CN114736399B - 高弹性羧甲基壳聚糖/酸化碳纳米管复合水凝胶及其制备方法 - Google Patents

高弹性羧甲基壳聚糖/酸化碳纳米管复合水凝胶及其制备方法 Download PDF

Info

Publication number
CN114736399B
CN114736399B CN202210549776.3A CN202210549776A CN114736399B CN 114736399 B CN114736399 B CN 114736399B CN 202210549776 A CN202210549776 A CN 202210549776A CN 114736399 B CN114736399 B CN 114736399B
Authority
CN
China
Prior art keywords
carboxymethyl chitosan
acidified
composite hydrogel
hydrogel
elasticity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210549776.3A
Other languages
English (en)
Other versions
CN114736399A (zh
Inventor
梅金凤
罗登玉
刘丹丹
丁一
李忠玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changzhou University
Original Assignee
Changzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changzhou University filed Critical Changzhou University
Priority to CN202210549776.3A priority Critical patent/CN114736399B/zh
Publication of CN114736399A publication Critical patent/CN114736399A/zh
Application granted granted Critical
Publication of CN114736399B publication Critical patent/CN114736399B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/24Naturally occurring macromolecular compounds, e.g. humic acids or their derivatives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28047Gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2305/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2301/00 or C08J2303/00
    • C08J2305/08Chitin; Chondroitin sulfate; Hyaluronic acid; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • C08K5/175Amines; Quaternary ammonium compounds containing COOH-groups; Esters or salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本发明属于高分子凝胶及吸附分离技术领域,公开一种高弹性羧甲基壳聚糖/酸化碳纳米管复合水凝胶及其制备方法。采用一锅法,以羧甲基壳聚糖为原料,与亚氨基二乙酸和酸化多壁碳纳米管通过酰胺化反应交联,得到三维交联多孔水凝胶。本发明工艺简单,反应条件温和。所得水凝胶力学性能优异,能够承受自身78倍以上的重量,且在受力后弹性形变可完全恢复。该水凝胶结构稳定,在吸附锶离子后,通过洗脱可实现多次循环使用,在吸附分离领域具有良好的应用前景。

Description

高弹性羧甲基壳聚糖/酸化碳纳米管复合水凝胶及其制备 方法
技术领域
本发明属于高分子凝胶及吸附分离技术领域,具体涉及一种高弹性羧甲基壳聚糖/酸化碳纳米管复合水凝胶及其制备方法。
背景技术
壳聚糖水凝胶在吸附分离方面有重要应用。壳聚糖本身含有羟基、氨基、羧基等活性基团,易于进行化学接枝、交联、复合等改性,利于其与多种有机分子和金属离子产生化学作用。但壳聚糖难溶于水,一般需在强酸性条件下进行改性。
羧甲基壳聚糖是壳聚糖的羧甲基化衍生物。其具有与壳聚糖相似的化学性质,但水溶性优异,在进行改性时操作简单,改性分子选择范围广,因而在进行吸附材料合成时具有明显优势。目前,以羧甲基壳聚糖为基体制备的吸附材料力学性能通常都较弱,实用性不高,主要表现为承受压力时易碎。并且,吸附反应通常于水中进行,导致凝胶在吸水溶胀后脆性增加,机械性能更为脆弱,这非常不利于其回收利用。如CN110483662A公开了一种羧甲基壳聚糖交联凝胶,这类水凝胶一般力学性能不佳,很难承受实际应用中的各种外力。因而增强羧甲基壳聚糖凝胶的机械性能,对于其实际应用极为重要。
发明内容
针对上述问题,本发明提供一种高弹性羧甲基壳聚糖/酸化碳纳米管复合水凝胶的制备方法。将羧甲基壳聚糖通过缩合反应与亚氨基二乙酸及酸化多壁碳纳米管共价交联,利用酸化多壁碳纳米管的机械增强作用,及反应后形成的大量氢键增加材料弹性,得到高弹性三维交联多孔结构凝胶。
本发明涉及的高弹性羧甲基壳聚糖/酸化碳纳米管复合水凝胶,其制备方法包括如下步骤:
(1)将亚氨基二乙酸溶于水中,用NaOH溶液将其调至中性。
(2)在步骤(1)的亚氨基二乙酸溶液中加入酸化多壁碳纳米管和羧甲基壳聚糖,搅拌均匀。
步骤(2)中,羧甲基壳聚糖与酸化多壁碳纳米管的质量比为(20-100):1。
步骤(2)中,羧甲基壳聚糖与亚氨基二乙酸的摩尔比为(1-5):1。
(3)将酰胺化反应用缩合剂加入步骤(2)的混合溶液中,室温下搅拌均匀。
步骤(3)中缩合剂总量与亚氨基二乙酸的摩尔比至少为1:1。
进一步的,缩合剂为酰胺化反应常用缩合剂,可选为1-(3-二甲氨基丙基)-3-乙基碳二亚胺(EDC)、1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐(EDC·HCl)、二环己基碳二亚胺(DCC)中的任意一种或几种与4-二甲氨基吡啶(DMAP)、N-羟基琥珀酰亚胺(NHS)、1-羟基苯并三唑(HOBT)中的任意一种或几种的联用,优选为EDC与NHS联用,联用时EDC与NHS的摩尔比为1:1。
(4)将步骤(3)中的混合溶液转移到模具中在室温下固化,一般60min可固化。
本发明限定羧甲基壳聚糖与亚氨基二乙酸摩尔比为(1-5):1,在此比例范围内可以得到力学性能优良的高弹性羧甲基壳聚糖/酸化碳纳米管复合水凝胶,如果低于1:1,水凝胶孔隙率和机械强度均较低,如果高于5:1则弹性不佳。
本发明限定羧甲基壳聚糖与酸化多壁碳纳米管的质量比为(20-100):1,在此比例范围内可以得到力学性能优良的高弹性羧甲基壳聚糖/酸化碳纳米管复合水凝胶,如果低于此范围,水凝胶脆性较高易破裂,如果高于此范围,水凝胶弹性模量较低。
本发明涉及的反应机理为:利用羧甲基壳聚糖的氨基和亚氨基二乙酸、酸化多壁碳纳米管的羧基反应生成酰胺键,其中,亚氨基二乙酸和酸化多壁碳纳米管均起到交联作用,生成的大量酰胺基团之间形成了多重氢键,因而极大提高了弹性。
相比于现有技术,本发明技术方案的优点在于:
(1)本发明使用一锅法,反应条件温和,通过缩合反应形成三维网络结构凝胶。
(2)本发明制备的羧甲基壳聚糖水凝胶具有优异的弹性和韧性,可以承受自身重量78倍的压力,且多次压缩循环形变可完全恢复,有利于使用时操作和延长寿命。
本发明制备的高弹性羧甲基壳聚糖/酸化碳纳米管复合水凝胶有优良的吸附性能,且多次使用吸附容量无明显下降。
附图说明
图1为本发明制备水凝胶涉及的反应机理示意图。
图2为本发明实施例1制备的高弹性羧甲基壳聚糖/酸化碳纳米管复合水凝胶(图中的弹性水凝胶)的红外光谱图。
图3为本发明实施例1制备的高弹性羧甲基壳聚糖/酸化碳纳米管复合水凝胶的SEM图。
图4为本发明对比例1制备的水凝胶SEM图。
图5为本发明实施例1制备的高弹性羧甲基壳聚糖/酸化碳纳米管复合水凝胶的力学性能展示图。
图6为本发明对比例3制备的水凝胶压缩曲线图。
图7为本发明实施例1制备的高弹性羧甲基壳聚糖/酸化碳纳米管复合水凝胶的循环压缩曲线图。
图8为本发明实施例1制备的高弹性羧甲基壳聚糖/酸化碳纳米管复合水凝胶对Sr2+吸附-解吸的剩余吸附量变化图。
具体实施方式
本发明不局限于下列具体实施方式,本领域一般技术人员根据本发明公开的内容,可以采用其他多种具体实施方式实施本发明的,或者凡是采用本发明的设计结构和思路,做简单变化或更改的,都落入本发明的保护范围。需要说明的是,在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合。
以下结合具体实施例对本发明进行进一步的阐述,下述实施例中所用的材料、试剂均可从商业途径获得。
实施例1
(1)称取0.5g亚氨基二乙酸,加入20mL去离子水中,搅拌均匀,调节pH值至7-9。
(2)称取0.0328g酸化多壁碳纳米管,加入到步骤(1)的亚氨基二乙酸溶液中,搅拌均匀,得混合溶液。
(3)称取3.28g羧甲基壳聚糖,加入到步骤(2)的混合液中,搅拌均匀,得到新的混合液。
(4)向步骤(3)的混合溶液中加入0.72gEDC·HCl和0.44gNHS,搅拌均匀,转移至模具中,室温固化1h。
其中图5为实施例1制备的高弹性羧甲基壳聚糖/酸化碳纳米管复合水凝胶的力学性能展示图,图7为实施例1制备的高弹性羧甲基壳聚糖/酸化碳纳米管复合水凝胶的循环压缩曲线,从图5及图7中可以看出水凝胶具有优异的弹性。
实施例1制备的高弹性羧甲基壳聚糖/酸化碳纳米管复合水凝胶采用静态吸附法进行对Sr2+吸附后,用NaOH洗脱法解吸附,再次吸附,循环5次,得到的吸附量变化图,如图8所示,从中可见,多次使用后吸附性能没有明显下降。
实施例2
(1)称取0.5g亚氨基二乙酸,加入20mL去离子水中,搅拌均匀,调节pH值至7-9。
(2)称取0.0328g酸化多壁碳纳米管,加入到步骤(1)的亚氨基二乙酸溶液中,搅拌均匀,得混合溶液。
(3)称取2.46g羧甲基壳聚糖,加入到步骤(2)的混合液中,搅拌均匀,得到新的混合液。
(4)向步骤(3)的混合溶液中加入0.72gEDC·HCl和0.44gNHS,搅拌均匀,转移至模具中,室温固化1h。
实施例3
(1)称取0.5g亚氨基二乙酸,加入20mL去离子水中,搅拌均匀,调节pH值至7-9。
(2)称取0.0656g酸化多壁碳纳米管,加入到步骤(1)的亚氨基二乙酸溶液中,搅拌均匀,得混合溶液。
(3)称取3.28g羧甲基壳聚糖,加入到步骤(2)的混合液中,搅拌均匀,得到新的混合液。
(4)向步骤(3)的混合溶液中加入0.72gEDC·HCl和0.44gNHS,搅拌均匀,转移至模具中,室温固化1h。
对比例1
对比例1与实施例1相比,区别在于:羧甲基壳聚糖与亚氨基二乙酸的摩尔比不在(1-5):1范围内。
(1)称取0.5g亚氨基二乙酸,加入20mL去离子水中,搅拌均匀,调节pH值至7-9。
(2)称取0.0328g酸化多壁碳纳米管,加入到步骤(1)的亚氨基二乙酸溶液中,搅拌均匀,得混合溶液。
(3)称取0.5g羧甲基壳聚糖,加入到步骤(2)的混合液中,搅拌均匀,得到新的混合液。
(4)向步骤(3)的混合溶液中加入0.72gEDC·HCl和0.44gNHS,搅拌均匀,转移至模具中,室温固化1h。
对比例1由于羧甲基壳聚糖与亚氨基二乙酸摩尔比低于1:1,从图4的SEM图中可以看出得到的水凝胶孔隙较少,且该水凝胶较软易碎,难以满足实际应用要求。
对比例2
对比例2与实施例1相比,区别在于:羧甲基壳聚糖与亚氨基二乙酸的摩尔比不在(1-5):1范围内。
(1)称取0.5g亚氨基二乙酸,加入20mL去离子水中,搅拌均匀,调节pH值至7-9。
(2)称取0.0328g酸化多壁碳纳米管,加入到步骤(1)的亚氨基二乙酸溶液中,搅拌均匀,得混合溶液。
(3)称取6.56g羧甲基壳聚糖,加入到步骤(2)的混合液中,搅拌均匀,得到新的混合液。
(4)向步骤(3)的混合溶液中加入0.72gEDC·HCl和0.44gNHS,搅拌均匀,转移至模具中,室温固化1h。
对比例1由于羧甲基壳聚糖与亚氨基二乙酸摩尔比高于5:1,得到的水凝胶孔隙较少,硬度较高但受力易破碎,难以满足实际应用要求。
对比例3
对比例3与实施例1相比,区别在于:制备过程中不加酸化多壁碳纳米管。
(1)称取0.5g亚氨基二乙酸,加入20mL去离子水中,搅拌均匀,调节pH值至7-9。
(3)称取3.28g羧甲基壳聚糖,加入到步骤(1)的混合液中,搅拌均匀,得到新的混合液。
(4)向步骤(3)的混合溶液中加入0.72gEDC·HCl和0.44gNHS,搅拌均匀,转移至模具中,室温固化1h。
对比例3由于原料中没有加酸化多壁碳纳米管,得到的水凝胶力学性能不佳,在图6的压缩曲线中可看出,凝胶弹性模量低,且在应变较小时已被压碎,难以满足实际应用要求。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,根据本发明的技术方案及其构思加以等同替换或改变,都应涵盖在本发明的保护范围之内。

Claims (4)

1.一种高弹性羧甲基壳聚糖/酸化碳纳米管复合水凝胶的制备方法,其特征在于,包括以下步骤:将亚氨基二乙酸溶于水中,用NaOH调至中性,加入酸化多壁碳纳米管和羧甲基壳聚糖,搅拌均匀后加入缩合剂,继续搅拌均匀后将混合液转移到模具中固化,得到高弹性羧甲基壳聚糖/酸化碳纳米管复合水凝胶;羧甲基壳聚糖与亚氨基二乙酸的摩尔比为(1-5):1,羧甲基壳聚糖与酸化多壁碳纳米管的质量比为(20-100):1;
缩合剂总量与亚氨基二乙酸的摩尔比至少为1:1。
2.根据权利要求1所述的高弹性羧甲基壳聚糖/酸化碳纳米管复合水凝胶的制备方法,其特征在于,缩合剂为1-(3-二甲氨基丙基)-3-乙基碳二亚胺、1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐、二环己基碳二亚胺中的任意一种与4-二甲氨基吡啶、N-羟基琥珀酰亚胺、1-羟基苯并三唑中的任意一种的联用,联用时两种缩合剂的摩尔比为1:1。
3.根据权利要求1所述的高弹性羧甲基壳聚糖/酸化碳纳米管复合水凝胶的制备方法,其特征在于,固化温度为室温,固化时间至少为60min。
4.如权利要求1至3中任一项所述的高弹性羧甲基壳聚糖/酸化碳纳米管复合水凝胶的制备方法制得的复合水凝胶。
CN202210549776.3A 2022-05-20 2022-05-20 高弹性羧甲基壳聚糖/酸化碳纳米管复合水凝胶及其制备方法 Active CN114736399B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210549776.3A CN114736399B (zh) 2022-05-20 2022-05-20 高弹性羧甲基壳聚糖/酸化碳纳米管复合水凝胶及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210549776.3A CN114736399B (zh) 2022-05-20 2022-05-20 高弹性羧甲基壳聚糖/酸化碳纳米管复合水凝胶及其制备方法

Publications (2)

Publication Number Publication Date
CN114736399A CN114736399A (zh) 2022-07-12
CN114736399B true CN114736399B (zh) 2024-02-13

Family

ID=82288019

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210549776.3A Active CN114736399B (zh) 2022-05-20 2022-05-20 高弹性羧甲基壳聚糖/酸化碳纳米管复合水凝胶及其制备方法

Country Status (1)

Country Link
CN (1) CN114736399B (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104583333A (zh) * 2012-08-21 2015-04-29 大日精化工业株式会社 水性液态组合物、水性涂覆液、功能性涂覆膜、和复合材料
CN107602884A (zh) * 2017-09-05 2018-01-19 南通纺织丝绸产业技术研究院 一种丝素/壳聚糖复合智能水凝胶及其制备方法
CN108473652A (zh) * 2015-11-05 2018-08-31 路博润先进材料公司 可热成型的双网络水凝胶组合物
CN110483662A (zh) * 2019-07-05 2019-11-22 常州大学 一种羧甲基壳聚糖交联凝胶
CN110483845A (zh) * 2019-07-03 2019-11-22 常州大学 一种氧化石墨烯/壳寡糖复合交联凝胶
CN111607108A (zh) * 2020-05-21 2020-09-01 浙江一洋医疗科技有限公司 一种自粘附聚丙烯酸钠导电水凝胶及其制备方法
CN111848986A (zh) * 2020-08-05 2020-10-30 太原理工大学 一种复合水凝胶及其制备方法和应用、一种复合水凝胶受多重因素刺激响应的方法
CN112442194A (zh) * 2019-09-04 2021-03-05 四川大学 一种导电粘合水凝胶的制备方法
WO2021258725A1 (zh) * 2020-06-22 2021-12-30 北京大学深圳医院 一种可注射抗压裂可降解超分子水凝胶的制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104583333A (zh) * 2012-08-21 2015-04-29 大日精化工业株式会社 水性液态组合物、水性涂覆液、功能性涂覆膜、和复合材料
CN108473652A (zh) * 2015-11-05 2018-08-31 路博润先进材料公司 可热成型的双网络水凝胶组合物
CN107602884A (zh) * 2017-09-05 2018-01-19 南通纺织丝绸产业技术研究院 一种丝素/壳聚糖复合智能水凝胶及其制备方法
CN110483845A (zh) * 2019-07-03 2019-11-22 常州大学 一种氧化石墨烯/壳寡糖复合交联凝胶
CN110483662A (zh) * 2019-07-05 2019-11-22 常州大学 一种羧甲基壳聚糖交联凝胶
CN112442194A (zh) * 2019-09-04 2021-03-05 四川大学 一种导电粘合水凝胶的制备方法
CN111607108A (zh) * 2020-05-21 2020-09-01 浙江一洋医疗科技有限公司 一种自粘附聚丙烯酸钠导电水凝胶及其制备方法
WO2021258725A1 (zh) * 2020-06-22 2021-12-30 北京大学深圳医院 一种可注射抗压裂可降解超分子水凝胶的制备方法
CN111848986A (zh) * 2020-08-05 2020-10-30 太原理工大学 一种复合水凝胶及其制备方法和应用、一种复合水凝胶受多重因素刺激响应的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Preparation of iminodiacetic acid functionalized multi-walled carbon nanotubes and its application as sorbent for separation and preconcentration of heavy metal ions;Junping Wang et al.;《Journal of Hazardous Materials》;全文 *
羧甲基壳聚糖弹性凝胶的构筑及其对锶(Ⅱ)的吸附性能研究;丁一;《硕士电子期刊》;全文 *

Also Published As

Publication number Publication date
CN114736399A (zh) 2022-07-12

Similar Documents

Publication Publication Date Title
Bao et al. Natural polymer‐based hydrogels with enhanced mechanical performances: preparation, structure, and property
Wang et al. Hydrogen bonding derived self-healing polymer composites reinforced with amidation carbon fibers
Cai et al. Synthesis of highly conductive hydrogel with high strength and super toughness
Hu et al. Aqueous compatible boron nitride nanosheets for high-performance hydrogels
Pei et al. Self-healing and toughness cellulose nanocrystals nanocomposite hydrogels for strain-sensitive wearable flexible sensor
CN113462169B (zh) 一种基于MXene的导电有机硅弹性体及其制备方法与应用
CN110746616A (zh) 一种含苯硼酸的纤维素水凝胶及其制备方法和应用
Pedige et al. Stimuli-responsive composite hydrogels with three-dimensional stability prepared using oxidized cellulose nanofibers and chitosan
CN116332157B (zh) 一种氮-金属掺杂碳材料的制备方法及其在橡胶中应用
CN110885476A (zh) 一锅法制备的二次掺杂型氧化石墨烯/碱溶壳聚糖-聚苯胺-聚丙烯酰胺复合导电水凝胶
CN108912659B (zh) 一种交联三维碳纳米复合聚氨酯材料的制备方法
Li et al. Frost-resistant and ultrasensitive strain sensor based on a tannic acid-nanocellulose/sulfonated carbon nanotube-reinforced polyvinyl alcohol hydrogel
Wang et al. Tough and extremely temperature-tolerance nanocomposite organohydrogels as ultrasensitive wearable sensors for wireless human motion monitoring
CN112957525A (zh) 一种纳米羟基磷灰石/丝素蛋白/纤维素复合气凝胶及其制备方法
CN111218022A (zh) 一种负泊松比生物基硬质性泡沫材料的制备方法及产品
Rumon et al. Graphene oxide based crosslinker for simultaneous enhancement of mechanical toughness and self-healing capability of conventional hydrogels
Li Towards conductive hydrogels in e-skins: A review on rational design and recent developments
CN114736399B (zh) 高弹性羧甲基壳聚糖/酸化碳纳米管复合水凝胶及其制备方法
Li et al. Phytic acid-assist for self-healing nanocomposite hydrogels with surface functionalization of cellulose nanocrystals via SI-AGET ATRP
Ling et al. Preparation and characterization of dual-network interpenetrating structure hydrogels with shape memory and self-healing properties
CN113214657B (zh) 一种高强度、高导电性、柔性大豆蛋白膜及其制备方法
CN108707263B (zh) 一种亲水性纤维改性吸水膨胀水解丁腈橡胶的制备方法
Zhang et al. Malleable and self-healing rubbers covalently crosslinked by reversible boronic ester bonds
Yasar et al. Development of self-healing vanillin/PEI hydrogels for tissue engineering
CN108976443B (zh) 一种碳纳米管增强羧甲基木聚糖/聚丙烯酸复合水凝胶及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant