CN114751867A - 一种可提高免疫力的饲料添加剂及其制备方法和应用 - Google Patents

一种可提高免疫力的饲料添加剂及其制备方法和应用 Download PDF

Info

Publication number
CN114751867A
CN114751867A CN202210373940.XA CN202210373940A CN114751867A CN 114751867 A CN114751867 A CN 114751867A CN 202210373940 A CN202210373940 A CN 202210373940A CN 114751867 A CN114751867 A CN 114751867A
Authority
CN
China
Prior art keywords
compound
phenyl isocyanate
molar ratio
isocyanate compound
feed additive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210373940.XA
Other languages
English (en)
Other versions
CN114751867B (zh
Inventor
杨维晓
龚晓庆
毛龙飞
侯延生
周应杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing Wanhong Feed Co ltd
Original Assignee
Henan Wanliu Biotechnology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henan Wanliu Biotechnology Co ltd filed Critical Henan Wanliu Biotechnology Co ltd
Publication of CN114751867A publication Critical patent/CN114751867A/zh
Application granted granted Critical
Publication of CN114751867B publication Critical patent/CN114751867B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/5005Wall or coating material
    • A61K9/5063Compounds of unknown constitution, e.g. material from plants or animals
    • A61K9/5068Cell membranes or bacterial membranes enclosing drugs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/04Immunostimulants
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D249/00Heterocyclic compounds containing five-membered rings having three nitrogen atoms as the only ring hetero atoms
    • C07D249/02Heterocyclic compounds containing five-membered rings having three nitrogen atoms as the only ring hetero atoms not condensed with other rings
    • C07D249/041,2,3-Triazoles; Hydrogenated 1,2,3-triazoles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biophysics (AREA)
  • Cell Biology (AREA)
  • Molecular Biology (AREA)
  • Virology (AREA)
  • Botany (AREA)
  • Zoology (AREA)
  • Epidemiology (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本发明公开了一种可提高免疫力的饲料添加剂及其制备方法和应用,属于功能性饲料添加剂合成技术领域。本发明的技术方案要点为:该饲料添加剂的分子具有结构
Figure DDA0003589549940000011
其中R1和R2为卤素原子,烷基,杂环等取代基;R3为H或O。本发明发现了一种可以一锅法连续反应得到含有脲类结构和三氮唑结构的化合物分子;该化合物分子可以对IDO1靶点具有抑制作用,可以提高机体的免疫力,并且可以对脲酶具有抑制作用,有希望作为饲料添加剂使用。

Description

一种可提高免疫力的饲料添加剂及其制备方法和应用
技术领域
本发明属于饲料添加剂合成技术领域,具体涉及一种可提高免疫力的饲料添加剂及其制备方法和应用。
背景技术
肉牛常用的非蛋白氮类饲料添加剂主要有尿素、铵盐、液氨等,这类添加剂可作为部分蛋白质饲料的替代物,为瘤胃微生物提供菌体蛋白合成所需要的氮素,减少饲料中蛋白质在瘤胃中的分解,从而让饲料中的蛋白质更好的发挥作用。其中最常使用的非蛋白氮类饲料添加剂为尿素。在使用尿素时要注意用量合理,虽然尿素可替代蛋白质饲料,但是用量不宜过多,否则易导致肉牛中毒。通常尿素的用量约为肉牛日粮中粗蛋白质的30%,或者为日粮总干物质的1%。并不是所有肉牛都适合使用这类添加剂,如果胃肠道不健康的肉牛,其肠道内的微生物的活动不正常,或者瘤胃功能还不健全的犊牛,饲喂尿素易发生中毒反应,另外,种公牛、妊娠后期的母牛、应激状态下的肉牛也不适宜使用。适合使用尿素的肉牛应为健康的成年牛或者育成牛,并且在使用尿素时不应同时饲喂氨化秸秆,以免尿素的用量超标。在使用尿素时为了达到最佳的效果,肉牛的日粮中要保证粗蛋白的含量在9%~12%,同时增加能量饲料的饲喂量。在使用时第一次饲喂要少量,一般使用正常量的1/10,以后再逐渐的增加,在1周后达到正常水平。喂后不宜让肉牛立即饮水,最少要过1h后再饮水,为了提高尿素的利用率,同时还要在肉牛的饲料中添加适量的矿物质,并且要避免饲喂一些含尿素酶的饲料,如豆饼、南瓜、苜蓿草等。
在反刍动物瘤胃中脲酶水解尿素生成氨的速率过快,无法与挥发性脂肪酸的生成速度匹配,导致氨在瘤胃中不能及时被微生物利用而吸收入血,降低了反刍动物对尿素氮的利用率,严重时造成动物氨中毒,同时污染环境。因此,降低瘤胃中脲酶活性在反刍动物营养领域具有研究意义,脲类结构化合物是尿素的一种延生结构,不但具有尿素的一些特性,还具有尿素不具备的生物活性,例如降糖、利尿、抗疟、抗癌等。吲哚胺2,3-双加氧酶1(IDO1)是含有亚铁血红素的蛋白质,广泛表达于机体各种组织和细胞。作为介导肿瘤免疫逃逸的代谢酶,IDO1在色氨酸沿犬尿氨酸途径代谢时发挥关键作用。IDO1通过介导色氨酸的消耗和犬尿氨酸的积累,使T细胞失活、凋亡和细胞增殖抑制,最终引起免疫抑制,通过抑制IDO1的活性可以增加T细胞活性,从而增强免疫力。
在具有活性的药物分子设计过程种,现有的高通量筛选实验用于确定药物和靶标之间的生物活性是一个昂贵费时的步骤。因此,基于已经在临床实验中测量的相互作用,使用机器学习和深度学习模型来评估新的药物-靶标的相互作用的强度是重要的替代方案。在药物设计前期我们可以通过机器学习和深度学习来识别处理和推断分子数据中的复杂模式,改进化合物的传统计算建模,准确预测药物与靶点的相互作用(DTI)。但是由于深度学习的黑箱特性,亲和力预测方法对分子间相互作用机制的解析比较困难,为了更进一步探究分子与蛋白的结合模式以及分子形成稳定构象的变化,可以结合分子对接、分子动力学模拟等计算机辅助药物设计方法做更进一步的预测,提升预测的准确度。分子对接是指两个或多个分子通过几何匹配和能量匹配相互识别的过程,且考虑了受体结构的信息以及受体和药物分子之间的相互作用信息,在药物设计中有十分重要的意义。因此我们延结合人工智能方法设计了一种脲类化合物,希望其能够抑制脲酶的活性,同时抑制IDO1的活性,用于能够提高免疫力的饲料添加剂。
发明内容
本发明解决的技术问题是提供了一种可提高免疫力的饲料添加剂及其制备方法和应用。
本发明为解决上述技术问题采用如下技术方案,一种可提高免疫力的饲料添加剂分子结构为:
Figure BDA0003589549920000021
其中R1和R2为卤素原子,烷基,杂环等取代基;R3为H或O。
本发明为解决上述技术问题采用如下技术方案,一种可提高免疫力的饲料添加剂的制备方法,其特征在于具体步骤为:
(1):把一定量的异氰酸苯酯类化合物和1-胺基丙酮和三乙胺加入到N-甲基吡咯烷酮中,室温搅拌反应一段时间后加入一定量的对甲苯磺酰肼和氢氧化钡和碘,加热至80℃,保持该温度搅拌反应一段时间后加入苄胺化合物和醋酸铜,继续反应一段时间把反应体系中加入水,搅拌后过滤,滤液用二氯甲烷萃取多次,合并有机相后用无水硫酸镁干燥后浓缩,最后经过硅胶柱层析分离得到目标化合物;所述的异氰酸苯酯类化合物与1-胺基丙酮与三乙胺的投料量摩尔比为1:1~1.2:1~1.1;所述的异氰酸苯酯类化合物与对甲苯磺酰肼和氢氧化钡的投料量摩尔比为1:1~1.1:1~1.3;所述的异氰酸苯酯类化合物与苄胺化合物与醋酸铜的投料量摩尔比为1:1:0.5。
(2):把一定量的异氰酸苯酯化合物和3-胺基-1-丙醛和氢氧化钡加入到乙酸乙酯中,置于0℃,缓慢滴加溶有一定量重氮乙酸乙酯的乙酸乙酯溶液,滴加完毕,搅拌一段时间后加入饱和碳酸氢钠溶液,分出有机相,浓缩后加入甲基叔丁基醚中,置于0℃条件下,再缓慢滴加溶有三丁基膦的甲基叔丁基醚溶液,反应一段时间后浓缩加入到N-甲基吡咯烷酮中,搅拌均匀后再加入苄胺化合物和乙酰丙酮铜,搅拌均匀后,滴加完后在室温条件下反应一段时间后过滤反应液,把反应体系中加入水,用二氯甲烷萃取多次,合并有机相后有机相干燥后浓缩,最后经过硅胶柱层析分离得到目标化合物;所述的异氰酸苯酯化合物与3-胺基-1-丙醛与氢氧化钡的投料量摩尔比为1:1:2;所述的异氰酸苯酯化合物与重氮乙酸乙酯的投料量摩尔比为1:1.2~1.5;所述的异氰酸苯酯化合物与三丁基膦与苄胺化合物与乙酰丙酮铜的投料量摩尔比为1:1:1~1.1:0.5。
(3):把一定量的N-Boc-胺基丙酮和对甲苯磺酰肼和氢氧化钡加入到甲苯中,在氮气保护下加热至100℃,反应一段时间后加入苄胺化合物和醋酸铜,继续反应一段时间后向反应体系中加入一定量2N的稀盐酸溶液,搅拌后用乙酸乙酯萃取多次,合并有机相后浓缩,浓缩物用二氯甲烷溶解,然后加入异氰酸苯酯化合物和三乙胺,把反应体系中加入水,用二氯甲烷萃取多次,合并有机相后有机相干燥后浓缩,最后经过硅胶柱层析分离得到目标化合物;所述的N-Boc-胺基丙酮与对甲苯磺酰肼与氢氧化钡的投料量摩尔比为1:1:2;所述的N-Boc-胺基丙酮与苄胺化合物与醋酸铜的投料量摩尔比为1:1:0.5;所述的N-Boc-胺基丙酮与异氰酸苯酯化合物与三乙胺的投料量摩尔比为1:1:1。
(4):把一定量的异氰酸苯酯化合物和丙酰胺和三乙胺加入到N-甲基吡咯烷酮中,在氮气保护下,加热至一定温度,反应一段时间后置于0℃,缓慢滴加溶有4-乙酰氨基苯磺酸叠氮的乙腈溶液,滴加完后,在氮气保护下加热至65℃,搅拌反应一段时间后再次降温至0℃,向反应体系中加入饱和的碳酸氢钠溶液,然后再加入水,用乙酸乙酯萃取多次,合并有机相,浓缩后和碘和苄胺化合物和醋酸铜分批加入甲苯中,继续反应一段时间,把反应体系中加入水,用二氯甲烷萃取多次,合并有机相后有机相干燥后浓缩,最后经过硅胶柱层析分离得到目标化合物;所述的异氰酸苯酯类化合物与丙酰胺的投料量摩尔比为1:1~1.2:1;所述的异氰酸苯酯类化合物与4-乙酰氨基苯磺酸叠氮的投料量摩尔比为1:1.5;所述的异氰酸苯酯类化合物与苄胺化合物与醋酸铜投料量摩尔比为1:1:0.5;所述的一定温度为90~105℃。
技术优势:本发明发现了一种可以一锅法连续反应得到含有脲类结构和三氮唑结构的化合物分子;该化合物分子可以对IDO1靶点具有抑制作用,可提高机体免疫力;该化合物分子可以对脲酶具有抑制作用,可以用于牛饲料添加使用。
附图说明
图1是实施例1制备得到的产物的核磁图。
图2是实施例2制备得到的产物的核磁图。
图3是实施例3制备得到的产物的核磁图。
图4是实施例4制备得到的产物的核磁图。
图5是实施例2制备得到的产物与IDO1靶点的分子对接图。
具体实施方式
以下通过实施例对本发明的上述内容做进一步详细说明,但不应该将此理解为本发明上述主题的范围仅限于以下的实施例,凡基于本发明上述内容实现的技术均属于本发明的范围。
实施例1
Figure BDA0003589549920000041
在带有搅拌的反应瓶中,把4-甲氧基异氰酸苯酯15g和1-胺基丙酮8g和三乙胺10g加入到N-甲基吡咯烷酮800mL中,室温搅拌反应1h,然后加入对甲苯磺酰肼22g和氢氧化钡17g和碘20g,加热至80℃,保持该温度搅拌反应2.5h,然后加入2-溴苄胺20g和醋酸铜9g,在氧气氛围下,继续反应2h,把反应体系中加入水1000mL,搅拌后过滤,滤液用二氯甲烷250mL萃取多次,合并有机相后用无水硫酸镁50g干燥后浓缩,最后经过硅胶柱层析分离得到产物38.27g;1H NMR(600MHz,DMSO-d6)δ8.34(s,1H),7.97(s,1H),7.69(d,J=7.8Hz,1H),7.40(td,J1=7.2Hz,J2=1.2Hz,1H),7.31(td,J1=7.2Hz,J2=1.2Hz,1H),7.28(d,J=8.4Hz,2H),7.14(dd,J1=7.2Hz,J2=1.2Hz,1H),6.81(d,J=9.0Hz,2H),6.47(t,J=5.4Hz,1H),5.66(s,2H),4.32(d,J=5.4Hz,2H),3.69(s,3H)。
实施例2
Figure BDA0003589549920000042
在带有搅拌的反应瓶中,把4-甲氧基异氰酸苯酯15g和1-胺基丙酮8g和三乙胺10g加入到N-甲基吡咯烷酮800mL中,室温搅拌反应1h,然后加入甲基磺酰肼12g和氢氧化钡17g和碘20g,加热至80℃,保持该温度搅拌反应4h,然后加入3-溴苄胺20g和醋酸铜9g,在氧气氛围下,继续反应4.5h,把反应体系中加入水1000mL,过滤反应液,滤液用二氯甲烷250mL萃取多次,合并有机相后用无水硫酸镁50g干燥后浓缩,最后经过硅胶柱层析分离得到产物35.49g;1H NMR(600MHz,DMSO-d6)δ8.34(s,1H),8.08(s,1H),7.53(d,J=9.6Hz,2H),7.34(t,J=7.8Hz,1H),7.31(d,J=7.8Hz,1H),7.28(d,J=9.0Hz,2H),6.81(d,J=9.0Hz,2H),6.47(s,1H),5.59(s,2H),4.31(s,2H),3.69(s,3H)。
实施例3
Figure BDA0003589549920000051
在带有搅拌的反应瓶中,把4-甲氧基异氰酸苯酯15g和3-胺基-1-丙醛8g和氢氧化钡26g加入到乙酸乙酯500mL中,置于0℃,缓慢滴加溶有重氮乙酸乙酯17g的乙酸乙酯溶液200mL,滴加完毕后,搅拌10h,然后加入饱和碳酸氢钠溶液500mL,分出有机相,浓缩后加入甲基叔丁基醚500mL中,置于0℃条件下,再缓慢滴加溶有三丁基膦20g的甲基叔丁基醚溶液150mL,反应3h,浓缩加入到N-甲基吡咯烷酮500mL中,搅拌均匀后再加入3-甲氧基苄胺14g和乙酰丙酮铜13g,搅拌均匀后,滴加完后在室温条件下反应12h,然后过滤反应液,把反应体系中加入水500mL,用二氯甲烷200mL萃取多次,合并有机相后有机相干燥后浓缩,最后经过硅胶柱层析分离得到产物33.91g;LC-MS(ESI):m/z 368[M+H]+1H NMR(600MHz,DMSO-d6)δ8.34(s,1H),8.03(s,1H),7.29-7.26(m,3H),6.89(d,J=6.0Hz,2H),6.86(d,J=7.2Hz,1H),6.81(d,J=9.0Hz,2H),6.46(s,1H),5.53(s,2H),4.31(s,2H),3.73(s,3H),3.69(s,3H)。
实施例4
Figure BDA0003589549920000052
在带有搅拌器的反应瓶中,把N-Boc-胺基丙酮18g和对甲苯磺酰肼22g和氢氧化钡34g和碘20g加入到甲苯1000mL中,在氮气保护下加热至100℃,反应3h,然后加入2-溴苄胺20g和醋酸铜9g,然后置于氧气氛围下,加热至50℃继续反应17h,向反应体系中加入2N的稀盐酸溶液1000mL,搅拌3.5h后再加入水500mL,用乙酸乙酯200mL萃取多次,合并有机相后浓缩,浓缩物用二氯甲烷500mL溶解,然后加入4-溴异氰酸苯酯20g和三乙胺10g,把反应体系中加入水500mL,用二氯甲烷200mL萃取多次,合并有机相后有机相干燥后浓缩,最后经过硅胶柱层析分离得到产物42.36g;1H NMR(600MHz,DMSO-d6)δ8.71(s,1H),7.99(s,1H),7.68(d,J=7.8Hz,1H),7.41–7.35(m,5H),7.31(td,J1=7.8Hz,J2=1.2Hz,1H),7.15(d,J=6.6Hz,1H),6.64(t,J=4.8Hz,1H),5.66(s,2H),4.34(d,J=5.4Hz,2H)。
实施例5
Figure BDA0003589549920000061
在带有搅拌器的反应瓶中,把N-Boc-胺基丙酮18g和水合肼18g加入到乙醇400mL中,加热至回流,搅拌反应10h,冷却到0℃,抽滤后把得到的固体和碘25g加入甲苯700mL中,然后加入3-溴苄胺20g和醋酸铜8g,在氧气氛围下,加热至50℃继续反应11h,向反应体系中加入2N的稀盐酸溶液1000mL,搅拌2.5h后加入水500mL,搅拌后过滤,滤液再用乙酸乙酯200mL萃取多次,合并有机相后浓缩,浓缩物用二氯甲烷500mL搅拌溶解,然后加入4-溴异氰酸苯酯20g和三乙胺10g,把反应体系中加入水500mL,用二氯甲烷200mL萃取多次,合并有机相后有机相干燥后浓缩,最后经过硅胶柱层析分离得到产物37.97g;1H NMR(600MHz,DMSO-d6)δ8.71(s,1H),8.06(s,1H),7.53(d,J=8.4Hz,2H),7.39-7.35(m,4H),7.33(d,J=8.4Hz,1H),7.31(d,J=7.2Hz,1H),6.64(s,1H),5.59(s,2H),4.33(d,J=4.8Hz,2H)。
实施例6
Figure BDA0003589549920000062
带有搅拌的反应瓶中,把4-溴异氰酸苯酯20g和4-胺基-1-丙醛8g和三乙胺20g加入到乙腈400mL中,置于0℃,缓慢滴加溶有4-乙酰氨基苯磺酸叠氮36g的乙腈溶液400mL,在氮气保护下加热至65℃,搅拌反应2h后再次降温至0℃,向反应体系中加入饱和的碳酸氢钠溶液150mL,搅拌30min后再加入水700mL,用乙酸乙酯200mL萃取多次,合并有机相,浓缩后和3-甲氧基苄胺15g加入到N-甲基吡咯烷酮600mL中,搅拌均匀后再加入乙酰丙酮铜13g,加热至50℃反应7.5h,然后过滤反应液,把反应体系中加入水800mL,用二氯甲烷100mL萃取多次,合并有机相后经无水硫酸镁50g干燥后浓缩,最后经过硅胶柱层析分离得到产物27.02g;1H NMR(600MHz,DMSO-d6)δ8.70(s,1H),8.00(s,1H),7.39–7.36(m,4H),7.30–7.25(m,1H),6.90–6.88(m,2H),6.86(d,J=7.8Hz,1H),6.63(t,J=5.4Hz,1H),5.53(s,2H),4.32(d,J=5.4Hz,2H),3.73(s,3H)。
实施例7
Figure BDA0003589549920000071
在密封的反应管中,把4-甲氧基异氰酸苯酯15g和丙酰胺8.8g和三乙胺10g加入到N-甲基吡咯烷酮400mL中,在氮气保护下,加热至95℃,反应1.5h,然后置于0℃,缓慢滴加溶有4-乙酰氨基苯磺酸叠氮36g的乙腈溶液600mL,滴加完后在氮气保护下加热至65℃,搅拌反应2h后再次降温至0℃,向反应体系中加入饱和的碳酸氢钠溶液200mL,搅拌后再加入水500mL,用乙酸乙酯200mL萃取多次,合并有机相,浓缩后和碘18g起加入甲苯600mL,加热至65℃反应5h,通过分水器排除反应体系产生的水,再加入3-溴苄胺20g和醋酸铜8g,在氧气氛围下,加热至80℃继续反应3.5h,把反应体系中加入水800mL,用二氯甲烷200mL萃取多次,合并有机相后用无水硫酸镁100g干燥后浓缩,最后经过硅胶柱层析分离得到产物34.81g;1H NMR(600MHz,DMSO-d6)δ8.36(s,1H),8.06-8.04(m,1H),7.57(d,J=5.4Hz,2H),7.37-7.35(m,1H),7.32(d,J=7.2Hz,1H),7.29-7.26(m,2H),6.84(d,J=6.0Hz,2H),6.43(s,1H),5.57(s,2H),3.67(s,3H)。
实施例8
本发明中,我们使用了SkipGNN的编码器-解码器框架进行DTI(配体与靶点的亲和力)预测,通过比较简单的计算机模拟来判断设计化合物分子与靶点的结合关系,只是为后续实验提供一个参考,主要还是需要通过具体实验来证实化合物的作用效果。化合物用SMILES字符串表示,蛋白用氨基酸序列表示,将他们作为编码器的输入对,然后为它们生成嵌入,在通过解码器将学习到的嵌入连接起来以预测结合亲和力,输出是衡量输入复合蛋白质对结合活性的分数。化合物的编码器用到了基于化学信息学指纹的多层感知器(MLP)、卷积神经网络(CNN)、递归神经网络(RNN)、消息传递神经网络(MPNN)、基于子结构分区指纹的Transformer深度学习框架,蛋白的编码器用到了基于生物学指纹的多层感知器MLP、卷积神经网络(CNN)、递归神经网络(RNN)、基于子结构分区指纹的Transformer深度学习框架,且编码器指定了一个深度转换函数,可以将化合物和蛋白质映射成向量表示。
在本发明中我们将通过IDO1靶点验证预测的结果,由于IDO1的活性数据只有1785个,经过训练和测试,我们发现基于配体的预测方式更适合该靶点,故而后续的实施方案我们以小分子的SMILES作为输入,编码器采用了基于Morgan、ESPF、Daylight、Pubchem、rdkit_2d_normalized、ErG指纹的MLP模型和基于CNN,RNN、MPNN、Transformer的深度学习模型,模型评估结果见下表。
IDO1数据集在几种预测亲和力的model上的表现性能
Figure BDA0003589549920000081
模型评估结果表明IDO1靶点的小分子抑制剂在基于Morgan指纹的MLP模型上表现得最好,CNN的预测结果次之,在其他模型上的表现性能差距不大,但是在MPNN和Transformer的网络架构上表现的最差,进一步证明对于IDO1靶点,预测该靶点与小分子抑制剂的亲和力模型最合适的是基于Morgan的MLP和CNN模型。从训练和测试结果来看,无论是皮尔森相关系数(P)还是一致性指数(CI),基于Morgan的MLP都要优于CNN,后续我们用基于Morgan的MLP模型来预测设计的分子与IDO1的亲和力,在结合分子对接综合评价设计的分子与化合物的相互作用。预测结果表明我们设计的分子都具有活性,可以进行后续的实验评价。
首先我们在ChEMBL数据库中收集了1785个IDO1小分子抑制剂数据集。我们以pIC50值为活性标准,pIC50的计算公式如下:
Figure BDA0003589549920000082
这里我们用到的是基于Morgan指纹的MLP的一个回归模型,首先我们加载收集到的IDO1小分子抑制剂,将他们转换为numpy数组作为编码器的输入,以Morgan指纹的编码方式生成分子的特征,然后按照8:1:1的比例随机划分数据集为训练集、验证集和测试集,生成模型配置,设置超参数,进行100个epoch的训练,紧接着对模型初始化,开始训练,验证和测试,得到模型的评估结果,然后我们用生成的model去预测设计的分子的亲和力,预测亲和力的结果如下图所示,分值都在5.0以上,说明挑选的化合物针对IDO1靶点理论上具有亲和作用力,其中
Figure BDA0003589549920000091
对应的数值最高,我们通过分子对接把
Figure BDA0003589549920000092
与IDO1靶点(4pk5)进行对接,可以发现
Figure BDA0003589549920000093
能够进入靶点蛋白的活性口袋里面,三氮唑结构可以与血红素结合,发挥竞争性抑制效果,我们接下来进行具体的实验验证。
部分设计的分子的亲和力预测结果和对接结果
Figure BDA0003589549920000094
实施例9
从CO2培养箱中取出具有活力的人宫颈癌Hela细胞培养皿,分别进行如下操作:在酒精灯旁进行无菌操作,打开皿盖,吸出培养液于废液缸中,用2mL的PBS洗培养瓶中的培养液两次,用0.25%的胰蛋白酶进行消化,待观察发现出现细胞间隙增大、细胞变成小圆圈形状时终止消化,使用移液枪吹打培养瓶底部使细胞脱落,将所得的细胞悬浮液转移至无菌离心管中,设置离心机为1000r/min,3min,进行离心,然后缓慢倾倒离心管中的上清液,加入2~5mL的培养液,于倒置显微镜下进行细胞计数。根据计数结果,将处于对数期生长的具有活力的人宫颈癌Hela细胞以每孔50000个细胞的数目铺于96孔细胞培养板中,用含10%胎牛血清的RPMI1640培养5~6小时,加入100μL用培养基稀释好的待测化合物(浓度分别为0.1μM,1.0μM,10.0μM,0.3μM,3.0μM,30.0μM)和重组人源干扰素γ(终浓度为100ng/mg)激活Hela细胞中的IDO1表达。操作完后将96孔细胞培养板放入富含5%二氧化碳的37℃细胞培养箱中培养18小时后,用一定量的6.1N的三氯乙酸终止反应,然后置于50℃孵育30分钟。细胞培养液经沉淀后,取上清液用对-二甲基氨基苯甲醛显色后经多功能酶标仪检测480nm处的吸光度。将不含药物只有IFNγ培养基处理的组作为100%(At),只含0.1%DMSO培养基处理的组作为空白对照0%(Ab);根据下面的公式计算不同条件处理时的吸光度:吸光度%=(A-Ab)/(At-Ab),A:药物处理+100ng/mL IFNγ,Ab:空白对照,At:没有药物只含有100ng/mL IFNγ;根据使用Graph Pad Prism 8.0软件生成具有IC50值的抑制曲线。化合物
Figure BDA0003589549920000101
对IDO1的抑制活性最好,达到3972nM,但是活性没有设计的带有苯基结构的效果好,可能是因为苯基结构平面稳定性比较好,使用甲基替换苯基,甲基结构可以旋转,造成稳定性不是很好,因为不是旋转的每个形态的分子都可以进入到靶点蛋白的口袋。
Figure BDA0003589549920000102
Figure BDA0003589549920000111
实施例10
体外脲酶抑制实验
牛饲喂1h后,用特制瘤胃液采集器经人工瘤胃瘘管采集瘤胃液400mL,通过4层纱布过滤后备用。每个培养管按表1中的量加入相应的试剂后,滴加4滴液体石蜡,置(39.0±0.5)℃恒温水浴振荡器上轻摇。分别在培养的1,2,4,6和8h,从各组取出部分培养管,立即用滴液管加入4滴饱和氯化汞溶液并摇匀,以终止反应。用凯氏半微量-饱和氧化镁蒸馏法测定各检测管中氨态氮含量。
Figure BDA0003589549920000112
Figure BDA0003589549920000121
Figure BDA0003589549920000122
抑制率(%)=(对照组氨含量-试验组氨含量)÷对照组氨含量×100%
时间(h) 对照组抑制率 试验1组抑制率 试验2组抑制率 试验3组抑制率
1 0% 0.72% 3.18% 6.67%
2 0% 3.94% 4.25% 7.88%
4 0% 6.04% 10.79% 14.24%
6 0% 10.28% 17.11% 24.36%
8 0% 13.87% 24.93% 34.74%
以上实施例描述了本发明的基本原理、主要特征及优点,本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明原理的范围下,本发明还会有各种变化和改进,这些变化和改进均落入本发明保护的范围内。

Claims (9)

1.一种可提高免疫力的饲料添加剂及其制备方法和应用,其特征在于该饲料添加剂的结构为:
Figure FDA0003589549910000011
其中R1和R2为卤素原子,烷基,杂环等取代基;R3为H或O。
2.根据权利要求1所述的一种可提高免疫力的饲料添加剂的制备方法,其特征在于的具体过程为:
(1)、异氰酸苯酯类化合物与1-胺基丙酮加成后经对甲苯磺酰肼缩合,然后与苄胺化合物环合得到目标化合物;
(2)、异氰酸苯酯类化合物与3-胺基-1-丙醛加成后经重氮乙酸乙酯重氮化后与苄胺化合物环合得到目标化合物;
(3)、N-Boc-胺基丙酮与对甲苯磺酰肼缩合后再与苄胺化合物环合,脱保护后于异氰酸苯酯类化合物加成得到目标化合物;
(4)、异氰酸苯酯类化合物与丙酰胺加成后经4-乙酰氨基苯磺酸叠氮重氮化,最后与苄胺化合物环合得到目标化合物。
3.根据权利要求2所述的一种可提高免疫力的饲料添加剂的制备方法,其特征在于步骤(1)的具体过程为:把一定量的异氰酸苯酯类化合物和1-胺基丙酮和三乙胺加入到N-甲基吡咯烷酮中,室温搅拌反应一段时间后加入一定量的对甲苯磺酰肼和氢氧化钡和碘,加热至80℃,保持该温度搅拌反应一段时间后加入苄胺化合物和醋酸铜,在氧气氛围下,继续反应一段时间把反应体系中加入水,搅拌后过滤,滤液用二氯甲烷萃取多次,合并有机相后用无水硫酸镁干燥后浓缩,最后经过硅胶柱层析分离得到目标化合物;所述的异氰酸苯酯类化合物与1-胺基丙酮与三乙胺的投料量摩尔比为1:1~1.1:1~1.1;所述的异氰酸苯酯类化合物与对甲苯磺酰肼和氢氧化钡的投料量摩尔比为1:1~1.2:1~1.1;所述的异氰酸苯酯类化合物与苄胺化合物与醋酸铜的投料量摩尔比为1:1~1.1:0.5。
4.根据权利要求2所述的一种可提高免疫力的饲料添加剂的制备方法,其特征在于步骤(2)的具体过程为,把一定量的异氰酸苯酯类化合物和3-胺基-1-丙醛和氢氧化钡加入到乙酸乙酯中,置于0℃,缓慢滴加溶有一定量重氮乙酸乙酯的乙酸乙酯溶液,滴加完毕后,搅拌一段时间后加入饱和碳酸氢钠溶液,分出有机相,浓缩后加入甲基叔丁基醚中,置于0℃条件下,再缓慢滴加溶有三丁基膦的甲基叔丁基醚溶液,反应一段时间后浓缩加入到N-甲基吡咯烷酮中,搅拌均匀后再加入苄胺化合物和乙酰丙酮铜,搅拌均匀后,滴加完后在室温条件下反应一段时间后过滤反应液,把反应体系中加入水,用二氯甲烷萃取多次,合并有机相后有机相干燥后浓缩,最后经过硅胶柱层析分离得到目标化合物;所述的异氰酸苯酯类化合物与3-胺基-1-丙醛与氢氧化钡的投料量摩尔比为1:1:2;所述的异氰酸苯酯类化合物与重氮乙酸乙酯的投料量摩尔比为1:1.2~1.5;所述的异氰酸苯酯类化合物与三丁基膦与苄胺化合物与乙酰丙酮铜的投料量摩尔比为1:1:1~1.1:0.5。
5.根据权利要求2所述的一种可提高免疫力的饲料添加剂的制备方法,其特征在于步骤(3)的具体过程为:把一定量的N-Boc-胺基丙酮和反应及催化剂和氢氧化钡和碘加入到溶剂中,在氮气保护下加热至一定温度,反应一段时间后加入苄胺化合物和醋酸铜,在氧气氛围下,继续反应一段时间后向反应体系中加入一定量2N的稀盐酸溶液,搅拌后用乙酸乙酯萃取多次,合并有机相后浓缩,浓缩物用二氯甲烷溶解,然后加入异氰酸苯酯类化合物和三乙胺,把反应体系中加入水,用二氯甲烷萃取多次,合并有机相后有机相干燥后浓缩,最后经过硅胶柱层析分离得到目标化合物;所述的反应及催化剂为对甲苯磺酰肼和氢氧化钡或水合肼;所述的N-Boc-胺基丙酮与对甲苯磺酰肼与氢氧化钡的投料量摩尔比为1:1:2;所述的N-Boc-胺基丙酮与水合肼的投料量质量比为1:1;所述的溶剂为甲苯或乙醇;所述的反应温度为0~100℃;所述的N-Boc-胺基丙酮与苄胺化合物与醋酸铜的投料量摩尔比为1:1:0.5;所述的N-Boc-胺基丙酮与异氰酸苯酯类化合物与三乙胺的投料量摩尔比为1:1:1。
6.根据权利要求2所述的一种可提高免疫力的饲料添加剂的制备方法,其特征在于步骤(4)的具体过程为:把一定量的异氰酸苯酯类化合物和丙酰胺和三乙胺加入到N-甲基吡咯烷酮中,在氮气保护下,加热至一定温度1,反应一段时间后置于0℃,缓慢滴加溶有4-乙酰氨基苯磺酸叠氮的乙腈溶液,滴加完后,在氮气保护下加热至温度2,搅拌反应一段时间后再次降温至0℃,向反应体系中加入饱和的碳酸氢钠溶液,然后再加入水,用乙酸乙酯萃取多次,合并有机相,浓缩后和碘和苄胺化合物和醋酸铜分批加入甲苯中,在氧气氛围下,继续反应一段时间,把反应体系中加入水,用二氯甲烷萃取多次,合并有机相后有机相干燥后浓缩,最后经过硅胶柱层析分离得到目标化合物;所述的异氰酸苯酯类化合物与丙酰胺的投料量摩尔比为1:1~1.2:1;所述的异氰酸苯酯类化合物与4-乙酰氨基苯磺酸叠氮的投料量摩尔比为1:1.5;所述的异氰酸苯酯类化合物与苄胺化合物与醋酸铜投料量摩尔比为1:1:0.5;所述的一定温度1为90~105℃;所述的温度2为50~70℃。
7.如权利要求1所述的饲料添加剂在通过人工智能DTI算法预测IDO1酶活的初步参考作用方式。
8.如权利要求1所述的饲料添加剂在抑制IDO1酶活的作用。
9.如权利要求1所述的饲料添加剂在抑制脲酶活的作用。
CN202210373940.XA 2022-03-31 2022-04-11 一种饲料添加剂及其制备方法和应用 Active CN114751867B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210337379X 2022-03-31
CN202210337379 2022-03-31

Publications (2)

Publication Number Publication Date
CN114751867A true CN114751867A (zh) 2022-07-15
CN114751867B CN114751867B (zh) 2024-09-06

Family

ID=81952295

Family Applications (3)

Application Number Title Priority Date Filing Date
CN202210373940.XA Active CN114751867B (zh) 2022-03-31 2022-04-11 一种饲料添加剂及其制备方法和应用
CN202210439912.3A Active CN114634487B (zh) 2022-03-31 2022-04-25 具有提高免疫力功能的喹啉类饲料添加剂的制备方法
CN202310290208.0A Pending CN116751171A (zh) 2022-03-31 2023-03-23 一种脲类化合物及其外泌体负载方法和应用

Family Applications After (2)

Application Number Title Priority Date Filing Date
CN202210439912.3A Active CN114634487B (zh) 2022-03-31 2022-04-25 具有提高免疫力功能的喹啉类饲料添加剂的制备方法
CN202310290208.0A Pending CN116751171A (zh) 2022-03-31 2023-03-23 一种脲类化合物及其外泌体负载方法和应用

Country Status (1)

Country Link
CN (3) CN114751867B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014113607A1 (en) * 2013-01-16 2014-07-24 The Regents Of The University Of California Protective molecules against anthrax toxin
WO2018132372A1 (en) * 2017-01-10 2018-07-19 Sanford Burnham Prebys Medical Discovery Institute Small molecule activators of nicotinamide phosphoribosyltransferase (nampt) and uses thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
HU184772B (en) * 1980-05-23 1984-10-29 Egyt Gyogyszervegyeszeti Gyar Process for preparing quinoxaline-1,4-dioxide derivatives
CN107245072A (zh) * 2016-11-18 2017-10-13 河南师范大学 一种厄洛替尼‑1,2,3‑三氮唑类化合物的制备方法
CN109956892A (zh) * 2019-03-11 2019-07-02 河南师范大学 一种脲类ido抑制剂及其制备方法
CN112174940A (zh) * 2019-07-05 2021-01-05 上海中医药大学 3-(6,7-双(2-甲氧乙氧基)-喹唑啉-4-胺基)苯基-1h-三氮唑衍生物
CN112176418A (zh) * 2019-07-05 2021-01-05 中国科学院上海有机化学研究所 高通量的化合物库构建和筛选方法以及反应装置
CN111333630A (zh) * 2020-04-21 2020-06-26 侯延生 对野生型肺癌肿瘤细胞具有杀伤性能的厄洛替尼衍生物及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014113607A1 (en) * 2013-01-16 2014-07-24 The Regents Of The University Of California Protective molecules against anthrax toxin
WO2018132372A1 (en) * 2017-01-10 2018-07-19 Sanford Burnham Prebys Medical Discovery Institute Small molecule activators of nicotinamide phosphoribosyltransferase (nampt) and uses thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SETAREH MOGHIMI等: "Synthesis, evaluation, and molecular docking studies of aryl urea-triazole-based derivatives as anti-urease agents", 《ARCH PHARM CHEM LIFE SCI.》, vol. 351, pages 1800005 *
SRIDHAR ARAVAPALLI等: "Inhibitors of Dengue virus and West Nile virus proteases based on the aminobenzamide scaffold", 《BIOORGANIC & MEDICINAL CHEMISTRY》, vol. 20, pages 4140, XP028490929, DOI: 10.1016/j.bmc.2012.04.055 *

Also Published As

Publication number Publication date
CN116751171A (zh) 2023-09-15
CN114634487B (zh) 2024-08-13
CN114751867B (zh) 2024-09-06
CN114634487A (zh) 2022-06-17

Similar Documents

Publication Publication Date Title
Lu et al. Transcriptome analysis of grass carp (Ctenopharyngodon idella) between fast-and slow-growing fish
CN114591253B (zh) 一种脲类饲料添加剂及其制备方法和应用
Gong et al. Comparative analysis of liver transcriptomes associated with hypoxia tolerance in the gynogenetic blunt snout bream
CN110718268A (zh) 虚拟筛选在制备蛋白激酶抑制剂的应用和药物先导化合物
Zhang et al. First genome-wide association study and genomic prediction for growth traits in spotted sea bass (Lateolabrax maculatus) using whole-genome resequencing
Zhang et al. Transcriptome analysis of the effect of pyrroloquinoline quinone disodium (PQQ· Na 2) on reproductive performance in sows during gestation and lactation
Wang et al. Integrative analyses of genes associated with idiopathic pulmonary fibrosis
Badai et al. Review of artificial intelligence applications and algorithms for brain organoid research
CN114751867A (zh) 一种可提高免疫力的饲料添加剂及其制备方法和应用
Ying et al. Transcriptome analysis of Macrobrachium rosenbergii: Identification of precocious puberty and slow-growing information
CN114591252A (zh) 一种三氮唑类饲料添加剂及其制备方法和应用
Dai et al. Study of compensatory growth based on different nutrition conditions of Bombyx mori
Chen et al. Dynamic 3D genome reorganization during development and metabolic stress of the porcine liver
Qin et al. Metabolomic responses based on transcriptome of the hepatopancreas in Exopalaemon carinicauda under carbonate alkalinity stress
Ghormade et al. Nutrigenomics and its applications in animal science
Zhu et al. A systems genetics study of swine illustrates mechanisms underlying human phenotypic traits
Liu et al. Transcriptome analysis of the gonad reveals growth differences between large, medium and small individuals in a pure family of Macrobrachium rosenbergii
Sukhija et al. The flight of chicken genomics and allied omics-a mini review
Huang et al. Pyrroloquinoline quinone regulates glycolipid metabolism in the jejunum via inhibiting AMPK phosphorylation of weaned pigs
CN114651898A (zh) 一种提高免疫力的三唑类饲料添加剂及其制备方法和应用
CN114032240A (zh) 一种用于提高基因敲除效率的方法
Delfino et al. Genome-wide census and expression profiling of chicken neuropeptide and prohormone convertase genes
Wang et al. Transcriptomic analysis reveals diverse expression patterns underlying the fiber diameter of oxidative and glycolytic skeletal muscles in steers
Williams et al. Replacement of Dietary Fish Protein with Bacterial Protein Results in Decreased Adiposity Coupled with Liver Gene Expression Changes in Female Danio rerio
CN113637767A (zh) mir-425-5p在调控卵母细胞成熟中的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20240808

Address after: 404617 No.1 Shengyuan Road, Ecological Industrial Park, Caotang Town, Fengjie County, Chongqing 475-3

Applicant after: CHONGQING WANHONG FEED CO.,LTD.

Country or region after: China

Address before: 471002 Qiming South Road, Fuhe District, Luoyang City, Henan Province

Applicant before: HENAN WANLIU BIOTECHNOLOGY Co.,Ltd.

Country or region before: China

GR01 Patent grant
GR01 Patent grant