CN114752611B - 植物烟酸甲基转移酶基因nanmt及其在植物广谱抗病性中的应用 - Google Patents

植物烟酸甲基转移酶基因nanmt及其在植物广谱抗病性中的应用 Download PDF

Info

Publication number
CN114752611B
CN114752611B CN202210551811.5A CN202210551811A CN114752611B CN 114752611 B CN114752611 B CN 114752611B CN 202210551811 A CN202210551811 A CN 202210551811A CN 114752611 B CN114752611 B CN 114752611B
Authority
CN
China
Prior art keywords
zmnanmt
corn
gene
nicotinic acid
seq
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210551811.5A
Other languages
English (en)
Other versions
CN114752611A (zh
Inventor
王官锋
李雅洁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong University
Original Assignee
Shandong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong University filed Critical Shandong University
Priority to CN202210551811.5A priority Critical patent/CN114752611B/zh
Publication of CN114752611A publication Critical patent/CN114752611A/zh
Application granted granted Critical
Publication of CN114752611B publication Critical patent/CN114752611B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1003Transferases (2.) transferring one-carbon groups (2.1)
    • C12N9/1007Methyltransferases (general) (2.1.1.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • C12N15/8218Antisense, co-suppression, viral induced gene silencing [VIGS], post-transcriptional induced gene silencing [PTGS]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8279Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance
    • C12N15/8281Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance for bacterial resistance
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8279Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance
    • C12N15/8282Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance for fungal resistance
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y201/00Transferases transferring one-carbon groups (2.1)
    • C12Y201/01Methyltransferases (2.1.1)
    • C12Y201/01007Nicotinate N-methyltransferase (2.1.1.7)

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Cell Biology (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Virology (AREA)
  • Medicinal Chemistry (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

本发明公开了一种植物烟酸甲基转移酶基因NANMT,包括玉米烟酸甲基转移酶基因ZmNANMT,或是拟南芥烟酸甲基转移酶基因AtNANMT;其中,所述ZmNANMT的cDNA核苷酸序列如SEQ ID No.1所示,所述AtNANMT的cDNA核苷酸序列如SEQ ID No.7所示。本发明还公开了通过降低植物烟酸甲基转移酶基因NANMT的表达以提高植物广谱抗病性的应用。实验证实,通过对ZmNANMT转基因过表达阳性株系的病原真菌接种鉴定,发现ZmNANMT过表达阳性株系对多种玉米病害表现出感病表型,证明了ZmNANMT是一个新的感病基因。进一步利用CRISPR/CAS9技术,针对ZmNANMT设计两个靶点,对ZmNANMT编辑株系进行病原菌接种鉴定,发现ZmNANMT编辑株系表现出对多种玉米真菌病害产生广谱抗病性。本发明为玉米的抗病育种提供了新基因、新材料和新方法,应用前景广阔。

Description

植物烟酸甲基转移酶基因NANMT及其在植物广谱抗病性中的 应用
技术领域
本发明属于生物基因工程技术领域,具体涉及植物(玉米或拟南芥)烟酸甲基转移酶基因NANMT及其通过降低NANMT的表达以提高植物广谱抗病性的应用。
背景技术
玉米(Zea mays L.)是我国重要的粮食作物,同时作为饲料作物和工业原料,在国民经济和农业生产中占据重要地位。玉米在生产过程面临着诸多问题,如干旱、高温、盐碱等逆境胁迫及病虫害等生物胁迫。其中,病害是影响我国玉米产量的主要因素之一,每年造成的产量损失约占玉米总产量的10%,严重威胁到我国粮食安全。受全球气候变化的影响,玉米病害日趋严重,给玉米的生产带来巨大损失。如黄淮海夏玉米区常年流行的茎腐病,1998年和2021年大流行的南方锈病,以及常年发生的穗腐病、大斑病和小斑病等。因此,挖掘具有持久、广谱抗病性的新基因,对培育优良的玉米抗病新品种和农业生产具有重要意义。
近年来,随着生物技术的发展,利用基因编辑技术对感病基因进行编辑改造,可以有效提高植物广谱抗病性。如大麦感病基因mlo隐性突变体对大麦白粉病表现出广谱、持久的防治作用,已经在欧洲大麦农业中有效使用了约40年。通过CRISPR/Cas9对六倍体小麦中的Tamlo三个同源基因进行编辑得到新的Tamlo突变体,使小麦表现出对白粉病的广谱抗性,并且该突变体的产量性状与野生型没有显著差别(LI S,LIN D,ZHANG Y,etal.Genome-edited powdery mildew resistance in wheat without growth penalties[J].Nature,2022,602(7897):455-460)。利用CRISPR/Cas9技术构建的Sldmr6-1突变体对不同种类的番茄病原菌,如细菌(丁香假单胞菌,疮痂病菌)、卵菌(辣椒疫霉菌)和真菌(新番茄拟粉孢菌),表现出更强的广谱抗病能力;水稻中的三个宿主蔗糖转运基因SWEET11,SWEET13和SWEET14也是易感基因,使用CRISPR/Cas9介导的基因编辑,在所有三个SWEET基因启动子中引入突变,基因编辑后的SWEET启动子使水稻品系对水稻黄单胞菌具有强大的广谱抗性。因而,通过基因编辑改造感病基因,可以有效提高作物的广谱抗性,并且不影响作物的产量。但目前可供开发利用的候选基因较少,不能满足农业生产的需要,亟需挖掘新的感病基因作为基因编辑的靶点。
烟酰胺腺嘌呤二核苷酸(nicotinamide adenine dinucleotide,NAD)是生物体内的一种重要的氧化还原载体,几乎控制着细胞内所有的代谢反应。植物细胞主要通过从天冬氨酸开始的从头合成途径(de novo pathway)和Preiss-Handler挽救途径来维持细胞内NAD的正常水平。Preiss-Handler途径通常会产生大量的烟酸(NA),但是NA的过度积累已被证明对植物细胞有毒性。在拟南芥中研究发现,NA可以被烟酸甲基转移酶AtNANMT1转化为葫芦巴碱(Trigonelline,Tg)。申请人在拟南芥中首先克隆到了AtNANMT1,实验发现在多个以NA和SAM作为底物合成Tg的酶中AtNANMT1的催化效率最高,证明AtNANMT能够参与植物内源性的NA解毒。但NANMT能否在植物抗病中发挥作用目前还未见报道。
发明内容
针对目前技术的不足,本发明要解决的问题是提供植物(玉米或拟南芥)烟酸甲基转移酶基因NANMT及其通过降低NANMT的表达以提高植物广谱抗病性的应用。
本发明所述的植物烟酸甲基转移酶基因NANMT,其特征在于:所述基因是玉米烟酸甲基转移酶基因ZmNANMT,或是拟南芥烟酸甲基转移酶基因AtNANMT;其中,所述玉米烟酸甲基转移酶基因ZmNANMT的cDNA核苷酸序列如SEQ ID No.1所示,该基因ZmNANMT编码的氨基酸序列如SEQ ID No.2所示;所述拟南芥烟酸甲基转移酶基因AtNANMT的cDNA核苷酸序列如SEQ ID No.7所示,该基因AtNANMT编码的氨基酸序列如SEQ ID No.8所示。
上述的植物烟酸甲基转移酶基因NANMT中:所述基因优选是玉米烟酸甲基转移酶基因ZmNANMT。
本发明提供了一种含玉米烟酸甲基转移酶基因ZmNANMT的植物表达载体,其特征在于:所述植物表达载体命名为pCAMBIA3301::ZmNANMT,所述玉米烟酸甲基转移酶基因ZmNANMT的cDNA核苷酸序列如SEQ ID No.1所示。
本发明提供了一种通过降低上述植物烟酸甲基转移酶基因NANMT的表达以提高植物广谱抗病性的应用。
其中,所述植物烟酸甲基转移酶基因NANMT优选是cDNA核苷酸序列如SEQ ID No.1所示的玉米烟酸甲基转移酶基因ZmNANMT,或是在包括编码区、启动子区和5'-、3'-非翻译区的玉米烟酸甲基转移酶基因ZmNANMT的核苷酸序列中,经过取代、缺失或添加一个或几个核苷酸衍生所得的核苷酸序列;该衍生所得的核苷酸序列编码的多肽与玉米烟酸甲基转移酶基因ZmNANMT的核苷酸序列编码的多肽功能相同,则该衍生所得的核苷酸序列和其编码的多肽表达降低同样具有提高植物广谱抗病性的功能;所述降低基因ZmNANMT表达的方法中,除基因编辑外,还包括通过RNA干扰、转座子插入、如EMS诱变的化学诱变或物理诱变等任何一种降低玉米烟酸甲基转移酶基因ZmNANMT表达的方法;所述方法得到的广谱抗病材料包括将表现出增加抗病性的植物与第二亲本植物杂交;产生的子代具有与第二亲本植物相比增加抗病性,其中所述第二亲本植物包含优良种质和骨干自交系。
上述应用优选的实施方式是:所述玉米烟酸甲基转移酶基因ZmNANMT的cDNA核苷酸序列如SEQ ID No.1所示;所述广谱抗病性中涉及的病害是玉米病害小斑病、炭疽病、大斑病和/或茎腐病;所述植物是玉米。
本发明提供了一种含有上述玉米烟酸甲基转移酶基因ZmNANMT的CRISPR/CAS9基因编辑载体,其特征在于:所述编辑载体命名为CRISPR-ZmNANMT,该载体克隆区域ZmNANMT的两个靶点序列分别为gRNA1,其核苷酸序列如SEQ ID No.3所示,对应于SEQ ID No.1中第14-32位核苷酸;gRNA2,其核苷酸序列如SEQ ID No.4所示,对应于SEQ ID No.1中第234-252位核苷酸。
本发明提供了一种应用上述玉米烟酸甲基转移酶基因ZmNANMT的CRISPR/CAS9基因编辑载体获得广谱抗病性玉米突变体株系的方法,其特征在于:根据CRISPR/CAS9技术原理,将CRISPR-ZmNANMT载体遗传转化玉米受体后,经过筛选、鉴定,获得不含有CAS9但ZmNANMT基因被成功编辑的突变体株系。
其中:所述不含有CAS9但ZmNANMT基因被成功编辑的突变体株系优选是两个玉米突变体株系,分别命名为U4-6,其核苷酸序列如SEQ ID No.5所示;U4-10,其核苷酸序列如SEQ ID No.6所示。
本发明提供了一种通过降低所述玉米烟酸甲基转移酶基因ZmNANMT的表达以提高玉米广谱抗病中的应用。
具体的,玉米烟酸甲基转移酶基因ZmNANMT及其在植物广谱抗病性中应用的例证。
申请人首次从玉米B73自交系中克隆了烟酸甲基转移酶基因ZmNANMT,将其构建到过表达载体pCAMBIA3301::ZmNANMT,并遗传转化到玉米中,通过对ZmNANMT转基因过表达阳性株系的病原真菌接种鉴定,发现ZmNANMT过表达阳性株系对多种玉米病害表现出感病表型,证明了ZmNANMT是一个新的感病基因。进一步利用CRISPR/CAS9技术,针对ZmNANMT设计两个靶点gRNA1和gRNA2,对ZmNANMT进行基因编辑,获得含有基因ZmNANMT的CRISPR/CAS9基因编辑载体CRISPR-ZmNANMT,将CRISPR-ZmNANMT载体遗传转化玉米受体后,经过筛选、鉴定,获得不含有CAS9但ZmNANMT基因被成功编辑的突变体株系。对ZmNANMT编辑株系进行病原菌接种鉴定,发现ZmNANMT编辑株系表现出对多种玉米真菌病害产生广谱抗病性,为通过降低玉米烟酸甲基转移酶基因ZmNANMT的表达以提高植物广谱抗病性的应用奠定了基础,也为玉米抗病育种提供了新手段和新材料。申请人进一步对ZmNANMT在拟南芥中的同源基因AtNANMT进行研究发现,在拟南芥中过表达AtNANMT增加了对细菌病害Pseudomonassyringae(Pst)DC3000和真菌病害灰霉菌Botrytis cinerea的感病性,而Atnanmt突变体则增加了对这两种病害的抗病性。将玉米ZmNANMT转化到拟南芥Atnanmt突变体中则恢复了对Pst DC3000的感病性。
本发明提供的植物烟酸甲基转移酶基因NANMT及其通过降低NANMT的表达以提高植物广谱抗病性的应用,为玉米的抗病育种提供了新基因、新材料和新方法,对玉米的抗病遗传育种意义重大,应用前景广阔。
附图说明
图1为PCR克隆玉米烟酸甲基转移酶基因ZmNANMT的CDS序列电泳图。
其中:M为Marker,扩增ZmNANMT基因CDS序列长度为1225bp。
图2为玉米ZmNANMT和拟南芥AtNANMT的核苷酸序列比对图,二者序列相似性为55.4%。
图3为玉米ZmNANMT和拟南芥AtNANMT的氨基酸序列比对图,二者序列相似性为56%。
图4为植物过表达载体pCAMBIA3301::ZmNANMT图谱。
图5为ZmNANMT转基因过表达阳性株系的Western blot鉴定。
其中:用GFP抗体对ZmNANMT转基因材料进行Western Blot鉴定。泳道M为Marker,泳道上方标的为四个转基因株系阳性(pos)和对应阴性(neg)植株的编号;1、2、3为来自不同的三个植株。
图6为为ZmNANMT转基因过表达株系对茎腐病的抗病性鉴定。
A.ZmNANMT阳性过表达系及其相应的野生型对茎腐病的抗性表型。B.用Image J测量ZmNANMT阳性过表达系及其对应的野生型在接种轮枝镰刀菌(Fusariumverticillioides)后的病变面积(**p<0.01,Student’s t-test)。
图7为ZmNANMT转基因过表达株系苗期对炭疽病的抗病性鉴定。
A.ZmNANMT阳性过表达系及其相应的野生型接种Colletotrichum graminicola后的表型。B.用Image J测量ZmNANMT阳性过表达系及其对应的野生型接种Colletotrichumgraminicola后的病变面积(**p<0.01,Student’s t-test)。
图8为ZmNANMT转基因过表达株系苗期对小斑病的抗病性鉴定。
A.ZmNANMT阳性过表达系及其相应的野生型对小斑病的抗病表型。B.用Image J测量ZmNANMT的阳性过表达系及其对应的野生型接种小斑病菌(Cochliobolusheterostrophus)后的病变面积(***p<0.001,Student’s t-test)。
图9为ZmNANMT基因编辑阳性株系的鉴定。
A.ZmNANMT基因结构以及gRNA1和gRNA2位点的位置示意图。B.两个CRISPR/Cas9编辑系的gRNA位点的序列变化以及测序色谱图。C.两个CRISPR/Cas9编辑系中ZmNANMT的氨基酸序列变化。
图10为ZmNANMT基因编辑株系对茎腐病的抗病性鉴定。
A.ZmNANMT基因编辑系及其相应的野生型对茎腐病的抗性表型。B.用Image J测量ZmNANMT的基因编辑系及其对应的野生型在接种轮枝镰刀菌(Fusarium verticillioides)后的病变面积(*p<0.05,Student’s t-test)。
图11为ZmNANMT基因编辑株系苗期对炭疽病的抗病性鉴定。
A.ZmNANMT编辑系及其相应的野生型接种Colletotrichum graminicola后的表型。B.用Image J测量ZmNANMT编辑系及其对应的野生型接种Colletotrichum graminicola后的病变面积(***p<0.001,Student’s t-test)。
图12为ZmNANMT基因编辑株系苗期对小斑病的抗病性鉴定。
A.ZmNANMT两个编辑系及其相应的野生型对小斑病的抗病表型。B.用Image J测量ZmNANMT的两个编辑系及其对应的野生型接种小斑病菌(Cochliobolus heterostrophus)后的病变面积(***p<0.001,Student’s t-test)。
图13为ZmNANMT基因编辑株系成株期在大田对小斑病的抗病性鉴定。
A.ZmNANMT编辑系及其相应的野生型对小斑病的田间表型。B.根据病害严重程度对ZmNANMT编辑系及其对应的野生型材料的分级(0-9级,数值越小表示病害程度越严重)鉴定结果(*p<0.05,Student’s t-test)。
图14为ZmNANMT基因编辑系成株期在大田对大斑病的抗病性鉴定。
A.ZmNANMT编辑系系及其相应的野生型对大斑病的抗病表型。B.用Image J测量ZmNANMT的编辑系及其对应的野生型感染大斑病后的病变面积(***p<0.001,Student’s t-test)。
图15为AtNANMT过表达和突变体对Pseudomonas syringae(Pst)DC3000的抗病性鉴定。
A.AtNANMT1的过表达和突变体拟南芥接种Pst DC3000 58h后的表型图。B.AtNANMT1的过表达和突变体拟南芥中Pst DC3000的相对生长量(**p<0.01,Student’st-test;n=8)。
图16为AtNANMT过表达和突变体对灰霉菌Botrytis cinerea的抗病性鉴定。
A.AtNANMT1的过表达和突变体拟南芥接种灰霉菌2天后的表型图,PDA上清处理作为阴性对照。B.用Image J软件测量AtNANMT1的过表达和突变体拟南芥在接种灰霉菌后的病变面积(*p<0.05;**p<0.01,Student’s t-test;n=8)。
图17为将ZmNANMT转化到Atnanmt两个突变体中回补了对Pst DC3000的感病性。
A.Atnanmt1-1的回补株系接种Pst DC3000 58h后的表型图。B.Pst DC3000处理检测Atnanmt1-1的回补株系中Pst DC3000的生长量(**p<0.01,Student’s t-test;n=8)。C.Atnanmt1-2的回补株系接种Pst DC3000 58h后的表型图。D.Pst DC3000处理检测Atnanmt1-2的回补株系中Pst DC3000的生长量(**p<0.01,Student’s t-test;n=8)。
具体实施方式
下面结合附图和具体实施例对本发明内容进行详细说明。
如下下述实施例中,所使用的基因工程和分子生物学的技术和方法均为本领域公知的常规方法,未做具体说明的可以参考《分子克隆实验指南》(Sambrook和Russell,2001)。本领域的技术人员可以在发明提供的实施方式的基础上采用本领域其它常规技术、方法和试剂,而不限于本发明具体实施例的限定。本发明给出的例子仅是本发明的较佳实施方式而已,应该说明的是,下述说明仅仅是为了解释本发明,并非对本发明作任何形式上的限制,凡是依据本发明的技术实质对实施方式所做的任何简单修改,等同变化与修饰,均属于本发明技术方案的范围内。实施例中所使用的材料、试剂、质粒、菌株、试剂盒等,如无特殊说明,均从商业途径得到。
实施例1、ZmNANMT的克隆
1.1玉米自交系B73总RNA的提取
(1)将玉米B73叶片材料放入高温灭菌的研钵中,倒入液氮将其研磨成粉末;研磨过程中不断添加液氮防止融化;
(2)将研磨好的叶片粉末转入到1.5ml离心管中,迅速加入1ml RNAiso Plus提取液,涡旋震荡,室温静置10min;
(3)加入200μl三氯甲烷,轻柔摇晃混匀直至液体分层,室温放置5min;
(4)4℃,12,000rpm,离心15min,吸取500μl上清液转移到新的1.5ml离心管中,加入500μl异丙醇,上下翻转混匀,室温放置10mim;
(5)4℃,12,000rpm,离心15min,弃上清,用1ml 75%的乙醇清洗沉淀,轻弹管底让沉淀充分与液体接触;4℃,7,500rpm,离心5min;重复上述步骤清洗第二次;
(6)吸出残留上清,置于超净工作台中干燥约3min,加入30μl RNase-Free水溶解;
(7)用紫外分光光度计或Nanodrop测量RNA样品的OD值和浓度,以A260/A280达到1.8-2.0为佳;琼脂糖凝胶电泳检测RNA的质量。
1.2 RNA反转录成cDNA
(1)向离心管中依次加入下列试剂(20μl反应体系):
(2)用移液枪轻轻吸打混匀,42℃,2min;
(3)向离心管中加入4μl 5×HiScriptⅢ5RT SuperMix;
(4)轻轻混匀后,37℃1.5h,85℃5sec,然后-20℃保存备用。
1.3 ZmNANMT基因克隆
所用引物序列为:
ZmNANMT-F2:5’-ACAGATCGCGTCTCCATTCG-3’
ZmNANMT-R2:5’-CCCATGAAGGGCTCGGATAC-3’
利用高保真酶PFU进行扩增的反应体系如下(25μl体系):
扩增条件如下:
反应结束后,向反应液中加入5×loading Buffer后进行TAE琼脂糖凝胶电泳检测,见图1。
利用聚合美DNA纯化试剂盒对克隆基因片段进行纯化回收。
1.4目的基因与入门载体的连接
反应体系如下:
25℃反应20min。
1.5质粒或DNA连接产物转化大肠杆菌感受态
(1)将1μl质粒DNA或者6ul连接产物加入50μl感受态细胞DH5α中,轻柔混匀,冰浴30min;
(2)42℃,温水浴热激1min,立即冰浴2min;
(3)加入800μl LB培养基,混匀,37℃,220rpm振荡1h;
(4)室温,5000rpm,离心2min,弃上清,用剩下的少量上清悬浮菌体沉淀;
(5)将悬浮的菌液涂布于含有相应抗生素的LB平板上,37℃倒置培养过夜;
(6)培养16h后,挑取单克隆做菌落PCR鉴定,选取阳性克隆测序,测序结果正确的克隆命名为ZmNANMT,所述基因的cDNA的核苷酸序列如SEQ ID No.1所示,其编码的氨基酸序列如SEQ ID No.2所示。
1.6 ZmNANMT与拟南芥AtNANMT的序列比对
利用DNAMAN软件对ZmNANMT与拟南芥AtNANMT的核苷酸和氨基酸序列进行比对,其核苷酸序列比对图如图2所示,其氨基酸序列比对图如图3所示。
实施例2、ZmNANMT过表达载体的构建和转基因株系的抗病功能验证
2.1玉米ZmNANMT过表达载体的构建
(1)用BamH1和Xma1对玉米过表达载体pCAMBIA3301进行双酶切;
(2)在基因ZmNANMT两端分别加入BamH1和Xma1酶切位点;
(3)将基因双酶切后胶回收目的条带,通过T4 DNA连接酶连接到pCAMBIA3301载体上;
(4)转化大肠杆菌感受态DH5α,通过菌落PCR鉴定后的阳性克隆提前质粒并进行测序,测序正确后的质粒载体命名为pCAMBIA3301::ZmNANMT,其图谱见图4。
2.2质粒转化农杆菌
(1)将1μg质粒载体加入到50μl农杆菌感受态EHA105中,混匀,冰浴30min;
(2)液氮速冻1min;然后37℃水浴3min;
(3)加入800μl LB液体培养基,混匀,28℃,220rpm振荡3h;
(4)室温,5,000rpm,离心2min,弃上清,用剩下的少量上清悬浮菌体沉淀;
(5)将菌涂布于含有相应抗生素的LB培养平板上,28℃倒置培养48h,挑取单克隆做菌落PCR鉴定,保存阳性克隆于-80℃冰箱中。
2.3玉米的遗传转化
将含有质粒载体的农杆菌EHA105,送到生物公司转化玉米自交系B104,得到转基因株系。
2.4 ZmNANMT转基因玉米植株的Western blot检测
(1)SDS-PAGE浓缩胶与分离胶的配制:
组装好制胶装置,先配置10%分离胶,每块胶需要约5ml分离胶,配好分离胶后用ddH2O液封使液面平行,等待20~30min至分离胶凝固,直至与ddH2O形成分明的分界线后将上层液体倒掉,并用吸水纸吸走多余水分;配制5%浓缩胶,每块胶需要约2ml浓缩胶,浓缩胶制备完要立刻插入梳子,静置20~30min至浓缩胶凝固。
10%分离胶配方:
5%浓缩胶配方:
(2)样品的制备
取适量叶片于2ml离心管中,加入瓷珠,放入液氮中冷冻30s,打样器(40HZ,30s)打样,重复两次使叶片完全打碎至粉末,迅速加入200μl蛋白提取缓冲液,研磨混匀,放置冰上冰浴30min。
蛋白提取缓冲液配方:
(3)12000rpm 4℃离心15min,吸取15μl上清与15μl 2×laemmlli(含有5%巯基乙醇)混匀,准备点样。
(4)将SDS-PAGE胶安装到电泳槽中,倒入1×Running buffer(ddH2O:10×Runningbuffer=9:1),从胶中竖直取出梳子,点样前用移液枪吸打每一个孔排出多余的气泡,取15μl样品点样,80V跑20min,150V跑1小时。
10×跑胶缓冲液配方:
(5)转膜
a.跑完胶后将SDS-PAGE胶从双层胶板中取出,切去上层浓缩胶,将分离胶置于装有ddH2O的玻璃皿中清洗5~10min,并将剪好的NC膜(5.8×8.5cm)放入1×转膜缓冲液(1.1L1×转膜缓冲液=110ml 10×转膜缓冲液+190ml甲醇+800ml ddH2O)中清洗15min,提前剪好滤纸(8×10cm)备用,1×转膜缓冲液需提前放置于-20℃预冷。
b.安装转膜装置:将转膜夹子黑色一面置于最下层,依次放入海绵、四层滤纸、分离胶、NC膜、四层滤纸、海绵,每次放之前赶气泡,将转膜夹子透明一面盖在最上层,固定好放入转膜槽中,槽中放入冰袋,加入提前预冷的1×转膜缓冲液。
c.将电泳槽置于4℃冰箱中转膜,45V,2.5h,电流保持在160~200mA。
10×转膜缓冲液配方:
(6)考马斯亮蓝染色:将切去上层浓缩胶的SDS-PAGE胶用提前配好的考马斯亮蓝染色液染色30min,用ddH2O清洗3次,每次10min,用冰醋酸清洗至无色后拍照。
(7)封闭
转完膜后先将NC膜放在装有ddH2O的玻璃皿中清洗10min,然后将膜转到由4%脱脂奶粉(30ml 1×PBS中加入1.2g脱脂奶粉)配置的封闭液中封闭1.5h。
(8)一抗
倒掉封闭液,将NC膜转到一抗溶液(1×PBST中加入3%的脱脂奶粉,再加入1:5000的一抗)中,水平摇床上室温孵育2小时。
(9)二抗
将一抗倒出,用1×PBST洗膜3次,每次10min,加入二抗(1×PBST中加入3%的脱脂奶粉,再加入1:4000的二抗),水平摇床上室温孵育1.5h。
(10)将二抗倒出,用1×PBST洗膜2次,1×PBS洗膜1次,每次10min。
(11)使用ECL试剂盒,将显色液A与B按照1:1混合,吸取适量的混合液加到NC膜正面,使显色液均匀的铺在NC膜表面,最后用化学发光仪曝光显影。ZmNANMT转基因过表达植株的Western blot鉴定结果见图5。
2.5玉米茎腐病的抗病鉴定
(1)将轮枝镰刀菌生长在PDA培养基上,接菌一周前挑取菌丝于新的PDA培养基正中间,封口膜封好,避光培养于28℃培养箱中;
(2)挑取轮枝镰刀菌菌块于事先灭菌的绿豆培养基中,置于28℃,200rpm的摇床上培养2天;
(3)用三层纱布过滤菌液,收集于50ml离心管中,1000g离心5min,弃上清,重复收集2-3次;
(4)吸取适量灭菌ddH2O于50ml离心管中,涡旋,直至菌块完全溶解,吸取20μl菌液于细胞计数板上,盖好盖玻片,在显微镜下进行计数;
(5)用灭菌ddH2O将菌液稀释至1×106个/ml;
(6)用10ml注射器吸取500μl菌液,缓慢注射于玉米的第三节间,用胶带将接种部位封住,接种两周后,将玉米第三节砍下,从中间劈开,拍照并用Image J软件统计病斑面积。ZmNANMT过表达株系比其对应的阴性株系对茎腐病更加感病鉴定结果见图6。
2.6玉米叶片离体小斑病和炭疽病的接种鉴定
(1)将分别引起玉米小斑病和炭疽病的玉蜀黍平脐蠕孢菌和禾生炭疽菌在V8培养基上生长,接菌前两周挑取菌块于新的V8培养基正中间,避光培养于28℃培养箱中;
(2)孢子洗脱液的配置:琼脂粉0.5g/L,Tween-20 0.5ml/L,用ddH2O定容至1L;
吸取5ml的孢子洗脱液于菌板上,用1ml枪头的背面刮取菌板表面,收集菌液;
(3)用三层滤纸过滤菌液于新的50ml离心管,吸取20μL菌液于细胞计数板上,盖好盖玻片,在显微镜下进行计数;
(4)用孢子洗脱液将菌液稀释至5×105个/ml;
(5)在黑色托盘上铺三层滤纸,用灭菌水浸湿,将叶片均匀铺展在滤纸上,用注射器针头在叶片上扎孔;
(6)吸取10μl菌液滴加在叶片上方,用保鲜膜将托盘密封好从而保湿,避光处理一晚后移至弱光条件下两天;
(7)第三天拍照观察病斑表型,并用Image J软件统计病斑面积。
鉴定发现ZmNANMT过表达株系比其对应的阴性株系对炭疽病更加感病,鉴定结果见图7;ZmNANMT过表达株系比其对应的阴性株系对小斑病更加感病,鉴定结果见图8。
实施例3、ZmNANMT基因编辑载体的构建和编辑株系的抗病功能验证
3.1玉米ZmNANMT基因编辑载体构建
用HindⅢ对CRISPR/CAS9基础载体进行单酶切。基于CRISPR/CAS9技术原理,根据ZmNANMT基因组序列,设计了两个靶点gRNA1和gRNA2,gRNA1的核苷酸序列如SEQ ID No.3所示,gRNA2的核苷酸序列如SEQ ID No.4所示。以U-S(U6-gRNA-sgRNA cassette)片段为模板设计带载体切口同源臂及重叠PCR重叠部分(20bp gRNA部分)的特异性扩增引物,以U-S为模板扩增目标片段U6-2启动子和sgRNA scanfold片段,最终通过重叠PCR得到CPB::U6-2::gRNA::sgRNA::CPB重叠片段,将重叠PCR产物测序无误后,用T4 DNA连接酶(TaKaRa)连接到CRISPR/CAS9基础载体,获得的含有玉米烟酸甲基转移酶基因ZmNANMT的CRISPR/CAS9基因编辑载体命名为CRISPR-ZmNANMT。
连接后的载体转化E.coli,涂布LB+Kana平板,经Sanger测序得到的阳性克隆寄给转基因公司进行玉米转化。
3.2玉米的遗传转化
将含有CRISPR-ZmNANMT的质粒载体转化农杆菌EHA105,挑取阳性克隆送到生物公司转化玉米自交系B104,得到转基因株系。
3.3 CTAB法提取玉米基因组DNA
(1)取适量叶片于2ml离心管中,加入瓷珠,放入液氮中冷冻30s,打样器(40HZ,30s)打样,重复两次使叶片完全打碎至粉末。
(2)向管中加入650μl,65℃预热的CTAB提取液,上下充分混匀,放入65℃烘箱中孵育30min,每10min拿出来上下混匀一次。
(3)待冷却至室温后,加入650μl三氯甲烷:异戊醇=24:1的混合液,室温放置数分钟至分层。
(4)12000rpm,25℃离心15min。
(5)吸取400μl上清至新的1.5ml离心管中,加入400μl 4℃预冷的异丙醇,上下翻转混匀,-20℃冰置2h。
(6)12000rpm,25℃离心15min。
(7)倒掉上清,加入1ml预冷的70%的乙醇,轻弹管底悬浮沉淀,12000rpm,25℃离心5min,重复上述步骤一次。
(8)弃上清,并吸尽多余酒精,在通风橱将酒精彻底吹干。
(9)根据沉淀多少加入适量ddH2O溶解沉淀,轻弹管壁使沉淀溶解充分,4℃保存备用。CTAB提取液配方:
3.4 ZmNANMT基因编辑玉米株系的鉴定
所用引物序列:
ZmNANMT-gDNA-F2:ACAGATCGCGTCTCCATTCG
ZmNANMT-gDNA-R2:CCCATGAAGGGCTCGGATAC
Cas9-F:CTTTTTGTTCGCTTGGTTGTGATGA
Cas9-R:CAGAGTTGGTGCCGATGTC
检测是否含有Cas9,反应体系如下:
选取不含Cas9的玉米材料进行PCR扩增,反应条件如下:
PCR反应结束后,吸取5μl反应液,加入2μl 5×loading Buffer,3μl ddH2O后进行琼脂糖凝胶电泳检测,其余反应液送测序公司用ZmNANMT-gDNA-F1和ZmNANMT-gDNA-R1引物测序。
经过测序鉴定,获得不含有CAS9但ZmNANMT基因被成功编辑的两个突变体株系,分别命名为U4-6,其核苷酸序列如SEQ ID No.5所示;U4-10,其核苷酸序列如SEQ ID No.6所示。两个基因编辑突变体株系编辑后的序列变化见图9。
3.5玉米茎腐病的抗病鉴定
(1)将轮枝镰刀菌生长在PDA培养基上,接菌一周前挑取菌丝于新的PDA培养基正中间,封口膜封好,避光培养于28℃培养箱中;
(2)挑取轮枝镰刀菌菌块于事先灭菌的绿豆培养基中,置于28℃,200rpm的摇床上培养2天;
(3)用三层纱布过滤菌液,收集于50ml离心管中,1000g离心5min,弃上清,重复收集2-3次;
(4)吸取适量灭菌ddH2O于50ml离心管中,涡旋,直至菌块完全溶解,吸取20μl菌液于细胞计数板上,盖好盖玻片,在显微镜下进行计数;
(5)用灭菌ddH2O将菌液稀释至1×106个/ml;
(6)用10ml注射器吸取500μl菌液,缓慢注射于玉米的第三节间,用胶带将接种部位封住,接种两周后,将玉米第三节砍下,从中间劈开,拍照并用Image J软件统计病斑面积。ZmNANMT基因编辑株系比其对应的阴性株系对茎腐病更加抗病,鉴定结果见图10。
3.6玉米叶片离体小斑病和炭疽病的接种鉴定
(1)将分别引起玉米小斑病和炭疽病的玉蜀黍平脐蠕孢菌和禾生炭疽菌在V8培养基上生长,接菌前两周挑取菌块于新的V8培养基正中间,避光培养于28℃培养箱中;
(2)孢子洗脱液的配置:琼脂粉0.5g/L,Tween-20 0.5ml/L,用ddH2O定容至1L;
吸取5ml的孢子洗脱液于菌板上,用1ml枪头的背面刮取菌板表面,收集菌液;
(3)用三层滤纸过滤菌液于新的50ml离心管,吸取20μL菌液于细胞计数板上,盖好盖玻片,在显微镜下进行计数;
(4)用孢子洗脱液将菌液稀释至5×105个/ml;
(5)在黑色托盘上铺三层滤纸,用灭菌水浸湿,将叶片均匀铺展在滤纸上,用注射器针头在叶片上扎孔;
(6)吸取10μl菌液滴加在叶片上方,用保鲜膜将托盘密封好从而保湿,避光处理一晚后移至弱光条件下两天;
(7)第三天拍照观察病斑表型,并用Image J软件统计病斑面积。
鉴定发现ZmNANMT过表达株系比其对应的阴性株系对炭疽病更加感病,鉴定结果见图11;ZmNANMT过表达株系比其对应的阴性株系对小斑病更加感病,鉴定结果见图12。
3.7田间小斑病的抗病鉴定
将玉米材料于5月中旬在青岛种植,在开花后一周统计其在田间自发感染小斑病的表型。各个材料根据病害的严重程度进行分级鉴定,一共分为9个等级(1-9),病害面积越大等级越低。ZmNANMT编辑系比其对应的野生型对田间小斑病更加抗病,鉴定结果见图13。
3.7田间大斑病的抗病鉴定
将玉米材料于4月下旬在吉林长春种植,在开花后一周统计其在田间自发感染大斑病的表型。各个材料根据病害的严重程度进行分级鉴定,一共分为9个等级(1-9),病害面积越大等级越高。ZmNANMT基因编辑系比其对应的野生型对田间大斑病更加抗病,鉴定结果见图14。
实施例4、AtNANMT拟南芥过表达和突变体株系的抗病功能验证
4.1拟南芥Pst DC3000的抗病鉴定
(1)菌液的配置:挑取适量菌体于1mL 10mM MgSO4中吸打混匀,用紫外分光光度计测量菌液的OD值,Pst DC3000最终稀释成OD600=0.0005;
(2)侵染:选取4周龄的拟南芥莲座叶,用1mL无菌的去掉针头的注射器从叶片背部轻柔注射,直至菌液布满整个叶片,并用吸水纸吸净叶片表面的菌液,用盖子将植株盖紧并用夹子将盖子与托盘的缝隙夹紧从而保湿;
(3)吸取400μl 10mM MgSO4于2mL EP管中,加入瓷珠;
(4)取样:用直径为4mm的打孔器取样,将取下的叶片先后用75%乙醇和灭菌的ddH2O洗涤,然后用吸水纸吸干叶片表面液体,置于装有10mM MgSO4的2mL EP管中;
(5)用打样机(15HZ,15min)打样;
(6)将得到的原液进行梯度稀释,最终稀释至1×10-5,吸取10μl不同浓度的菌液于KB培养基上,吹干后封口膜封号,置于29℃培养箱中培养两天后统计单菌落的个数。
AtNANMT过表达系和突变体系分别增加了对Pst DC3000的感病性和抗病性,鉴定结果见图15。
4.2拟南芥灰霉菌的抗病鉴定
(1)活化:灰霉菌生长在V8培养基上,生长周期为两周,接菌两周前挑取灰霉菌菌丝于新的V8培养基正中间,封口膜封好,避光培养于28℃培养箱中;
(2)菌液的配置:用灭菌的镊子挑取一块灰霉菌培养基于装有10mL灭菌ddH2O的50mL离心管中,涡旋10s;
(3)用三层滤纸过滤菌液于新的50mL离心管,吸取20μL菌液于细胞计数板上,盖好盖玻片,在显微镜下进行计数;
(4)用PDA上清将菌液最终稀释为5×105个/mL,用PDA上清作为阴性对照;
(5)侵染:选取4周龄的拟南芥莲座叶,吸取4μL菌液或者PDA上清于叶片正中央;
(6)接完菌后将植株避光置于28℃光照培养箱;
(7)两天后取样,用Image J软件统计病斑面积。
AtNANMT过表达系和突变体系分别增加了对灰霉菌的感病性和抗病性,鉴定结果见图16。
实施例5、ZmNANMT转化到Atnanmt突变体中回补了对Pst DC3000的感病性
ZmNANMT连接到pEG101-EGFP载体上,通过浸花法侵染拟南芥Atnanmt1-1和Atnanmt1-2。T1代转基因拟南芥用草丁膦筛选,T2代种子铺种在含有草丁膦的培养基上,选取阳性苗:阴性苗符合3:1的阳性苗移栽,单株收种,T3代种子铺种在含有草丁膦的培养基上,全为阳性的单株即为过表达纯合株系。
ZmNANMT转化到Atnanmt突变体中回补了对Pst DC3000的感病性,鉴定结果见图17。
序列表
<110>山东大学
<120>植物烟酸甲基转移酶基因NANMT及其在植物广谱抗病性中的应用
<141> 2022-5-18
<160> 8
<210> 1
<211> 1125
<212> CDS
<213>玉蜀黍属玉米(Zea mays L.)
<221>玉米烟酸甲基转移酶基因ZmNANMT基因核苷酸序列
<222>(1)…(1125)
<400> 1
atgccgccgc cgtccgcaaa cggcgccacc gccgccgccg ccgccgcgag ggacgacatg 60
tccccggcgg aggccaggct ggcgatgatg gagctggcga acatggtgtc ggtgccgatg 120
gcgctggcgg ccgtgatccg gctgggcgtg ccggccgcgg tgtgggcggg cggcgccaac 180
gcgcccatgt cagcggccga cctcctcccg ccgggccacc cggacccgtc cgtcctggag 240
cggctgctcc gcctgctggc gtcccgcggc gttttctccg agtccaccga gtccacgccc 300
accacgcggc ggcggctatt cgcgctcacc gcggtgggcc gcaccctggt gccggggccc 360
gcctcgggcg cgtcctacgc cgactacgtg ctgcagcacc accaggacgc gctggtggcg 420
gcgtggcccc gcctgcacga ggccgtgctt gaccccgcgg ggcccgagcc gttcgcgcgc 480
gccaacgccg gggtcaccgc ctacgcctac tacggcaagg accaggacgc caaccgggtc 540
atgctccgcg ccatggcggg ggtatccgag cccttcatgg gtgccctcct cgacggctac 600
ggcgccgccg gcgggtttcg cggcgtcgcc acgctcgtag acgtcggggg aagctccggc 660
gcctgcctcg agatgatcat gcgcagggtc cccacaatca ccgagggcat caacttcgac 720
ctccccgacg tcgtcgccgc agcgccgccc atcgccggag tgaggcatgt tggcggagat 780
atgttcaagt ccatcccctc cggtgatgcc attttcatga agtgggttct gacgacgtgg 840
accgacgacg agtgcacggc catcctgagg aactgccacg ccgctctgcc ggacggcggc 900
aagctcgtgg cctgcgagcc ggtggtgccg gaggagacgg acagcagcac caggacgagg 960
gcgctgctgg agaacgacat cttcgtcatg accacctacc ggacgcaggg gagggagcgc 1020
tccgaggagg agttccgcca cctcggcgtc gacgccgcag gcttcaccgc cttccgagcc 1080
atctatctcg accccttcta tgctgtcctc gagtatacca agtga 1125
<210> 2
<211> 374
<212> PRT
<213> 人工序列
<221> 玉米烟酸甲基转移酶基因ZmNANMT编码的氨基酸序列
<222>(1)…(374)
<400> 2
MPPPSANGAT AAAAAARDDM SPAEARLAMM ELANMVSVPM ALAAVIRLGV PAAVWAGGAN 60
APMSAADLLP PGHPDPSVLE RLLRLLASRG VFSESTESTP TTRRRLFALT AVGRTLVPGP 120
ASGASYADYV LQHHQDALVA AWPRLHEAVL DPAGPEPFAR ANAGVTAYAY YGKDQDANRV 180
MLRAMAGVSE PFMGALLDGY GAAGGFRGVA TLVDVGGSSG ACLEMIMRRV PTITEGINFD 240
LPDVVAAAPP IAGVRHVGGD MFKSIPSGDA IFMKWVLTTW TDDECTAILR NCHAALPDGG 300
KLVACEPVVP EETDSSTRTR ALLENDIFVM TTYRTQGRER SEEEFRHLGV DAAGFTAFRA 360
IYLDPFYAVL EYTK 374
<210> 3
<211>20
<212> DNA
<213>玉蜀黍属玉米(Zea mays L.)
<221>CPB-ZmNANMT载体克隆区域ZmNANMT的靶点1序列gRNA1
<222>(1)…(20)
<400> 3
gcggtggcgc cgtttgcgga 20
<210> 4
<211>20
<212> DNA
<213>玉蜀黍属玉米(Zea mays L.)
<221>CPB-ZmNANMT载体克隆区域ZmNANMT的靶点2序列gRNA2
<222>(1)…(20)
<400> 4
gcggagcagc cgctccagga 20
<210> 5
<211> 1127
<212> DNA
<213>玉蜀黍属玉米(Zea mays L.)
<221>通过CRISPR/CAS9对玉米烟酸甲基转移酶基因 ZmNANMT进行基因编辑后得到的新编辑系U4-6的基因序列
<222>(1)…(1127)
<400> 5
atgccgccgc cgtccagcaa acggcgccac cgccgccgcc gccgccgcga gggacgacat 60
gtccccggcg gaggccaggc tggcgatgat ggagctggcg aacatggtgt cggtgccgat 120
ggcgctggcg gccgtgatcc ggctgggcgt gccggccgcg gtgtgggcgg gcggcgccaa 180
cgcgcccatg tcagcggccg acctcctccc gccgggccac ccggacccgt ccgtccttgg 240
agcggctgct ccgcctgctg gcgtcccgcg gcgttttctc cgagtccacc gagtccacgc 300
ccaccacgcg gcggcggcta ttcgcgctca ccgcggtggg ccgcaccctg gtgccggggc 360
ccgcctcggg cgcgtcctac gccgactacg tgctgcagca ccaccaggac gcgctggtgg 420
cggcgtggcc ccgcctgcac gaggccgtgc ttgaccccgc ggggcccgag ccgttcgcgc 480
gcgccaacgc cggggtcacc gcctacgcct actacggcaa ggaccaggac gccaaccggg 540
tcatgctccg cgccatggcg ggggtatccg agcccttcat gggtgccctc ctcgacggct 600
acggcgccgc cggcgggttt cgcggcgtcg ccacgctcgt agacgtcggg ggaagctccg 660
gcgcctgcct cgagatgatc atgcgcaggg tccccacaat caccgagggc atcaacttcg 720
acctccccga cgtcgtcgcc gcagcgccgc ccatcgccgg agtgaggcat gttggcggag 780
atatgttcaa gtccatcccc tccggtgatg ccattttcat gaagtgggtt ctgacgacgt 840
ggaccgacga cgagtgcacg gccatcctga ggaactgcca cgccgctctg ccggacggcg 900
gcaagctcgt ggcctgcgag ccggtggtgc cggaggagac ggacagcagc accaggacga 960
gggcgctgct ggagaacgac atcttcgtca tgaccaccta ccggacgcag gggagggagc 1020
gctccgagga ggagttccgc cacctcggcg tcgacgccgc aggcttcacc gccttccgag 1080
ccatctatct cgaccccttc tatgctgtcc tcgagtatac caagtga 1127
<210> 6
<211> 1094
<212> DNA
<213>玉蜀黍属玉米(Zea mays L.)
<221>通过CRISPR/CAS9对玉米烟酸甲基转移酶基因ZmNANMT进行基因编辑后得到的新编辑系U4-10的基因序列
<222>(1)…(1094)
<400> 6
atgccgccgc cgccgcgagg gacgacatgt ccccggcgga ggccaggctg gcgatgatgg 60
agctggcgaa catggtgtcg gtgccgatgg cgctggcggc cgtgatccgg ctgggcgtgc 120
cggccgcggt gtgggcgggc ggcgccaacg cgcccatgtc agcggccgac ctcctcccgc 180
cgggccaccc ggacccgtcc gtcctggagc ggctgctccg cctgctggcg tcccgcggcg 240
ttttctccga gtccaccgag tccacgccca ccacgcggcg gcggctattc gcgctcaccg 300
cggtgggccg caccctggtg ccggggcccg cctcgggcgc gtcctacgcc gactacgtgc 360
tgcagcacca ccaggacgcg ctggtggcgg cgtggccccg cctgcacgag gccgtgcttg 420
accccgcggg gcccgagccg ttcgcgcgcg ccaacgccgg ggtcaccgcc tacgcctact 480
acggcaagga ccaggacgcc aaccgggtca tgctccgcgc catggcgggg gtatccgagc 540
ccttcatggg tgccctcctc gacggctacg gcgccgccgg cgggtttcgc ggcgtcgcca 600
cgctcgtaga cgtcggggga agctccggcg cctgcctcga gatgatcatg cgcagggtcc 660
ccacaatcac cgagggcatc aacttcgacc tccccgacgt cgtcgccgca gcgccgccca 720
tcgccggagt gaggcatgtt ggcggagata tgttcaagtc catcccctcc ggtgatgcca 780
ttttcatgaa gtgggttctg acgacgtgga ccgacgacga gtgcacggcc atcctgagga 840
actgccacgc cgctctgccg gacggcggca agctcgtggc ctgcgagccg gtggtgccgg 900
aggagacgga cagcagcacc aggacgaggg cgctgctgga gaacgacatc ttcgtcatga 960
ccacctaccg gacgcagggg agggagcgct ccgaggagga gttccgccac ctcggcgtcg 1020
acgccgcagg cttcaccgcc ttccgagcca tctatctcga ccccttctat gctgtcctcg 1080
agtataccaa gtga 1094
<210> 7
<211> 1080
<212> DNA
<213>鼠耳芥属拟南芥(Arabidopsis thaliala L. Heynh)
<221>拟南芥烟酸甲基转移酶基因 AtNANMT核苷酸序列
<222>(1)…(1080)
<400> 7
atggagaacg aaagctcaga gagtagaaac agagctcgtc ttgccattat ggagcttgct 60
aacatgatta gcgttcccat gtctctcaat gccgccgtgc gactaggcat tgccgacgcc 120
atttggaacg gcggagccaa ttctcctctc tctgccgccg agatcctccc tcgcctccac 180
ctaccatctc acactaccat tggtggcgac cccgagaatc ttcagcgtat acttcggatg 240
ctcaccagct acggtgtctt ctccgaacac cttgttggat ccattgagag gaaatactct 300
cttacggacg tcggaaaaac tcttgtaacc gactccggcg gcctctctta cgctgcctac 360
gtcctccaac atcaccagga ggcgttgatg cgagcatggc cactagttca cacggcagtg 420
gtggagccgg agacagagcc gtacgtgaaa gcaaacggcg aggcggcata cgctcagtat 480
gggaaaagtg aggagatgaa tggtctaatg caaaaggcaa tgtctggcgt atctgtaccg 540
ttcatgaaag ctatattaga cggctacgat gggtttaaat cagtggatat tttggttgac 600
gtaggaggta gtgcagggga ttgtctgcgt atgatccttc aacaatttcc taacgtccgt 660
gaagggatta atttcgattt acctgaagtt gttgccaaag cccccaatat tcctggagtg 720
actcacgtgg gtggggatat gttccaatca gttcctagcg ctgacgctat cttcatgaag 780
tgggtgttaa cgacatggac ggatgaagaa tgcaagcaga taatgaagaa ttgctacaac 840
gcgttaccag ttggaggaaa gctgattgcg tgtgagccgg tcttgcctaa ggaaaccgat 900
gaaagtcacc ggactcgtgc cttgttagaa ggtgacatct ttgtcatgac catctataga 960
accaaaggta agcatagaac cgaagaagag tttatagagc ttggtctctc cgcgggattc 1020
cctacttttc gacctttcta cattgattac ttctacacca tcttagagtt tcagaagtaa 1080
<210> 8
<211>359
<212> PRT
<213>鼠耳芥属拟南芥(Arabidopsis thaliala L. Heynh)
<221>拟南芥烟酸甲基转移酶基因AtNANMT编码的氨基酸序列
<222>(1)…(359)
<400> 8
MENESSESRN RARLAIMELA NMISVPMSLN AAVRLGIADA IWNGGANSPL SAAEILPRLH 60
LPSHTTIGGD PENLQRILRM LTSYGVFSEH LVGSIERKYS LTDVGKTLVT DSGGLSYAAY 120
VLQHHQEALM RAWPLVHTAV VEPETEPYVK ANGEAAYAQY GKSEEMNGLM QKAMSGVSVP 180
FMKAILDGYD GFKSVDILVD VGGSAGDCLR MILQQFPNVR EGINFDLPEV VAKAPNIPGV 240
THVGGDMFQS VPSADAIFMK WVLTTWTDEE CKQIMKNCYN ALPVGGKLIA CEPVLPKETD 300
ESHRTRALLE GDIFVMTIYR TKGKHRTEEE FIELGLSAGF PTFRPFYIDY FYTILEFQK 359

Claims (3)

1.一种通过降低玉米烟酸甲基转移酶基因ZmNANMT的表达以提高玉米广谱抗病性的应用;其中,所述抗病性中涉及的玉米病害是指小斑病、大斑病、炭疽病和/或茎腐病;所述玉米烟酸甲基转移酶基因ZmNANMT的cDNA核苷酸序列如SEQ ID No.1所示。
2.如权利要求1所述的应用,其特征在于:通过降低玉米烟酸甲基转移酶基因ZmNANMT的表达获得的突变体株系是不含有CAS9但ZmNANMT基因被成功编辑的突变体株系,突变的核苷酸序列如SEQ ID No.5或SEQ ID No.6所示。
3.如权利要求1所述的应用,其特征在于:根据CRISPR/CAS9技术原理,构建编辑载体命名为CRISPR-ZmNANMT,该载体克隆区域ZmNANMT的两个靶点序列分别为gRNA1,其核苷酸序列如SEQ ID No.3所示,对应于SEQ ID No.1中第14-32位核苷酸;gRNA2,其核苷酸序列如SEQ ID No.4所示,对应于SEQ ID No.1中第234-252位核苷酸;将CRISPR-ZmNANMT载体遗传转化玉米受体后,经过筛选、鉴定,获得抗小斑病、大斑病、炭疽病或茎腐病的玉米突变体株系。
CN202210551811.5A 2022-05-20 2022-05-20 植物烟酸甲基转移酶基因nanmt及其在植物广谱抗病性中的应用 Active CN114752611B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210551811.5A CN114752611B (zh) 2022-05-20 2022-05-20 植物烟酸甲基转移酶基因nanmt及其在植物广谱抗病性中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210551811.5A CN114752611B (zh) 2022-05-20 2022-05-20 植物烟酸甲基转移酶基因nanmt及其在植物广谱抗病性中的应用

Publications (2)

Publication Number Publication Date
CN114752611A CN114752611A (zh) 2022-07-15
CN114752611B true CN114752611B (zh) 2024-03-22

Family

ID=82334144

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210551811.5A Active CN114752611B (zh) 2022-05-20 2022-05-20 植物烟酸甲基转移酶基因nanmt及其在植物广谱抗病性中的应用

Country Status (1)

Country Link
CN (1) CN114752611B (zh)

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Mengjie Liu等.Maize nicotinate N-methyltransferase interacts with the NLR protein Rp1-D21 and modulates the hypersensitive response.Mol Plant Pathol.2021,第22卷摘要,第2.1、2.3、4.3节,表1. *
NCBI.NM_001156145.2.GenBank.2021,第1-2页. *

Also Published As

Publication number Publication date
CN114752611A (zh) 2022-07-15

Similar Documents

Publication Publication Date Title
CN113621625B (zh) 芝麻SiERF103基因在增强植物抗性中的应用
CN114752578B (zh) 玉米柚皮素甲基转移酶基因ZmNOMT及其在植物广谱抗病性中的应用
CN114107373A (zh) 一种制备拟南芥自噬基因突变体的方法及应用
CN115491380B (zh) 植物脂氧合酶基因lox及其在植物广谱抗病性中的应用
CN114958867B (zh) 玉米穗粒重和产量调控基因kwe2、其编码蛋白、功能标记、表达载体及应用
CN114752611B (zh) 植物烟酸甲基转移酶基因nanmt及其在植物广谱抗病性中的应用
CN116041460A (zh) 水稻Xa48(t)蛋白及其编码基因的应用
CN112322651B (zh) 番茄自噬基因在提高植物根结线虫抗性中的应用
CN116606358A (zh) GmTLP8蛋白及其编码基因在调控植物耐逆性中的应用
CN116064568A (zh) 紫花苜蓿MsASG166基因及在提高植物耐旱中的用途
CN111690679B (zh) 一种用于培育黄瓜雄性不育系的重组表达载体及其构建方法和应用
CN115948460B (zh) 辣椒抗疫病相关基因CaWRKY66及其应用
CN115927394B (zh) 玉米VPS23类似基因ZmVPS23L及其应用
CN115785235B (zh) Vip3Aa截短蛋白变体及其载体和应用
CN115704036B (zh) 一种烟草NtDSR1基因及其应用
CN110423753B (zh) 一种由根结线虫诱导的根结特异性启动子t106-p及应用
US20240141372A1 (en) Transgenic banana plants having increased resistance to fusarium oxysporum tropical race 4 and methods of producing same
CN106754968B (zh) 水稻基因OsASR2及抗病调控功能的应用
CN117721121A (zh) MtSPG9基因、蛋白及应用
CN118530325A (zh) BnaDR1基因、蛋白及其在控制甘蓝型油菜抗旱性中的应用
CN116334036A (zh) 一种从青枯菌中筛选抗青枯病的胞外核酸酶的方法及遗传改良应用
CN118652900A (zh) 水稻OsSPC4基因在培育抗根结线虫病水稻中的应用
CN118344450A (zh) 大豆节间长度和株高相关蛋白及其生物材料和应用
CN117737114A (zh) MtSPG6基因在提高植物耐旱中的用途
CN116606357A (zh) GmTIFY10e蛋白及其编码基因在调控植物耐盐性中的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant