CN105100643A (en) | Video transmission and playing structure with multiple terminals and transmission method | |
KR20160115023A (en) | Apparatus and method for converting video signal | |
CN101976131A (en) | Dot interlaced sampling algorithm-based keyboard, video and mouse (KVM) system and method | |
CN218473215U (en) | PAL input circuit and video processing apparatus including the same | |
CN120075523A (en) | A vehicle-mounted camera circuit and vehicle-mounted terminal system supporting dual-interface transmission |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |