CN114752956A - 一种贵金属微量掺杂类异质结纳米多孔高熵合金电极及其制备方法和应用 - Google Patents

一种贵金属微量掺杂类异质结纳米多孔高熵合金电极及其制备方法和应用 Download PDF

Info

Publication number
CN114752956A
CN114752956A CN202210275801.3A CN202210275801A CN114752956A CN 114752956 A CN114752956 A CN 114752956A CN 202210275801 A CN202210275801 A CN 202210275801A CN 114752956 A CN114752956 A CN 114752956A
Authority
CN
China
Prior art keywords
noble metal
alloy
entropy alloy
electrode
dealloying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210275801.3A
Other languages
English (en)
Other versions
CN114752956B (zh
Inventor
康建立
刘昊
赵乃勤
钱天刚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN202210275801.3A priority Critical patent/CN114752956B/zh
Priority claimed from CN202210275801.3A external-priority patent/CN114752956B/zh
Publication of CN114752956A publication Critical patent/CN114752956A/zh
Application granted granted Critical
Publication of CN114752956B publication Critical patent/CN114752956B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • C25B11/03Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form perforated or foraminous
    • C25B11/031Porous electrodes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/08Alloys with open or closed pores
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • C22C30/02Alloys containing less than 50% by weight of each constituent containing copper
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/10Etching compositions
    • C23F1/14Aqueous compositions
    • C23F1/16Acidic compositions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/44Compositions for etching metallic material from a metallic material substrate of different composition
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/054Electrodes comprising electrocatalysts supported on a carrier
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/055Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material
    • C25B11/057Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material consisting of a single element or compound
    • C25B11/061Metal or alloy
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/075Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound
    • C25B11/081Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound the element being a noble metal
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F3/00Electrolytic etching or polishing
    • C25F3/02Etching

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

本发明属于贵金属微量掺杂高熵合金在催化、储能应用技术领域,尤其涉及一种贵金属微量掺杂类异质结纳米多孔高熵合金电极及其制备方法及其在双功能催化水裂解产氢和产氧方面的应用。本贵金属微量掺杂类异质结结构纳米多孔高熵合金电极包括以下组分按物质的量百分比组成:贵金属M:0.1%‑1.0%;金属Ni:8‑13%;金属Mo:6‑8%;Co:8‑13%;过渡金属A:8‑13%;金属Mn:50‑70%。其中贵金属M为Pt、Ir、Ru或Rh的一种;过渡金属A为Fe、W、Ti或Cu的一种。本合金电极以纳米多孔高熵合金为基底掺杂微量贵金属元素,利用纳米多孔高熵合金优异的催化、力学性能,进一步提升贵金属催化剂的利用效率、催化活性和稳定性。

Description

一种贵金属微量掺杂类异质结纳米多孔高熵合金电极及其制 备方法和应用
技术领域
本发明属于电催化、储能应用技术领域,尤其涉及一种贵金属微量掺杂类异质结纳米多孔高熵合金电极及其制备方法及其在全电解水领域的应用。
背景技术
现代社会的发展离不开能源的消耗,但如果继续无节制的使用化石燃料将带来严重的灾难。因此,开发可持续发展的清洁能源(如风能、太阳能等)并实现碳中和迫在眉睫。但是风能和太阳能等能源受到时间和空间分布的影响,具有间歇性和不可控性。通过驱动电解水产生氢气来存储和分配新能源,是一种极有前景的太阳能、风能存储策略。但传统的电解槽电压(一般在1.8-2.0V电压下工作)远高于其理论分解电压(1.23V),额外造成大量能源消耗和产生更多碳排放。因此,迫切需要在电解水反应中应用催化剂以降低能耗。研究表明,贵金属Ir、Pt或Ru具有优异的HER/OER催化活性,如广泛的pH值适应性、较快的反应动力学和较低的过电势。但是贵金属的稀缺性和高昂的成本严重限制了其在电解水中的应用。降低贵金属含量并进一步提高其催化活性和稳定性是目前国际研究的重点。
高熵合金作为一种具有独特物理和化学性能的材料,在各领域受到了越来越多的关注。尤其是高熵合金优异的力学性能使其可以作为自支撑一体化电极使用,避免了粉末纳米材料需要添加胶黏剂才能与基底结合的弊端,增强了导电性,同时一体化的高熵合金电极也有能力承受更大电流密度下循环产氢或产氧的工作。通过脱合金化法处理高熵合金形成的纳米多孔高熵合金,既继承了高熵合金优异的力学性能,同时纳米多孔结构能极大的增加活性面积,暴露高熵合金中的活性位点,并且有利于电解液的进入和气泡的释放。
为了解决现有技术中存在的以上问题,一种贵金属微量掺杂类异质结纳米多孔高熵合金电极及其制备方法和应用,以纳米多孔高熵合金为基底负载低含量贵金属元素,利用纳米多孔高熵合金优异的催化、力学性能,进一步提升贵金属的利用效率、催化活性和稳定性。
发明内容
本发明的目的在于提供一种贵金属微量掺杂类异质结纳米多孔高熵合金电极及其制备方法和应用。
为实现上述目的,本发明提供如下技术方案:一种贵金属微量掺杂类异质结纳米多孔高熵合金电极,该电极包括以下物质的量百分比的组分:贵金属M:0.1%-1.0%;金属Ni:8-13%;金属Mo:6-8%;Co:8-13%;过渡金属A:8-13%;金属Mn:50-70%。其中贵金属M为Pt、Ir、Ru或Rh的一种;过渡金属A为Fe、W、Ti或Cu的一种;该电极为三维纳米梯度孔结构,并且通过对Mo元素含量的控制形成一种类异质结结构的高熵合金。
优选的,所述电极的合金组分为IrNiCoFeMoMn或PtNiCoFeMoMn。
优选的,所述贵金属Pt或Ir的物质的量的百分比为0.1%、0.3%、0.5%、0.8%或1.0%其中之一;Ni、Co、Fe、Mo、Mn的物质的量的比为14:(14-x):14:6:52,其中,x为Pt或Ir的掺杂量。
优选的,所述电极的合金组分为IrNiCoFeMoMn,Ir、Ni、Co、Fe、Mo、Mn的物质的量的比为0.5:14:13.5:14:6:52。
优选的,所述电极的合金组分为PtNiCoFeMoMn,Pt、Ni、Co、Fe、Mo、Mn的物质的量的比为1:14:13:14:6:52
本发明的另一目的是提供一种上述的贵金属微量掺杂类异质结纳米多孔高熵合金电极的制备方法。
为实现上述目的,本发明提供如下技术方案:一种贵金属微量掺杂类异质结纳米多孔高熵合金电极的制备方法,包括以下步骤:
(1)制备合金锭:按照物质的量比例,将贵金属M、金属Ni、金属Mo、金属Co和过渡金属A加入到电弧熔炼设备中熔炼成合金锭;
(2)制备富Mn基贵金属掺杂类异质结结构多元合金锭:将步骤(1)制备得到的合金锭和金属Mn加入到高真空熔炼设备制备贵金属掺杂的富Mn基多元合金;
(3)将步骤(2)制得的合金加工成厚度为20-500μm的合金条带或合金板;
(4)将步骤(3)制得的合金条带或合金板采用脱合金化方法制备贵金属掺杂类异质结结构纳米多孔高熵合金电极。
优选的,所述步骤(4)中的脱合金化方法包括化学脱合金化方法和电化学脱合金化方法,通过控制脱合金化的时间来实现Mo元素含量的控制。
优选的,所述化学脱合金化方法是将步骤(3)制得的合金条带或合金板浸于酸性溶液中进行脱合金化过程,脱合金化时间为10分钟-180分钟,完成后真空干燥;所述酸性溶液的浓度为0.001-3mol L-1
优选的,所述电化学脱合金化方法为以步骤(2)制得的合金条带或合金板做工作电极,采用三电极体系在弱酸性盐溶液中脱合金化,脱合金化电压为-0.5V~-0.8V,脱合金化时间为100秒~14400秒;所述弱酸性盐溶液为浓度0.1~3mol L-1铵的强酸弱碱盐溶液。
优选的,所述步骤(4)中制得的贵金属微量掺杂类异质结纳米多孔高熵合金电极的形貌为三维纳米梯度孔结构,梯度孔径分布为2-500nm,比表面积在10-100m2g-1
本发明的另一目的是上述的贵金属微量掺杂类异质结纳米多孔高熵合金电极在电水解方面的应用。
与现有技术相比,本发明的有益效果是:1)形成一种类异质结结构的纳米多孔高熵合金,可作为一体化自支撑电极使用,无需添加粘接剂,提升电极导电性;2)多级孔结构使得比表面积大,暴露更多活性位点,同时有利于电解液和离子的进出以及气泡的释放;3)以纳米多孔高熵合金为基底掺杂微量贵金属元素,利用纳米多孔高熵合金优异的催化、力学性能,进一步提升贵金属催化剂的利用效率、催化活性和稳定性。
附图说明
图1为实施例1中所获得的贵金属微量掺杂类异质结纳米多孔高熵合金电极母合金的XRD图;
图2为实施例1中所获得的贵金属微量掺杂类异质结纳米多孔高熵合金电极母合金的TEM图;
图3为实施例1中所获得的贵金属微量掺杂类异质结纳米多孔高熵合金电极的SEM图;
图4为实施例1中所获得的贵金属微量掺杂类异质结纳米多孔高熵合金电极的TEM-mapping图像;
图5为实施例1中所获得的贵金属微量掺杂类异质结纳米多孔高熵合金电极的EDS图像
图6为实施例1中所获得的贵金属微量掺杂类异质结纳米多孔高熵合金电极产氧性能曲线;
图7为实施例1中所获得的贵金属微量掺杂类异质结纳米多孔高熵合金电极产氧塔菲尔曲线;
图8为实施例1中所获得的贵金属微量掺杂类异质结纳米多孔高熵合金电极产氧稳定性曲线;
图9为实施例1中所获得的贵金属微量掺杂类异质结纳米多孔高熵合金电极全电解水曲线;
图10为实施例1中所获得的贵金属微量掺杂类异质结纳米多孔高熵合金电极全电解水稳定性曲线。
具体实施方式
为了进一步了解本发明的发明内容、特点及功效,兹列举以下实施例,详细说明如下:
实施例1
本实施例提出的贵金属微量掺杂类异质结纳米多孔高熵合金电极的制备方法包括以下步骤:
(1)制备镍铱钴铁钼合金锭:将Ir:Ni:Co:Fe:Mo:Mn按照0.5:14:13.5:14:6:52的物质的量比称量待用;将Ir、Ni、Co、Fe和Mo放入电弧熔炼设备中,反复熔炼两到三次制备成合金锭。
(2)将镍铱钴铁钼合金锭和金属锰放入真空甩带机中,熔炼后甩带得到金属条带。
(3)电化学脱合金法制备贵金属微量掺杂类异质结纳米多孔高熵合金电极:采用三电极工作体系,以金属条带为工作电极,Ag/AgCl作为参比电极,碳棒作为对电极,工作电压为-0.5V(vsAg/AgCl参比电极),设置脱合金时间为7200秒,在蒸馏水中冲洗干净后浸没在酒精中待用。
图1为所获得的贵金属微量掺杂类异质结纳米多孔高熵合金电极母合金的XRD图谱(X射线衍射图谱),通过峰型和峰位置可以得出该合金为面心立方结构。图1中的插图为主峰的放大图谱,可以观察到主峰出现了边带效应,这表明在合金形成过程中多元合金发生了调幅分解,出现了贫溶质区和富溶质区。富溶质区的晶面间距增大,峰值偏向低角度;贫溶质区的晶面间距减小,峰值偏向高角度。
图2为所获得的贵金属微量掺杂类异质结纳米多孔高熵合金电极母合金的TEM图,可以看出母合金表面形成了粒径在100nm左右的析出相。
图3为所获得的贵金属微量掺杂类异质结纳米多孔高熵合金电极的SEM图,合金电极表面形成了宽度为~100nm的宽裂纹。在图3中的插图可以明显看出经过脱合金之后合金形成了多级孔结构,析出相周围有~40nm的较大的纳米孔,在非析出相区域的表面有~5nm的小纳米孔。
图4为所获得的贵金属微量掺杂类异质结纳米多孔高熵合金电极的TEM-mapping图像,图5为所获得的贵金属微量掺杂类异质结纳米多孔高熵合金电极的EDX图像,图4和5所获结果表明在脱合金之后,形成了宽~100nm的通道,并且析出相的结构并未发生明显变化。
图6为所获得的贵金属微量掺杂类异质结纳米多孔高熵合金电极的产氧性能曲线图,当电流密度为10、100、1000mA cm-2时,其过电势分别为218、267、330mV,催化性能优异。尤其是在1000mA cm-2的电流密度下也可以稳定工作,克服了粉末类纳米催化剂因与集流体结合力差而无法实现大电流密度下的工作。
图7为所获得的贵金属微量掺杂类异质结纳米多孔高熵合金电极的产氧塔菲尔曲线,结果表明其塔菲尔斜率低至36mV dec-1
图8为所获得的贵金属微量掺杂类异质结纳米多孔高熵合金电极的产氧稳定性曲线,在碱性电解液中,当电流密度为100mA cm-2时,可稳定工作近300h,证明该电极有着优异的稳定性。
图9为所获得的贵金属微量掺杂类异质结纳米多孔高熵合金电极的全电解水曲线,在1.45V的电解槽电压下就能达到10mA cm-2的电流密度。即使在500和1000mA cm-2的电流密度下,电解槽电压也只有1.67和1.73V,这一性能远远低于商业Pt||IrO2电极。
图10为所获得的贵金属微量掺杂类异质结纳米多孔高熵合金电极的全电解水稳定性曲线,在10mA cm-2的电流密度下稳定的工作近300h,曲线并未出现明显衰减。
实施例2
与实施例1的不同之处,仅在于Ir:Ni:Co:Fe:Mo:Mn的物质的量的比为0.1:14:13.9:14:6:52。所得催化剂的产氧性能:在电流密度为10、100mA cm-2时,其过电势分别为259、304mV,塔菲尔斜率为43mV dec-1
实施例3
与实施例1的不同之处,仅在于Ir:Ni:Co:Fe:Mo:Mn的物质的量的比为0.3:14:13.7:14:6:52。所得催化剂的产氧性能:在电流密度为10、100mA cm-2时,其过电势分别为250、310mV,塔菲尔斜率为50mV dec-1
实施例4
与实施例1的不同之处,仅在于Ir:Ni:Co:Fe:Mo:Mn的物质的量的比为0.8:14:13.2:14:6:52。所得催化剂的产氧性能:在电流密度为10、100mA cm-2时,其过电势分别为238、290mV,塔菲尔斜率为49mV dec-1
实施例5
与实施例1的不同之处,仅在于Ir:Ni:Co:Fe:Mo:Mn的物质的量的比为1:14:13:14:6:52。所得催化剂的产氧性能:在电流密度为10、100mAcm-2时,其过电势分别为255、299mV,塔菲尔斜率为48mV dec-1
实施例6
与实施例1的不同之处,仅在于掺杂贵金属为Pt,Pt:Ni:Co:Fe:Mo:Mn的物质的量的比为0.1:14:13.9:14:6:52。所得催化剂的产氢性能:在电流密度为10、100、1000mAcm-2时,其过电势分别为26、58、147mV,塔菲尔斜率为25mV dec-1
实施例7
与实施例1的不同之处,仅在于掺杂贵金属为Pt,Pt:Ni:Co:Fe:Mo:Mn的物质的量的比为0.3:14:13.7:14:6:52。所得催化剂的产氢性能:在电流密度为10、100、1000mA cm-2时,其过电势分别为19、46、148mV,塔菲尔斜率为20mVdec-1
实施例8
与实施例1的不同之处,仅在于掺杂贵金属为Pt,Pt:Ni:Co:Fe:Mo:Mn的物质的量的比为0.5:14:13.5:14:6:52。所得催化剂的产氢性能:在电流密度为10、100、1000mA cm-2时,其过电势分别为14、36、104mV,塔菲尔斜率为16mV dec-1
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。

Claims (10)

1.一种贵金属微量掺杂类异质结纳米多孔高熵合金电极,其特征在于:该电极包括以下物质的量百分比的组分:贵金属M:0.1%-1.0%;金属Ni:8-13%;金属Mo:6-8%;Co:8-13%;过渡金属A:8-13%;金属Mn:50-70%。其中贵金属M为Pt、Ir、Ru或Rh的一种;过渡金属A为Fe、W、Ti或Cu的一种;该电极为三维纳米梯度孔结构,并且通过对Mo元素含量的控制形成一种类异质结结构的高熵合金。
2.根据权利要求1所述的一种贵金属微量掺杂类异质结纳米多孔高熵合金电极,其特征在于:所述电极的合金组分为IrNiCoFeMoMn或PtNiCoFeMoMn。
3.根据权利要求2所述的一种贵金属微量掺杂类异质结纳米多孔高熵合金电极,其特征在于:所述贵金属Pt或Ir的物质的量的百分比为0.1%、0.3%、0.5%、0.8%或1.0%其中之一;Ni、Co、Fe、Mo、Mn的物质的量的比为14:(14-x):14:6:52,其中,x为Pt或Ir的掺杂量。
4.根据权利要求3所述的一种贵金属微量掺杂类异质结纳米多孔高熵合金电极,其特征在于:所述电极的合金组分为IrNiCoFeMoMn,Ir、Ni、Co、Fe、Mo、Mn的物质的量的比为0.5:14:13.5:14:6:52。
5.根据权利要求3所述的一种贵金属微量掺杂类异质结纳米多孔高熵合金电极,其特征在于:所述电极的合金组分为PtNiCoFeMoMn,Pt、Ni、Co、Fe、Mo、Mn的物质的量的比为1:14:13:14:6:52。
6.根据权利要求1-5任一项所述的贵金属微量掺杂类异质结纳米多孔高熵合金电极的制备方法,其特征在于:包括以下步骤:
(1)制备合金锭:按照物质的量比例,将贵金属M、金属Ni、金属Mo、金属Co和过渡金属A加入到电弧熔炼设备中熔炼成合金锭;
(2)制备富Mn基贵金属掺杂类异质结结构多元合金锭:将步骤(1)制备得到的合金锭和金属Mn加入到高真空熔炼设备制备贵金属掺杂的富Mn基多元合金;
(3)将步骤(2)制得的合金加工成厚度为20-500μm的合金条带或合金板;
(4)将步骤(3)制得的合金条带或合金板采用脱合金化方法制备贵金属掺杂类异质结结构纳米多孔高熵合金电极;制得的贵金属微量掺杂类异质结纳米多孔高熵合金电极的形貌为三维纳米梯度孔结构,梯度孔径分布为2-500nm,比表面积在10-100m2 g-1
7.根据权利要求6所述的贵金属微量掺杂类异质结纳米多孔高熵合金电极的制备方法,其特征在于:所述步骤(4)中的脱合金化方法包括化学脱合金化方法和电化学脱合金化方法,通过控制脱合金化的时间来实现Mo元素含量的控制。
8.根据权利要求7所述的贵金属微量掺杂类异质结纳米多孔高熵合金电极的制备方法,其特征在于:所述化学脱合金化方法是将步骤(3)制得的合金条带或合金板浸于酸性溶液中进行脱合金化过程,脱合金化时间为10分钟-180分钟,完成后真空干燥;所述酸性溶液的浓度为0.001-3mol L-1
9.根据权利要求7所述的贵金属微量掺杂类异质结纳米多孔高熵合金电极的制备方法,其特征在于:所述电化学脱合金化方法为以步骤(2)制得的合金条带或合金板做工作电极,采用三电极体系在弱酸性盐溶液中脱合金化,脱合金化电压为-0.5V~-0.8V,脱合金化时间为100秒~14400秒;所述弱酸性盐溶液为浓度0.1~3mol L-1铵的强酸弱碱盐溶液。
10.根据权利要求1-5任一项所述的贵金属微量掺杂类异质结纳米多孔高熵合金电极在电解水方面的应用。
CN202210275801.3A 2022-03-21 一种贵金属微量掺杂类异质结纳米多孔高熵合金电极及其制备方法和应用 Active CN114752956B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210275801.3A CN114752956B (zh) 2022-03-21 一种贵金属微量掺杂类异质结纳米多孔高熵合金电极及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210275801.3A CN114752956B (zh) 2022-03-21 一种贵金属微量掺杂类异质结纳米多孔高熵合金电极及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN114752956A true CN114752956A (zh) 2022-07-15
CN114752956B CN114752956B (zh) 2024-05-24

Family

ID=

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115404489A (zh) * 2022-08-09 2022-11-29 大连理工大学 一种用于氧还原及氢析出反应的铂基高熵合金电催化剂及其制备方法
CN115491562A (zh) * 2022-08-31 2022-12-20 北京科技大学 多主元多孔合金及制备方法和用于电解海水的多孔电极

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107587158A (zh) * 2017-08-11 2018-01-16 天津工业大学 一种纳米多孔高熵合金电极及其制备方法和应用
CN112475315A (zh) * 2020-11-27 2021-03-12 电子科技大学 一种普适性制备高熵合金纳米颗粒的方法
CN113061925A (zh) * 2021-03-22 2021-07-02 北京科技大学 一种多级孔高熵合金电解水催化剂的制备方法
CN113522308A (zh) * 2021-07-14 2021-10-22 中国地质大学(武汉) 一种高熵合金催化剂及其制备方法和应用
CN113774422A (zh) * 2021-10-26 2021-12-10 山东理工大学 一种应用于电解水的PdCuFeCoNi高熵合金纳米颗粒催化剂的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107587158A (zh) * 2017-08-11 2018-01-16 天津工业大学 一种纳米多孔高熵合金电极及其制备方法和应用
CN112475315A (zh) * 2020-11-27 2021-03-12 电子科技大学 一种普适性制备高熵合金纳米颗粒的方法
CN113061925A (zh) * 2021-03-22 2021-07-02 北京科技大学 一种多级孔高熵合金电解水催化剂的制备方法
CN113522308A (zh) * 2021-07-14 2021-10-22 中国地质大学(武汉) 一种高熵合金催化剂及其制备方法和应用
CN113774422A (zh) * 2021-10-26 2021-12-10 山东理工大学 一种应用于电解水的PdCuFeCoNi高熵合金纳米颗粒催化剂的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HAO LIU ET AL.: "A freestanding nanoporous NiCoFeMoMn high-entropy alloy as an efficient electrocatalyst for rapid water splitting", 《CHEMICAL ENGINEERINGJOURNAL》, vol. 435, pages 134898 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115404489A (zh) * 2022-08-09 2022-11-29 大连理工大学 一种用于氧还原及氢析出反应的铂基高熵合金电催化剂及其制备方法
CN115491562A (zh) * 2022-08-31 2022-12-20 北京科技大学 多主元多孔合金及制备方法和用于电解海水的多孔电极
CN115491562B (zh) * 2022-08-31 2023-08-08 北京科技大学 多主元多孔合金及制备方法和用于电解海水的多孔电极

Similar Documents

Publication Publication Date Title
Wang et al. Holey platinum nanotubes for ethanol electrochemical reforming in aqueous solution
Huo et al. Synthesis of functional Ni2P/CC catalyst and the robust performances in hydrogen evolution reaction and nitrate reduction
CN100355141C (zh) 涂布的催化材料
Liu et al. Synergistic coupling of nickel boride with Ru cluster as a highly active multifunctional electrocatalyst for overall water splitting and glucose electrolysis
CN113363510B (zh) 氢气氧化与还原双功能催化电极及制备方法
Cao et al. Enhancing hydrogen evolution through urea electrolysis over Co-doped Ni-PO film on nickel foam
Kunwar et al. Hybrid CoP2–Pt–FTO nanoarchitecture for bifunctional electrocatalysts in H2 generation by water splitting
CN110711583A (zh) 一种具有三维结构的高效电催化剂材料及其制备方法与应用
Li et al. ZnSn nanocatalyst: Ultra-high formate selectivity from CO2 electrochemical reduction and the structure evolution effect
Zhou et al. Synthesis of flower-like nickel–iron–chromium nanostructure compound deposited stainless steel foil as an efficient binder-free electrocatalyst for water splitting
Geng et al. Pd x Fe y alloy nanoparticles decorated on carbon nanofibers with improved electrocatalytic activity for ethanol electrooxidation in alkaline media
Li et al. Bifunctional Ni–Fe–CoSe2 nanosheets electrodeposited on Ni foam for efficient catalysis of the oxidation of water and urea
Wang et al. Elaborately tailored NiCo 2 O 4 for highly efficient overall water splitting and urea electrolysis
Cao et al. Synthesis of bimetallic PdSn nanoparticle assembly as highly efficient electrocatalyst for ethanol oxidation
Tian et al. Performance of ethanol electro-oxidation on Ni–Cu alloy nanowires through composition modulation
Chen et al. Constructing hollow nanorod arrays by nickel–cobalt phosphide nanosheets as high-performance electrocatalysts for urea-assisted energy-efficient hydrogen generation
Zhao et al. Hollow spherical LaNiO3 perovskite with superior multifunctional performances and durability for urea-assisted Zn-air batteries
Zhao et al. Self-supported electrocatalysts for high-current-density water/seawater electrolysis
Qu et al. Nafion-assisted synthesis of palladium nanonetworks as efficient electrocatalysts for hydrogen evolution reaction
CN114752956B (zh) 一种贵金属微量掺杂类异质结纳米多孔高熵合金电极及其制备方法和应用
CN114752956A (zh) 一种贵金属微量掺杂类异质结纳米多孔高熵合金电极及其制备方法和应用
Wu et al. An alkaline-acid asymmetric electrolyzer using NiCoP/CoP/Co3O4 multi-shell hollow nanoflakes as cathode and Ag as anode to realizing energy efficient production of hydrogen and shape controllable silver oxide
Asadi et al. Preparation and study of electrocatalytic activity of Ni-Pd (OH) 2/C nanocomposite for hydrogen evolution reaction in alkaline solution
Udayakumar et al. Recent developments in noble metal–based hybrid electrocatalysts for overall water splitting
Kim et al. Carbon-Neutralized Direct Methanol Fuel Cell Using Bifunctional (Methanol Oxidation/CO 2 Reduction) Electrodes

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant