CN114733367B - 一种凹凸棒土基复合纳滤膜的制备方法 - Google Patents
一种凹凸棒土基复合纳滤膜的制备方法 Download PDFInfo
- Publication number
- CN114733367B CN114733367B CN202210447911.3A CN202210447911A CN114733367B CN 114733367 B CN114733367 B CN 114733367B CN 202210447911 A CN202210447911 A CN 202210447911A CN 114733367 B CN114733367 B CN 114733367B
- Authority
- CN
- China
- Prior art keywords
- attapulgite
- nanofiltration membrane
- acid
- composite nanofiltration
- based composite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D67/00—Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
- B01D67/0079—Manufacture of membranes comprising organic and inorganic components
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/02—Reverse osmosis; Hyperfiltration ; Nanofiltration
- B01D61/027—Nanofiltration
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/02—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/12—Composite membranes; Ultra-thin membranes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/02—Inorganic material
- B01D71/024—Oxides
- B01D71/027—Silicium oxide
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/44—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
- C02F1/442—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by nanofiltration
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2325/00—Details relating to properties of membranes
- B01D2325/24—Mechanical properties, e.g. strength
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2103/00—Nature of the water, waste water, sewage or sludge to be treated
- C02F2103/08—Seawater, e.g. for desalination
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A20/00—Water conservation; Efficient water supply; Efficient water use
- Y02A20/124—Water desalination
- Y02A20/131—Reverse-osmosis
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Nanotechnology (AREA)
- Water Supply & Treatment (AREA)
- Inorganic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Environmental & Geological Engineering (AREA)
- Organic Chemistry (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
本发明公开了一种凹凸棒土基复合纳滤膜的制备方法,配制酸溶液,加入纳米凹凸棒土,常温反应后,用蒸馏水洗涤至,干燥,得白色粉末状的酸活化后纳米凹凸棒土;混匀酸活化后纳米凹凸棒土与聚合物,得混合物,将该混合物分散于水中,搅拌反应,得反应液,真空辅助过滤或刮涂室温蒸发自组装反应液,制得凹凸棒土基复合纳滤膜。该制备方法利用具有多孔道特性和表面活性基团的储量丰富的粘土矿物,用低品位粘土矿物制备出具有高度可利用价值的纳滤膜,不仅提供了一种水处理的技术,而且拓展了粘土矿物的应用领域,具有重要的理论意义和实用价值。
Description
技术领域
本发明涉及一种凹凸棒土基复合纳滤膜的制备方法。
背景技术
淡水资源是人类赖以生存和发展的基本需求。而今,淡水资源缺乏是日趋严峻的全球性问题,污水处理和海水淡化已成为当今社会的重要研究课题。在世界范围内,超过10亿人口缺乏清洁的饮用水,联合国发布报告称全球25亿人口缺少基本卫生设施,这导致每年有大量的人死于不洁净的水源或污水传播的水源性疾病。地球上只有2.5%的水是淡水,但大部分水资源必须经过一定程度的净化才能安全饮用或用于其他用途。
淡水资源的利用和可利用资源之间严重的不平衡导致了污水再利用和海水淡化势在必行。与现有技术中的吸附法、离子交换法、生化法和蒸馏法等污水处理技术相比,纳滤膜技术处理污水是一类高效、节能的新型技术,它的净化原理是依靠外界能量,包括压力、浓度、电流等,利用膜的尺寸选择透过性使半径较小的水分子快速通过膜而污染物质则被膜截留,以此达到污水的净化或海水的脱盐。利用这种原理,纳滤膜是一种特别有效截留盐、有机化合物、抗生素、药物等的排斥反应器,并且,纳滤膜具有回收率高、模块化运行、规模可放大和经济可行性等优点,因此,纳滤膜已成为现今水处理的主要技术之一。
水处理膜的种类各种各样,按其组成主要分为有机膜、无机膜及复合膜。有机膜如聚丙烯酰胺、聚乙烯、聚酰亚胺和纤维素类等,无机膜如陶瓷膜和玻璃膜等,复合膜如MOF@聚合物、石墨烯@聚合物、MOF@石墨烯膜等。为了提高膜处理的效率和选择性,复合膜成为了膜法水净化的主要膜技术,因为复合膜综合了材料各组分的优势,并且各组分之间的协调作用也使得复合膜表现出优异的性能。按其微孔的尺寸主要分为微滤膜、超滤膜、纳滤膜和渗透膜,根据污染物的尺寸可选择相应的膜技术。
纳滤膜的工业应用十分广泛,其特有的微孔可有效阻留细菌、有机物、抗生素以及金属离子,达到污水处理和海水淡化的目的。纳滤膜的分离过滤效率和选择性不仅受纳滤膜材料组成的影响,而且受纳滤膜微孔尺寸和结构的影响。包括凹凸棒石纳米纤维、高岭石纳米片、埃洛石纳米管和膨润土纳米聚集体等粘土矿物是天然的纳米级含水富镁铝硅酸盐黏土矿物,具有规则的晶体结构、纳米孔道,粘土矿物表面有大量羟基和反应活性基团,这使其具有较高的亲水性和化学反应活性。将粘土矿物与有机聚合物复合制备纳滤膜,不仅可提升过滤效率、选择性和机械性能等,而且拓展了粘土矿物的应用领域。
现有技术中用凹凸棒土制备污染物(微污染物,重金属离子等)吸附膜相对较为成熟,而用凹凸棒土制备海水淡化纳滤膜的技术目前存在选择性、大面积、机械稳定性等问题。
发明内容
本发明提供了一种凹凸棒土基复合纳滤膜的制备方法,能够制备出集离子选择性高和机械稳定性高的大面积凹凸棒基海水淡化膜。
本发明所采用的技术放案是:一种凹凸棒土基复合纳滤膜的制备方法,具体按以下步骤进行:
1)纳米凹凸棒土的前处理:
配制摩尔浓度0.01~0.1M的酸溶液;再按1L酸溶液中加入0.1~0.5kg纳米凹凸棒土的比例,将纳米凹凸棒土加入酸溶液中;常温搅拌反应1~1.5h后,用蒸馏水洗涤至pH为6~7,在50~80℃温度下干燥2~6h,得白色粉末状的酸活化后纳米凹凸棒土;
酸采用草酸、硫酸、盐酸或硝酸。
纳米凹凸棒土采用低品位凹凸棒土,低品位凹凸棒土为未经提纯的凹凸棒土。
前处理纳米凹凸棒土是为了溶解去除碳酸盐杂质。
)凹凸棒土基复合纳滤膜的制备:
按质量比100︰9~1,分别取酸活化后纳米凹凸棒土与聚合物,混匀,得混合物,按1L水中加入1~10g混合物的比例,将混合物分散于水中, 25~50℃温度下搅拌反应5~24h,得反应液,真空辅助过滤或刮涂室温蒸发自组装反应液,合成凹凸棒土基复合纳滤膜。
聚合物采用羧甲基纤维素、壳聚糖、海藻酸或聚乙烯吡咯烷酮。
通过真空辅助过滤或刮涂室温蒸发自组装反应液。
纳米凹凸棒土由硅氧四面体和镁氧八面体组成,其内部存在类质同晶取代现象,因此,纳米凹凸棒土中存在大量可被有机官能团(羧基、氨基、巯基等)配位的金属离子(镁、铁、铝等)。现有的水处理纳滤膜都需要复杂的制备过程,并且只能制备出毫米级大小的膜,不仅加大了能源消耗,而且限制了膜的实际应用。本发明制备方法利用粘土矿物中含有的金属氧化物与聚合物的多官能团结构进行相互作用,即利用聚合物的功能基团与凹凸棒土的金属离子和羟基形成配位键与氢键的原理,再通过控制复合纳滤膜中聚合物的含量控制纳滤膜的微孔尺寸;通过调节凹凸棒土和聚合物分散液的体积控制复合纳滤膜的厚度;再以真空辅助过滤的方法或刮涂室温蒸发的方法作为驱动力,通过自组装的方式制备出具有多层结构的大面积的自组装纳滤膜。
图1是本发明制得复合纳滤膜的实物图片和扫描电子显微镜图。从图1a可以看出,该复合纳滤膜是自支撑的,且膜完整。图1b为该复合纳滤膜表面的扫描电子显微镜图,图中显示该复合纳滤膜表面平整,没有针孔缺陷。图1c显示该复合纳滤膜具有优异的柔韧性,可以弯曲,图1d为该复合纳滤膜的断面扫描电子显微镜图,显示复合纳滤膜的厚度约为15μm。
用死端抽滤装置测试本发明制备方法制得复合纳滤膜截留染料分子的性能。如图2,载有该复合纳滤膜的装置对染料水过滤后,可以看到染料分子被截留到了复合纳滤膜表面。具体地,图2a是用载有本发明制备方法制得复合纳滤膜的死端抽滤装置对罗丹明6G进行过滤的示意图,图2b显示直径为5cm的复合纳滤膜表面截留了红色的罗丹明6G,从放大图可以看出图2c显示的过滤前的红色溶液变为了图2d显示的过滤后的无色。
对本发明制备方法制得的复合纳滤膜进行金属盐截留性能试验,得到图3所示的柱状图。图3显示该复合纳滤膜对盐的截留选择性超过了80%,并且具有高达25 L-1 m-2 h-1 bar-1以上的水通量。
本发明制备方法以具有多孔道特性和表面活性基团的储量丰富的粘土矿物作为原料,采用配位自组装的方式制备集离子选择性高和机械稳定性高的大面积凹凸棒基海水淡化膜,为资源短缺地区的供水贡献一份力量。制备时,先对粘土矿物进行酸活化处理,再将酸活化处理的粘土矿物与聚合物混合分散于水中,搅拌反应后,采用真空辅助过滤或刮涂室温蒸发的方法将反应液自组装合成复合纳滤膜。用未经处理的低品位粘土矿物制备出具有高度可利用价值的纳滤膜,不仅提供了一种水处理的技术,而且拓展了粘土矿物的应用领域。本发明制备方法可以在室温条件下制备出厚度和孔径可调的自组装复合纳滤膜,工艺简单、绿色环保,是一项促进膜处理技术变革的关键技术,具有重要的理论意义和实用价值。
附图说明
图1是本发明制备方法中制得的复合纳滤膜的实物图片和扫描电子显微镜图。
图2是本发明制备方法制得的复合纳滤膜的装置实物图。
图3是本发明制备方法制得的复合纳滤膜对金属盐的截留性能。
具体实施方式
下面结合附图和具体实施方式对本发明进行详细说明。
实施例1
配制摩尔浓度0.01M的盐酸溶液,将0.2kg纳米凹凸棒土加入1L盐酸溶液中,常温搅拌反应1h,用蒸馏水洗涤至pH为6,80℃干燥6h,得到白色粉末状的酸活化后纳米凹凸棒土;将100g酸活化后纳米凹凸棒土与5g羧甲基纤维素混匀,得混合物,将1g混合物分散于1L水中,在30℃温度下搅拌反应5h,得反应液,真空辅助过滤自组装反应液,制得凹凸棒土基复合纳滤膜。
实施例2
配制摩尔浓度0.1M的草酸溶液,将0.5kg纳米凹凸棒土加入1L草酸溶液中,常温搅拌反应1.5h,用蒸馏水洗涤至pH为7,50℃温度下干燥2h,得白色粉末状的酸活化后纳米凹凸棒土;将100g酸活化后纳米凹凸棒土与9g壳聚糖混匀,得混合物,将5g混合物分散于1L水中,25℃温度下搅拌反应24h,得反应液,刮涂室温蒸发自组装反应液,制得凹凸棒土基复合纳滤膜。
实施例3
配制摩尔浓度0.05M的硫酸溶液,将0.1kg纳米凹凸棒土加入1L硫酸溶液中,常温搅拌反应1.2h,用蒸馏水洗涤至pH为6.5,65℃温度下干燥4h,得白色粉末状的酸活化后纳米凹凸棒土粉末;将100g酸活化后纳米凹凸棒土与1g聚乙烯吡咯烷酮混匀,得混合物,将10g混合物分散于1L水中,50℃温度下搅拌反应14.5h,得反应液,真空辅助过滤自组装反应液,制得凹凸棒土基复合纳滤膜。
Claims (3)
1.一种凹凸棒土基复合纳滤膜的制备方法,其特征在于,该制备方法具体按以下步骤进行:
1)配制摩尔浓度0.01~0.1M的酸溶液;再按1L酸溶液中加入0.1~0.5kg纳米凹凸棒土的比例,将纳米凹凸棒土加入酸溶液中;常温反应1~1.5h,用蒸馏水洗涤至pH为6~7,干燥,得白色粉末状的酸活化后纳米凹凸棒土;
酸采用草酸、硫酸、盐酸或硝酸;纳米凹凸棒土采用未经提纯的凹凸棒土;
2)按质量比100︰9~1,分别取酸活化后纳米凹凸棒土与聚合物,混匀,得混合物,按1L水中加入1~10g混合物的比例,将混合物分散于水中,搅拌反应,得反应液,真空辅助过滤或刮涂室温蒸发自组装反应液,制得凹凸棒土基复合纳滤膜;
聚合物采用羧甲基纤维素、壳聚糖、海藻酸或聚乙烯吡咯烷酮。
2.如权利要求1所述的凹凸棒土基复合纳滤膜的制备方法,其特征在于,所述步骤1)中,在50~80℃温度下干燥2~6h。
3.如权利要求1所述的凹凸棒土基复合纳滤膜的制备方法,其特征在于,所述步骤2)中,25~50℃温度下搅拌反应5~24h。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210447911.3A CN114733367B (zh) | 2022-04-27 | 2022-04-27 | 一种凹凸棒土基复合纳滤膜的制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210447911.3A CN114733367B (zh) | 2022-04-27 | 2022-04-27 | 一种凹凸棒土基复合纳滤膜的制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114733367A CN114733367A (zh) | 2022-07-12 |
CN114733367B true CN114733367B (zh) | 2023-09-26 |
Family
ID=82283968
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210447911.3A Active CN114733367B (zh) | 2022-04-27 | 2022-04-27 | 一种凹凸棒土基复合纳滤膜的制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114733367B (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115193259B (zh) * | 2022-07-26 | 2023-05-05 | 中国地质大学(北京) | 一种三明治结构阳离子交换膜、制备方法及其应用 |
CN115920676B (zh) * | 2022-12-07 | 2023-06-20 | 中复新水源科技有限公司 | 一种聚酰亚胺复合纳滤膜的制备方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003072854A2 (de) * | 2002-02-28 | 2003-09-04 | Universität Stuttgart | Composites und compositemembranen |
CN103785297A (zh) * | 2012-10-29 | 2014-05-14 | 中国石油化工股份有限公司 | 一种含有机改性的凹凸棒土的复合纳滤膜及制备方法 |
CN105126641A (zh) * | 2015-08-04 | 2015-12-09 | 东华大学 | 一种柔性凹凸棒土膜及其制备方法 |
CN105664735A (zh) * | 2016-02-01 | 2016-06-15 | 天津市天塑科技集团有限公司 | 一种ptfe共混平板膜及其制备方法 |
WO2018044298A1 (en) * | 2016-08-31 | 2018-03-08 | South Dakota Board Of Regents | Multilayer thin film nanocomposite membranes prepared by molecular layer-by-layer assembly |
CN109821419A (zh) * | 2019-02-25 | 2019-05-31 | 舟山腾宇航天新材料有限公司 | 一种高截留率和渗透通量的以陶瓷为支撑体的无机纳滤膜的制备方法 |
CN110699849A (zh) * | 2019-10-30 | 2020-01-17 | 明光市铭垚凹凸棒产业科技有限公司 | 一种水处理用凹凸棒纳米纤维膜及其制备方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110756062B (zh) * | 2019-10-14 | 2020-06-23 | 淮阴师范学院 | 一种超亲水水下超疏油分离膜及其制备方法 |
-
2022
- 2022-04-27 CN CN202210447911.3A patent/CN114733367B/zh active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003072854A2 (de) * | 2002-02-28 | 2003-09-04 | Universität Stuttgart | Composites und compositemembranen |
CN103785297A (zh) * | 2012-10-29 | 2014-05-14 | 中国石油化工股份有限公司 | 一种含有机改性的凹凸棒土的复合纳滤膜及制备方法 |
CN105126641A (zh) * | 2015-08-04 | 2015-12-09 | 东华大学 | 一种柔性凹凸棒土膜及其制备方法 |
CN105664735A (zh) * | 2016-02-01 | 2016-06-15 | 天津市天塑科技集团有限公司 | 一种ptfe共混平板膜及其制备方法 |
WO2018044298A1 (en) * | 2016-08-31 | 2018-03-08 | South Dakota Board Of Regents | Multilayer thin film nanocomposite membranes prepared by molecular layer-by-layer assembly |
CN109821419A (zh) * | 2019-02-25 | 2019-05-31 | 舟山腾宇航天新材料有限公司 | 一种高截留率和渗透通量的以陶瓷为支撑体的无机纳滤膜的制备方法 |
CN110699849A (zh) * | 2019-10-30 | 2020-01-17 | 明光市铭垚凹凸棒产业科技有限公司 | 一种水处理用凹凸棒纳米纤维膜及其制备方法 |
Non-Patent Citations (1)
Title |
---|
Fabrication of composite nanofiltration membrane by incorporating attapulgite nanorods during interfacial polymerization for high water flux and antifouling property;Mengyuan Wu等;Journal of Membrane Science(第544期);79-87 * |
Also Published As
Publication number | Publication date |
---|---|
CN114733367A (zh) | 2022-07-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
He et al. | Low-cost and facile synthesis of geopolymer-zeolite composite membrane for chromium (VI) separation from aqueous solution | |
CN114733367B (zh) | 一种凹凸棒土基复合纳滤膜的制备方法 | |
Ge et al. | Preparation of geopolymer-based inorganic membrane for removing Ni2+ from wastewater | |
Shao et al. | Defective analcime/geopolymer composite membrane derived from fly ash for ultrafast and highly efficient filtration of organic pollutants | |
Wang et al. | High value-added applications of coal fly ash in the form of porous materials: A review | |
Huang et al. | Acid and multivalent ion resistance of thin film nanocomposite RO membranes loaded with silicalite-1 nanozeolites | |
Bao et al. | Application of amine-functionalized MCM-41 modified ultrafiltration membrane to remove chromium (VI) and copper (II) | |
Kazemimoghadam | New nanopore zeolite membranes for water treatment | |
Ueno et al. | High-performance silicalite-1 membranes on porous tubular silica supports for separation of ethanol/water mixtures | |
Kazemimoghadam et al. | Synthesis of MFI zeolite membranes for water desalination | |
Alfalahy et al. | Preparation and application of polyethersulfone ultrafiltration membrane incorporating NaX zeolite for lead ions removal from aqueous solutions | |
CN110841487B (zh) | 一种海水淡化膜的制备方法 | |
Abdullah et al. | Implementation of hierarchically porous zeolite-polymer membrane for Chromium ions removal | |
Serhiienko et al. | Ceramic membranes: new trends and prospects (short review) | |
Chathurappan et al. | Synthesis and characterization of coal fly ash based multipurpose ultrafiltration membrane | |
Sirohi et al. | Engineered nanomaterials for water desalination: Trends and challenges | |
Ahmad et al. | Synthesis of novel fly ash based geo-polymeric membranes for the treatment of textile waste water | |
Alias et al. | Polymeric/ceramic membranes for water reuse | |
Gao et al. | High-flux whisker layer ceramic membrane prepared by gel spin-coating method for low-pressure oil/water emulsion filtration | |
Lee et al. | Current research trends and prospects on manufacturing and development of porous ceramic membranes | |
Boffa et al. | Inorganic materials for upcoming water purification membranes | |
Diana et al. | Ceramic Membrane-Based on Fly Ash-Clay For River Water Treatment | |
Wang et al. | Preparation of low-cost silicate-based microfiltration membrane: Characterization, membrane fouling mechanism and antifouling performance | |
CN107020022B (zh) | 一种污水处理用陶瓷平板膜分离膜层及其制备工艺 | |
Luukkonen | Alkali-activated membranes and membrane supports |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |