CN114726008A - 一种主动配电网与多微电网联合鲁棒优化方法及系统 - Google Patents

一种主动配电网与多微电网联合鲁棒优化方法及系统 Download PDF

Info

Publication number
CN114726008A
CN114726008A CN202210650563.XA CN202210650563A CN114726008A CN 114726008 A CN114726008 A CN 114726008A CN 202210650563 A CN202210650563 A CN 202210650563A CN 114726008 A CN114726008 A CN 114726008A
Authority
CN
China
Prior art keywords
adn
variables
stage
robust optimization
optimization model
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210650563.XA
Other languages
English (en)
Other versions
CN114726008B (zh
Inventor
黄志强
毛志鹏
孙建军
查晓明
黄萌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University WHU
Original Assignee
Wuhan University WHU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University WHU filed Critical Wuhan University WHU
Priority to CN202210650563.XA priority Critical patent/CN114726008B/zh
Publication of CN114726008A publication Critical patent/CN114726008A/zh
Application granted granted Critical
Publication of CN114726008B publication Critical patent/CN114726008B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0631Resource planning, allocation, distributing or scheduling for enterprises or organisations
    • G06Q10/06312Adjustment or analysis of established resource schedule, e.g. resource or task levelling, or dynamic rescheduling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/003Load forecast, e.g. methods or systems for forecasting future load demand
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/004Generation forecast, e.g. methods or systems for forecasting future energy generation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/007Arrangements for selectively connecting the load or loads to one or several among a plurality of power lines or power sources
    • H02J3/0075Arrangements for selectively connecting the load or loads to one or several among a plurality of power lines or power sources for providing alternative feeding paths between load and source according to economic or energy efficiency considerations, e.g. economic dispatch
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/466Scheduling the operation of the generators, e.g. connecting or disconnecting generators to meet a given demand
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/48Controlling the sharing of the in-phase component
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/50Controlling the sharing of the out-of-phase component
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/10Power transmission or distribution systems management focussing at grid-level, e.g. load flow analysis, node profile computation, meshed network optimisation, active network management or spinning reserve management
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/28The renewable source being wind energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/40Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation wherein a plurality of decentralised, dispersed or local energy generation technologies are operated simultaneously
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/50The network for supplying or distributing electric power characterised by its spatial reach or by the load for selectively controlling the operation of the loads
    • H02J2310/56The network for supplying or distributing electric power characterised by its spatial reach or by the load for selectively controlling the operation of the loads characterised by the condition upon which the selective controlling is based
    • H02J2310/58The condition being electrical
    • H02J2310/60Limiting power consumption in the network or in one section of the network, e.g. load shedding or peak shaving
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/50The network for supplying or distributing electric power characterised by its spatial reach or by the load for selectively controlling the operation of the loads
    • H02J2310/56The network for supplying or distributing electric power characterised by its spatial reach or by the load for selectively controlling the operation of the loads characterised by the condition upon which the selective controlling is based
    • H02J2310/62The condition being non-electrical, e.g. temperature
    • H02J2310/64The condition being economic, e.g. tariff based load management
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Human Resources & Organizations (AREA)
  • Power Engineering (AREA)
  • Economics (AREA)
  • Strategic Management (AREA)
  • Tourism & Hospitality (AREA)
  • Physics & Mathematics (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Marketing (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • Quality & Reliability (AREA)
  • Development Economics (AREA)
  • Game Theory and Decision Science (AREA)
  • Operations Research (AREA)
  • Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • General Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Educational Administration (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

本发明提供一种主动配电网与多微电网联合鲁棒优化方法及系统,包括:获取MMG与ADN的日前风光荷预测数据、ADN分时电价、储能和燃气轮机的调度费用等;建立ADN的两阶段鲁棒优化模型,以综合运行成本最低为目标函数,ADN内含储能、柔性多状态开关、联络开关、有载调压器和无功电容器组等可调度资源来应对ADN中风光荷预测的不确定性;建立MMG的两阶段鲁棒优化模型,考虑风光荷的预测不确定性,对MMG内部的燃气轮机和储能设备进行调控;ADN与MG属于不同利益主体,利用ADMM对联合鲁棒优化模型进行求解,既能减小通信的负担,保证各利益主体的隐私,也能迭代实现系统整体最优经济运行;对于ADN和各MG的两阶段鲁棒优化模型,采用C&CG进行求解。

Description

一种主动配电网与多微电网联合鲁棒优化方法及系统
技术领域
本发明属于电网调控领域,更具体地,涉及一种主动配电网与多微电网联合鲁棒优化方法及系统。
背景技术
随着国家大力发展清洁能源,大量的分布式电源接入主动配电网(ActiveDistribution Network,ADN)中,如风力发电(Wind Turbine,WT)和光伏发电(Photovoltaic,PV)。同时,微电网(Micorogird,MG)作为消纳风光资源的一种重要手段,也会逐渐接入在主动配电网中。
ADN中常见的调控手段包括网络重构(Network Reconfiguration,NR)、无功电容器组(Capacitor Bank,CB)、有载调压器(On Load Tap Changer,OLTC)、柔性多状态开关(Soft open point,SOP)和储能(Energy Storage System,ESS),MG中常见的调度手段包括ESS和燃气轮机(Gas Turbine,GT),如何有效的利用ADN与微电网内的可控资源来应对风光荷的不确定性是一个亟需解决的问题。
发明内容
针对现有技术的缺陷,本发明的目的在于提供一种主动配电网与多微电网联合鲁棒优化方法及系统,旨在解决现有技术无法有效的利用ADN与微电网内的可控资源来应对风光荷不确定性的问题。
为实现上述目的,第一方面,本发明提供了一种主动配电网与多微电网联合鲁棒优化方法,包括如下步骤:
建立主动配电网ADN和多微电网MMG联合两阶段鲁棒优化模型,两阶段鲁棒优化模型中第一阶段的变量为离散变量,第二阶段的变量为连续变量;所述联合两阶段鲁棒优化模型包括:ADN两阶段鲁棒优化模型和MMG两阶段鲁棒优化模型;所述ADN两阶段鲁棒优化模型以ADN运行费用最低为目标函数,所述MMG两阶段鲁棒优化模型包括多个微电网MG两阶段鲁棒优化模型,每个MG两阶段鲁棒优化模型以该MG运行费用最低为目标函数;
将ADN两阶段鲁棒优化模型和各个MG两阶段鲁棒优化模型的目标函数进行统一,并在统一后的目标函数中引入拉格朗日算子,确定增广拉格朗日函数,基于所述增广拉格朗日函数确定对应的鲁棒优化模型;将ADN的优化变量和各个MG的优化变量进行耦合,得到所述鲁棒优化模型的多个耦合变量;所述优化变量包括所述离散变量和连续变量;
基于交替方向乘子法ADMM迭代求解所述鲁棒优化模型,利用ADMM算法的分布式思想将所述鲁棒优化模型拆分成ADN鲁棒优化模型和多个MG鲁棒优化模型;预设各耦合变量的初始值,利用列与约束生成算法并行求解ADN鲁棒优化模型和多个MG鲁棒优化模型,以更新ADN优化变量和各MG优化变量,并确定更新后的耦合变量;若更新后耦合变量与更新前耦合变量对应的对偶残差不小于收敛阈值,则基于更新的ADN优化变量和MG优化变量继续求解ADN鲁棒优化模型和多个MG鲁棒优化模型,直至所述对偶残差小于收敛阈值或迭代次数达到最大次数,输出最后一次迭代求得的ADN优化变量和MG优化变量,完成对ADN和MMG的联合鲁棒优化。
在一个可选的示例中,所述ADN两阶段鲁棒优化模型中第一阶段的变量包括:有载调压器OLTC档位、无功电容器组CB投切组数、储能系统ESS充放电标志位以及网络重构NR的决策变量,第二阶段的变量包括:ESS出力和柔性多状态开关SOP的出力;
各个MG两阶段鲁棒优化模型中第一阶段的变量包括:ESS充放电标志位和燃气轮机GT的启停标志位,第二阶段的变量包括ESS出力和GT的出力。
在一个可选的示例中,该方法还包括如下步骤:
确定风光荷出力的不确定性模型:
Figure DEST_PATH_IMAGE001
式中:
Figure DEST_PATH_IMAGE002
代表安装风光荷的节点集合,包含在第i个MG中的风光荷或在ADN中第i个节点的风光荷;t代表第t个时段;
Figure DEST_PATH_IMAGE003
Figure DEST_PATH_IMAGE004
Figure DEST_PATH_IMAGE005
代表风光荷实际出力;
Figure DEST_PATH_IMAGE006
Figure DEST_PATH_IMAGE007
Figure DEST_PATH_IMAGE008
代表风光荷日前预测;
Figure DEST_PATH_IMAGE009
Figure DEST_PATH_IMAGE010
Figure DEST_PATH_IMAGE011
为风光荷可允许的预测误差范围;
Figure DEST_PATH_IMAGE012
Figure DEST_PATH_IMAGE013
Figure DEST_PATH_IMAGE014
为给定的调节因子;
Figure DEST_PATH_IMAGE015
Figure DEST_PATH_IMAGE016
Figure DEST_PATH_IMAGE017
Figure DEST_PATH_IMAGE018
Figure DEST_PATH_IMAGE019
Figure DEST_PATH_IMAGE020
属于0-1整数变量,代表风光荷正负偏差的识别变量,上标中PV表示光伏发电、WT表示风力发电、L表示负荷,上标中E表示误差,上标中U表示正偏差,D表示负偏差,并满足如下约束:
Figure DEST_PATH_IMAGE021
Figure DEST_PATH_IMAGE022
式中:T为调度总时段,
Figure DEST_PATH_IMAGE023
Figure DEST_PATH_IMAGE024
Figure DEST_PATH_IMAGE025
代表在调度时段T内风光荷的不确定性因素。
在一个可选的示例中,所述ADN两阶段鲁棒优化模型的约束条件包括ADN中风光荷出力的不确定性模型;
所述ADN两阶段鲁棒优化模型的约束条件还包括:
ESS运行约束:
Figure DEST_PATH_IMAGE026
式中:t代表第t个时刻,i代表第i个节点,
Figure DEST_PATH_IMAGE027
代表单个时段持续时间;
Figure DEST_PATH_IMAGE028
Figure DEST_PATH_IMAGE029
分别为节点ESS充放电标志,
Figure DEST_PATH_IMAGE030
Figure DEST_PATH_IMAGE031
Figure DEST_PATH_IMAGE032
Figure DEST_PATH_IMAGE033
分别为ESS的充放电功率和最大充放电功率,
Figure DEST_PATH_IMAGE034
Figure DEST_PATH_IMAGE035
Figure DEST_PATH_IMAGE036
分别为ESS的荷电状态、最小和最大荷电状态,
Figure DEST_PATH_IMAGE037
Figure DEST_PATH_IMAGE038
为ESS的初始荷电状态和最终时刻荷电状态,
Figure DEST_PATH_IMAGE039
为ESS容量,
Figure DEST_PATH_IMAGE040
Figure DEST_PATH_IMAGE041
分别为ESS的充放电效率;
SOP运行约束:
Figure DEST_PATH_IMAGE042
式中:j代表第j个节点,
Figure DEST_PATH_IMAGE043
Figure DEST_PATH_IMAGE044
Figure DEST_PATH_IMAGE045
Figure DEST_PATH_IMAGE046
Figure DEST_PATH_IMAGE047
Figure DEST_PATH_IMAGE048
Figure DEST_PATH_IMAGE049
Figure DEST_PATH_IMAGE050
分别表示SOP两端传输的有功功率、无功功率、变流器容量与有功损耗;ASOP iASOP j代表SOP两端的损耗系数;
OLTC运行约束:
Figure DEST_PATH_IMAGE051
式中:
Figure DEST_PATH_IMAGE052
代表平衡节点i的最小值;
Figure DEST_PATH_IMAGE053
代表有载调压器改变电压的最小步长,K代表有载调压器的总可调档数,TC t 表示OLTC工作时的档位,
Figure DEST_PATH_IMAGE054
Figure DEST_PATH_IMAGE055
分别代表节点电压幅值和节点电压幅值的平方,
Figure DEST_PATH_IMAGE056
为引入阶段状态变量,
Figure DEST_PATH_IMAGE057
代表OLTC处于第k个档数,
Figure DEST_PATH_IMAGE058
为引入的辅助变量,表示OLTC动作情况,
Figure DEST_PATH_IMAGE059
代表OLTC动作的最大次数;
NR运行约束:
Figure DEST_PATH_IMAGE060
式中:
Figure DEST_PATH_IMAGE061
Figure DEST_PATH_IMAGE062
Figure DEST_PATH_IMAGE063
Figure DEST_PATH_IMAGE064
为引入的0-1变量,N(i)代表与i相连的节点集合,当
Figure DEST_PATH_IMAGE065
时,代表该线路上的开关合上,反之为0时代表开关断开,当
Figure DEST_PATH_IMAGE066
时代表线路ij上的开关在t时刻进行了一次动作,当
Figure DEST_PATH_IMAGE067
时代表节点j为节点i的父节点,n代表配电网的节点个数,
Figure DEST_PATH_IMAGE068
代表配电网平衡节点的个数,
Figure DEST_PATH_IMAGE069
为一个调度时段内开关动作次数上限值;
CB运行约束:
Figure DEST_PATH_IMAGE070
式中:
Figure DEST_PATH_IMAGE071
Figure DEST_PATH_IMAGE072
Figure DEST_PATH_IMAGE073
为CB的组数和最小和最大接入组数,
Figure DEST_PATH_IMAGE074
Figure DEST_PATH_IMAGE075
为单组容量和CB发出的无功功率,
Figure DEST_PATH_IMAGE076
Figure DEST_PATH_IMAGE077
分别为CB投入和切除标志,
Figure DEST_PATH_IMAGE078
为单次投入最大组数,
Figure DEST_PATH_IMAGE079
为最大切换次数;
潮流约束:
Figure DEST_PATH_IMAGE080
式中:
Figure DEST_PATH_IMAGE081
代表支路集合,
Figure DEST_PATH_IMAGE082
Figure DEST_PATH_IMAGE083
分别为支路ijt时刻的有功和无功功率,jk代表支路jk,
Figure DEST_PATH_IMAGE084
Figure DEST_PATH_IMAGE085
分别为t时段流入节点i的净有功和无功功率,
Figure DEST_PATH_IMAGE086
Figure DEST_PATH_IMAGE087
分别为支路ij的电阻和电抗,
Figure DEST_PATH_IMAGE088
Figure DEST_PATH_IMAGE089
代表风电和光伏输出的无功功率,
Figure DEST_PATH_IMAGE090
Figure DEST_PATH_IMAGE091
代表节点电压幅值的平方和支路电流的平方,
Figure DEST_PATH_IMAGE092
Figure DEST_PATH_IMAGE093
分别为节点i的电压下限和上限值,
Figure DEST_PATH_IMAGE094
为线路电流最大值,
Figure DEST_PATH_IMAGE095
为一个足够大的实数,
Figure DEST_PATH_IMAGE096
Figure DEST_PATH_IMAGE097
代表在节点i处的MG流入配电网的有功功率和无功功率;
ADN运行时的目标函数如下所示:
Figure DEST_PATH_IMAGE098
式中:
Figure DEST_PATH_IMAGE099
代表ADN第一阶段调整的0-1变量,
Figure DEST_PATH_IMAGE100
代表ADN第二阶段风光荷出力的不确定性变量,U A 代表u A 取值的集合,
Figure DEST_PATH_IMAGE101
代表ADN第二阶段调整的连续变量,
Figure DEST_PATH_IMAGE102
Figure 100002_DEST_PATH_IMAGE103
代表ADN第一个阶段和第二阶段的目标函数,
Figure DEST_PATH_IMAGE104
Figure DEST_PATH_IMAGE105
Figure DEST_PATH_IMAGE106
分别代表接入CB单组容量的费用、线路ij上分段开关动作一次费用以及OLTC改变一次档位的费用,
Figure DEST_PATH_IMAGE107
Figure DEST_PATH_IMAGE108
Figure DEST_PATH_IMAGE109
代表ESS的单位运行费用和维护费用以及ADN的分时电价,
Figure DEST_PATH_IMAGE110
Figure DEST_PATH_IMAGE111
代表储能的充放电功率,
Figure DEST_PATH_IMAGE112
代表1号节点,即平衡节点注入ADN的有功功率,即上级输电网流入ADN的有功功率,
Figure DEST_PATH_IMAGE113
Figure DEST_PATH_IMAGE114
分别代表ESS安装节点集合和各MG接入ADN的节点集合。
在一个可选的示例中,所述MG两阶段鲁棒优化模型的约束条件包括MG中风光荷出力的不确定性模型和所述ESS运行约束;
所述MG两阶段鲁棒优化模型的约束条件还包括:
功率平衡约束:
Figure DEST_PATH_IMAGE115
GT运行约束:
Figure DEST_PATH_IMAGE116
式中:m代表第m个微电网,t代表第t个时段,
Figure DEST_PATH_IMAGE117
Figure DEST_PATH_IMAGE118
代表GT输出的有功功率和无功功率,
Figure DEST_PATH_IMAGE119
Figure DEST_PATH_IMAGE120
代表GT输出有功功率和无功功率的最大值,
Figure DEST_PATH_IMAGE121
Figure DEST_PATH_IMAGE122
代表GT的最大向下爬坡速率和最大向上爬坡速率,
Figure DEST_PATH_IMAGE123
属于0-1变量,代表GT的启停机标志位,
Figure DEST_PATH_IMAGE124
代表GT处于开机运行状态,
Figure DEST_PATH_IMAGE125
代表GT最长停机时间,
Figure DEST_PATH_IMAGE126
代表GT动作标志位,
Figure DEST_PATH_IMAGE127
代表GT在t时刻从停机转变为开机状态,
Figure DEST_PATH_IMAGE128
代表GT在t时刻从开机转变为停机状态,
Figure DEST_PATH_IMAGE129
代表GT的启停机动作最大次数;
MG的目标函数如下:
Figure DEST_PATH_IMAGE130
式中:
Figure DEST_PATH_IMAGE131
代表第m个MG第一阶段调整的0-1变量,
Figure DEST_PATH_IMAGE132
代表第m个MG第二阶段风光荷出力的不确定性变量,
Figure DEST_PATH_IMAGE133
代表MG第二阶段调整的连续变量,
Figure DEST_PATH_IMAGE134
Figure DEST_PATH_IMAGE135
代表第m个MG第一个阶段和第二阶段的目标函数,
Figure DEST_PATH_IMAGE136
代表GT从停机到开机一次的费用,
Figure DEST_PATH_IMAGE137
代表GT从开机到停机一次的费用,
Figure DEST_PATH_IMAGE138
Figure DEST_PATH_IMAGE139
Figure DEST_PATH_IMAGE140
分别代表GT出力的单位燃料费用、维护费用和环境成本费用。
在一个可选的示例中,将ADN和各MG的两阶段鲁棒优化模型的目标函数统一如下表示:
Figure DEST_PATH_IMAGE141
引入拉格朗日算子,上述目标函数的增广拉格朗日函数为:
Figure DEST_PATH_IMAGE142
则鲁棒优化模型可统一表示为:
Figure DEST_PATH_IMAGE143
上式中,
Figure DEST_PATH_IMAGE144
Figure DEST_PATH_IMAGE145
包括ADN和各MG的变量取值集合,
Figure 976391DEST_PATH_IMAGE144
包括
Figure DEST_PATH_IMAGE146
Figure DEST_PATH_IMAGE147
包括
Figure DEST_PATH_IMAGE148
Figure DEST_PATH_IMAGE149
代表MG的个数,第一个约束和第二个约束代表仅与第一阶段决策变量
Figure DEST_PATH_IMAGE150
相关的不等式约束和等式约束,第三个约束与第四个约束代表仅与第二阶段决策变量
Figure DEST_PATH_IMAGE151
相关的不等式约束与等式约束,第五个约束代表与
Figure 706581DEST_PATH_IMAGE150
Figure 656957DEST_PATH_IMAGE151
相关的不等式约束,第六个约束代表与
Figure 583325DEST_PATH_IMAGE150
和不确定性优化变量相关的等式约束,第七个约束代表二阶锥不等式约束,当
Figure DEST_PATH_IMAGE152
时,不含有第七个约束,即MG的两阶段鲁棒优化模型不含有第七个约束,
Figure DEST_PATH_IMAGE153
代表拉格朗日乘子,
Figure DEST_PATH_IMAGE154
为ADMM算法的参数,
Figure DEST_PATH_IMAGE155
代表AND和MMG中和耦合变量相关的变量,
Figure DEST_PATH_IMAGE156
代表AND和各MG的耦合变量,
Figure DEST_PATH_IMAGE157
表示AND和各MG耦合的节点集合,上述七个约束式中的其他参数均表示各约束的系数矩阵。
在一个可选的示例中,所述对ADN和MMG的联合鲁棒优化,具体流程为:
1)数据初始化:对每个MG和ADN初始化耦合变量
Figure DEST_PATH_IMAGE158
和拉格朗日乘子
Figure DEST_PATH_IMAGE159
,置ADMM迭代次数
Figure DEST_PATH_IMAGE160
,设置最大迭代次数
Figure DEST_PATH_IMAGE161
和收敛阈值
Figure DEST_PATH_IMAGE162
2)ADN与各MG优化求解:依据得到的
Figure DEST_PATH_IMAGE163
Figure DEST_PATH_IMAGE164
,将ADN和各MG的鲁棒优化模型利用C&CG算法进行并行求解,并得到
Figure DEST_PATH_IMAGE165
Figure DEST_PATH_IMAGE166
;其中,y代表优化的第二阶段变量,下标为A代表主动配电网,m代表第m个微电网,上标k+1代表第k次计算后变量的取值;
3)信息更新:利用计算求解的
Figure DEST_PATH_IMAGE167
Figure DEST_PATH_IMAGE168
变量更新耦合变量和拉格朗日乘子,得到
Figure DEST_PATH_IMAGE169
Figure DEST_PATH_IMAGE170
4)迭代终止判定:计算ADN和各MG优化问题的对偶残差,判断对偶残差是否小于收敛阈值
Figure 565406DEST_PATH_IMAGE162
或迭代次数
Figure DEST_PATH_IMAGE171
,是则停止迭代输出最优解,否则k=k+1并返回步骤2)。
第二方面,本发明提供了一种主动配电网与多微电网联合鲁棒优化系统,包括:
联合模型建立单元,用于建立主动配电网ADN和多微电网MMG联合两阶段鲁棒优化模型,两阶段鲁棒优化模型中第一阶段的变量为离散变量,第二阶段的变量为连续变量;所述联合两阶段鲁棒优化模型包括:ADN两阶段鲁棒优化模型和MMG两阶段鲁棒优化模型;所述ADN两阶段鲁棒优化模型以ADN运行费用最低为目标函数,所述MMG两阶段鲁棒优化模型包括多个微电网MG两阶段鲁棒优化模型,每个MG两阶段鲁棒优化模型以该MG运行费用最低为目标函数;
鲁棒优化模型确定单元,用于将ADN两阶段鲁棒优化模型和各个MG两阶段鲁棒优化模型的目标函数进行统一,并在统一后的目标函数中引入拉格朗日算子,确定增广拉格朗日函数,基于所述增广拉格朗日函数确定对应的鲁棒优化模型;将ADN的优化变量和各个MG的优化变量进行耦合,得到所述鲁棒优化模型的多个耦合变量;所述优化变量包括所述离散变量和连续变量;
优化模型求解单元,用于基于交替方向乘子法ADMM迭代求解所述鲁棒优化模型,利用ADMM算法的分布式思想将鲁棒优化模型拆分成ADN鲁棒优化模型和多个MG鲁棒优化模型;预设各耦合变量的初始值,利用列与约束生成算法并行求解ADN鲁棒优化模型和多个MG鲁棒优化模型,以更新ADN优化变量和各MG优化变量,并确定更新后的耦合变量;若更新后耦合变量与更新前耦合变量对应的对偶残差不小于收敛阈值,则基于更新的ADN优化变量和MG优化变量继续求解ADN鲁棒优化模型和多个MG鲁棒优化模型,直至所述对偶残差小于收敛阈值或迭代次数达到最大次数,输出最后一次迭代求得的ADN优化变量和MG优化变量,完成对ADN和MMG的联合鲁棒优化。
在一个可选的示例中,所述ADN两阶段鲁棒优化模型中第一阶段的变量包括:有载调压器OLTC档位、无功电容器组CB投切组数、储能系统ESS充放电标志位以及网络重构NR的决策变量,第二阶段的变量包括:ESS出力和柔性多状态开关SOP的出力;
各个MG两阶段鲁棒优化模型中第一阶段的变量包括:ESS充放电标志位和燃气轮机GT的启停标志位,第二阶段的变量包括ESS出力和GT的出力。
在一个可选的示例中,所述ADN两阶段鲁棒优化模型和MG两阶段鲁棒优化模型的风光荷出力的不确定性模型为:
Figure 591131DEST_PATH_IMAGE001
式中:
Figure 264689DEST_PATH_IMAGE002
代表安装风光荷的节点集合,包含在第i个MG中的风光荷或在ADN中第i个节点的风光荷;t代表第t个时段;
Figure 994748DEST_PATH_IMAGE003
Figure 398047DEST_PATH_IMAGE004
Figure 299400DEST_PATH_IMAGE005
代表风光荷实际出力;
Figure 584888DEST_PATH_IMAGE006
Figure 728425DEST_PATH_IMAGE007
Figure 782968DEST_PATH_IMAGE008
代表风光荷日前预测;
Figure 619337DEST_PATH_IMAGE009
Figure 392121DEST_PATH_IMAGE010
Figure 73770DEST_PATH_IMAGE011
为风光荷可允许的预测误差范围;
Figure 513978DEST_PATH_IMAGE012
Figure 754204DEST_PATH_IMAGE013
Figure 217547DEST_PATH_IMAGE014
为给定的调节因子;
Figure 827520DEST_PATH_IMAGE015
Figure 732022DEST_PATH_IMAGE016
Figure 300406DEST_PATH_IMAGE017
Figure 657569DEST_PATH_IMAGE018
Figure 71233DEST_PATH_IMAGE019
Figure 830242DEST_PATH_IMAGE020
属于0-1整数变量,代表风光荷正负偏差的识别变量,上标中PV表示光伏发电、WT表示风力发电、L表示负荷,上标中E表示误差,上标中U表示正偏差,D表示负偏差,并满足如下约束:
Figure 303949DEST_PATH_IMAGE021
Figure 476304DEST_PATH_IMAGE022
式中:T为调度总时段,
Figure 634989DEST_PATH_IMAGE023
Figure 638717DEST_PATH_IMAGE024
Figure 424270DEST_PATH_IMAGE025
代表在调度时段T内风光荷的不确定性因素。
总体而言,通过本发明所构思的以上技术方案与现有技术相比,具有以下有益效果:
本发明提供了一种主动配电网与多微电网联合鲁棒优化方法及系统,建立主动配电网的两阶段鲁棒优化模型,以综合运行成本最低为目标函数,主动配电网内含储能、柔性多状态开关、联络开关、有载调压器和无功电容器组等可调度资源来应对主动配电网中风光荷预测的不确定性;建立多微电网的两阶段鲁棒优化模型,考虑风光荷的预测不确定性,对多微电网内部的燃气轮机和储能设备进行调控;主动配电网与微电网属于不同利益主体,利用交替方向乘子法(ADMM)对联合鲁棒优化模型进行求解,既能减小通信的负担,保证各利益主体的隐私,也能迭代实现系统整体最优经济运行。
附图说明
图1是本发明实施例提供的主动配电网与多微电网联合鲁棒优化方法流程图;
图2是本发明实施例提供的主动配电网与多微电网交互结构图;
图3是本发明实施例提供的微电网结构示意图;
图4是本发明实施例提供的交替方向乘子法求解流程图;
图5是本发明实施例提供的主动配电网与多微电网联合鲁棒优化系统架构图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
本发明公开了一种基于交替方向乘子法的主动配电网与多微电网联合鲁棒优化方法,包括:获取多微电网与主动配电网的日前风光荷预测数据、主动配电网分时电价、储能和燃气轮机的调度费用等;建立主动配电网的两阶段鲁棒优化模型,以综合运行成本最低为目标函数,主动配电网内含储能、柔性多状态开关、联络开关、有载调压器和无功电容器组等可调度资源来应对主动配电网中风光荷预测的不确定性;建立多微电网的两阶段鲁棒优化模型,考虑风光荷的预测不确定性,对多微电网内部的燃气轮机和储能设备进行调控;主动配电网与微电网属于不同利益主体,利用交替方向乘子法(ADMM)对联合鲁棒优化模型进行求解,既能减小通信的负担,保证各利益主体的隐私,也能迭代实现系统整体最优经济运行;对于主动配电网和各微电网的两阶段鲁棒优化模型,采用列与约束生成算法(C&CG)进行求解。
本发明的目的在于解决ADN与MMG的联合两阶段鲁棒优化问题,通过利用交替方向乘子法(Alternating Direction Method of Multipliers,ADMM)和列与约束生成算法(Column and Constraint Generation,C&CG)求解联合优化问题。
首先本发明建立了ADN与MMG的联合两阶段鲁棒优化模型,包括ADN的两阶段鲁棒优化模型和MMG的两阶段鲁棒优化模型;ADN的两阶段鲁棒优化模型以运行经济费用最低为目标函数,约束条件包括潮流约束、NR约束、CB约束、OLTC约束、ESS约束和SOP约束等,第一阶段的决策变量为OLTC档位、CB投切组数、ESS充放电标志位和NR的决策变量,第二阶段的决策变量为ESS出力与SOP的出力;每个MG的两阶段鲁棒优化模型以运行经济费用最低为目标函数,约束条件包括电力平衡约束、ESS和GT的运行约束,第一阶段的决策变量为ESS充放电标志位和GT的启停标志位,第二阶段的决策变量包括ESS出力与GT的出力。
其次建立了基于ADMM算法求解联合鲁棒优化模型。ADN与MMG的联合鲁棒优化模型属于大规模混合整数非线性优化模型,ADN与MMG之间属于弱耦合关系,耦合变量仅包括联络线上交互的功率,利用ADMM算法的分布式思想,将ADN和子MG拆分成不同的优化系统,ADN优化模型属于混合整数二阶锥规划模型,MG优化模型属于混合整数线性优化模型,并行求解各自的鲁棒优化模型,最后通过ADMM算法修改耦合变量的值进行迭代计算直至收敛。
最后利用C&CG算法求解子鲁棒优化模型,将鲁棒优化模型拆分成主问题和子问题,通过求解主问题确定优化模型目标函数的下界
Figure DEST_PATH_IMAGE172
;子问题通过对偶理论和big-M法将max-min问题转换成单层max问题,求解子问题获取目标函数的上界
Figure DEST_PATH_IMAGE173
;当
Figure DEST_PATH_IMAGE174
时,算法收敛,
Figure DEST_PATH_IMAGE175
代表鲁棒优化问题收敛阈值。
图1是本发明实施例提供的主动配电网与多微电网联合鲁棒优化方法流程图,如图1所示,包括如下步骤:
S101,建立主动配电网ADN和多微电网MMG联合两阶段鲁棒优化模型,两阶段鲁棒优化模型中第一阶段的变量为离散变量,第二阶段的变量为连续变量;所述联合两阶段鲁棒优化模型包括:ADN两阶段鲁棒优化模型和MMG两阶段鲁棒优化模型;所述ADN两阶段鲁棒优化模型以ADN运行费用最低为目标函数,所述MMG两阶段鲁棒优化模型包括多个微电网MG两阶段鲁棒优化模型,每个MG两阶段鲁棒优化模型以该MG运行费用最低为目标函数;
S102,将ADN两阶段鲁棒优化模型和各个MG两阶段鲁棒优化模型的目标函数进行统一,并在统一后的目标函数中引入拉格朗日算子,确定增广拉格朗日函数,基于所述增广拉格朗日函数确定对应的鲁棒优化模型;将ADN的优化变量和各个MG的优化变量进行耦合,得到所述鲁棒优化模型的多个耦合变量;所述优化变量包括所述离散变量和连续变量;
S103,基于交替方向乘子法ADMM迭代求解所述鲁棒优化模型,利用ADMM算法的分布式思想将鲁棒优化模型拆分成ADN鲁棒优化模型和多个MG鲁棒优化模型;预设各耦合变量的初始值,利用列与约束生成算法并行求解ADN鲁棒优化模型和多个MG鲁棒优化模型,以更新ADN优化变量和各MG优化变量,并确定更新后的耦合变量;若更新后耦合变量与更新前耦合变量对应的对偶残差不小于收敛阈值,则基于更新的ADN优化变量和MG优化变量继续求解ADN鲁棒优化模型和多个MG鲁棒优化模型,直至所述对偶残差小于收敛阈值或迭代次数达到最大次数,输出最后一次迭代求得的ADN优化变量和MG优化变量,完成对ADN和MMG的联合鲁棒优化。
图2所示的为ADN与MMG交互结构示意图,ADN从上层输电网中购电,同时与MMG进行功率交换,MMG通过与ADN交互功率保证自身功率处于平衡状态,同时调控ESS和GT使自身运行达到经济性最优。
首先建立风光荷出力的不确定性模型:
Figure 959288DEST_PATH_IMAGE001
式中:
Figure 980333DEST_PATH_IMAGE002
代表安装风光荷的节点集合,包含在第i个MG中的风光荷或在ADN中第i个节点的风光荷;t代表第t个时段;
Figure 946890DEST_PATH_IMAGE003
Figure 762399DEST_PATH_IMAGE004
Figure 581451DEST_PATH_IMAGE005
代表风光荷实际出力;
Figure 140608DEST_PATH_IMAGE006
Figure 56611DEST_PATH_IMAGE007
Figure 652809DEST_PATH_IMAGE008
代表风光荷日前预测;
Figure 83790DEST_PATH_IMAGE009
Figure 56426DEST_PATH_IMAGE010
Figure 154832DEST_PATH_IMAGE011
为风光荷可允许的预测误差范围;
Figure 423395DEST_PATH_IMAGE012
Figure 341673DEST_PATH_IMAGE013
Figure 445895DEST_PATH_IMAGE014
为给定的调节因子;
Figure 743015DEST_PATH_IMAGE015
Figure 71228DEST_PATH_IMAGE016
Figure 352168DEST_PATH_IMAGE017
Figure 56819DEST_PATH_IMAGE018
Figure 474025DEST_PATH_IMAGE019
Figure 176402DEST_PATH_IMAGE020
属于0-1整数变量,代表风光荷正负偏差的识别变量,上标中PV表示光伏发电、WT表示风力发电、L表示负荷,上标中E表示误差,上标中U表示正偏差,D表示负偏差,并满足如下约束:
Figure 974331DEST_PATH_IMAGE021
Figure 420356DEST_PATH_IMAGE022
式中:T为调度总时段,
Figure 816702DEST_PATH_IMAGE023
Figure 362084DEST_PATH_IMAGE024
Figure 476671DEST_PATH_IMAGE025
代表在调度时段T内风光荷的不确定性因素。
然后建立ADN的两阶段鲁棒优化模型,ADN约束条件除了包括风光荷出力不确定性约束,还包括ESS和SOP运行约束、OLTC、NR和CB运行约束以及潮流约束,具体表达式如下:
1)ESS运行约束:
Figure DEST_PATH_IMAGE176
式中:t代表第t个时刻,i代表第i个节点,
Figure 929649DEST_PATH_IMAGE027
代表单个时段持续时间;
Figure 321447DEST_PATH_IMAGE028
Figure 365626DEST_PATH_IMAGE029
分别为节点ESS充放电标志,
Figure 233088DEST_PATH_IMAGE030
Figure 923046DEST_PATH_IMAGE031
Figure 559564DEST_PATH_IMAGE032
Figure 446748DEST_PATH_IMAGE033
分别为ESS的充放电功率和最大充放电功率,
Figure 270348DEST_PATH_IMAGE034
Figure 533970DEST_PATH_IMAGE035
Figure DEST_PATH_IMAGE177
分别为ESS的荷电状态、最小和最大荷电状态,
Figure 493836DEST_PATH_IMAGE037
Figure 348659DEST_PATH_IMAGE038
为ESS的初始荷电状态和最终时刻荷电状态,
Figure 299035DEST_PATH_IMAGE039
为ESS容量,
Figure 225403DEST_PATH_IMAGE040
Figure 508617DEST_PATH_IMAGE041
分别为ESS的充放电效率;
2)SOP运行约束:
Figure 3183DEST_PATH_IMAGE042
式中:j代表第j个节点,
Figure 801375DEST_PATH_IMAGE043
Figure 672379DEST_PATH_IMAGE044
Figure 341258DEST_PATH_IMAGE045
Figure 272305DEST_PATH_IMAGE046
Figure 557792DEST_PATH_IMAGE047
Figure DEST_PATH_IMAGE178
Figure DEST_PATH_IMAGE179
Figure DEST_PATH_IMAGE180
分别表示SOP两端传输的有功功率、无功功率、变流器容量与有功损耗;ASOP iASOP j代表SOP两端的损耗系数;
3)OLTC运行约束:
Figure 406056DEST_PATH_IMAGE051
式中:
Figure 601545DEST_PATH_IMAGE052
代表平衡节点i的最小值;
Figure DEST_PATH_IMAGE181
代表有载调压器改变电压的最小步长,K代表有载调压器的总可调档数,TC t 表示OLTC工作时的档位,
Figure 703493DEST_PATH_IMAGE054
Figure 210698DEST_PATH_IMAGE055
分别代表节点电压幅值和节点电压幅值的平方,
Figure 656461DEST_PATH_IMAGE056
为引入阶段状态变量,
Figure 96669DEST_PATH_IMAGE057
代表OLTC处于第k个档数,
Figure DEST_PATH_IMAGE182
为引入的辅助变量,表示OLTC动作情况,
Figure 369519DEST_PATH_IMAGE059
代表OLTC动作的最大次数;
4)NR运行约束:
Figure 504965DEST_PATH_IMAGE060
式中:
Figure 114938DEST_PATH_IMAGE061
Figure 19440DEST_PATH_IMAGE062
Figure 56666DEST_PATH_IMAGE063
Figure 909435DEST_PATH_IMAGE064
为引入的0-1变量,N(i)代表与i相连的节点集合,当
Figure 323099DEST_PATH_IMAGE065
时,代表该线路上的开关合上,反之为0时代表开关断开,当
Figure 82107DEST_PATH_IMAGE066
时代表线路ij上的开关在t时刻进行了一次动作,当
Figure 821393DEST_PATH_IMAGE067
时代表节点j为节点i的父节点,n代表配电网的节点个数,
Figure DEST_PATH_IMAGE183
代表配电网平衡节点的个数,
Figure DEST_PATH_IMAGE184
为一个调度时段内开关动作次数上限值;
5)CB运行约束:
Figure 931432DEST_PATH_IMAGE070
式中:
Figure 758573DEST_PATH_IMAGE071
Figure 762301DEST_PATH_IMAGE072
Figure 780811DEST_PATH_IMAGE073
为CB的组数和最小和最大接入组数,
Figure DEST_PATH_IMAGE185
Figure 971621DEST_PATH_IMAGE075
为单组容量和CB发出的无功功率,
Figure DEST_PATH_IMAGE186
Figure DEST_PATH_IMAGE187
分别为CB投入和切除标志,
Figure DEST_PATH_IMAGE188
为单次投入最大组数,
Figure DEST_PATH_IMAGE189
为最大切换次数;
6)潮流约束:
Figure DEST_PATH_IMAGE190
式中:
Figure 477819DEST_PATH_IMAGE081
代表支路集合,
Figure 336054DEST_PATH_IMAGE082
Figure DEST_PATH_IMAGE191
分别为支路ijt时刻的有功和无功功率,jk代表支路jk,
Figure 59553DEST_PATH_IMAGE084
Figure DEST_PATH_IMAGE192
分别为t时段流入节点i的净有功和无功功率,
Figure 675342DEST_PATH_IMAGE086
Figure 172182DEST_PATH_IMAGE087
分别为支路ij的电阻和电抗,
Figure 760290DEST_PATH_IMAGE088
Figure 746700DEST_PATH_IMAGE089
代表风电和光伏输出的无功功率,
Figure 53048DEST_PATH_IMAGE090
Figure 415896DEST_PATH_IMAGE091
代表节点电压幅值的平方和支路电流的平方,
Figure 357045DEST_PATH_IMAGE092
Figure 717619DEST_PATH_IMAGE093
分别为节点i的电压下限和上限值,
Figure 635897DEST_PATH_IMAGE094
为线路电流最大值,
Figure 943381DEST_PATH_IMAGE095
为一个足够大的实数,
Figure 833977DEST_PATH_IMAGE096
Figure 37556DEST_PATH_IMAGE097
代表在节点i处的MG流入配电网的有功功率和无功功率;
ADN运行时的目标函数如下所示:
Figure DEST_PATH_IMAGE193
式中:
Figure 584075DEST_PATH_IMAGE099
代表ADN第一阶段调整的0-1变量,
Figure 554305DEST_PATH_IMAGE100
代表ADN第二阶段风光荷出力的不确定性变量,U A 代表u A 取值的集合,
Figure 201537DEST_PATH_IMAGE101
代表ADN第二阶段调整的连续变量,
Figure 700652DEST_PATH_IMAGE102
Figure 203308DEST_PATH_IMAGE103
代表ADN第一个阶段和第二阶段的目标函数,
Figure 180492DEST_PATH_IMAGE104
Figure 717783DEST_PATH_IMAGE105
Figure 387799DEST_PATH_IMAGE106
分别代表接入CB单组容量的费用、线路ij上分段开关动作一次费用以及OLTC改变一次档位的费用,
Figure 377752DEST_PATH_IMAGE107
Figure 424205DEST_PATH_IMAGE108
Figure 314539DEST_PATH_IMAGE109
代表ESS的单位运行费用和维护费用以及ADN的分时电价,
Figure DEST_PATH_IMAGE194
Figure DEST_PATH_IMAGE195
代表储能的充放电功率,
Figure 93139DEST_PATH_IMAGE112
代表1号节点,即平衡节点注入ADN的有功功率,即上级输电网流入ADN的有功功率,
Figure 898284DEST_PATH_IMAGE113
Figure 358215DEST_PATH_IMAGE114
分别代表ESS安装节点集合和各MG接入ADN的节点集合。
为了将上述模型转换为混合整数二阶锥规划模型,将潮流模型中的第六个约束进行松弛变换,转换后公式如下:
Figure DEST_PATH_IMAGE196
图3所示的为MG结构示意图,包括PV、WT、ESS、Load和GT。然后建立每个MG的两阶段优化调度模型,MG的约束条件包括功率平衡约束、ESS出力约束、联络线传输功率约束和GT出力约束,其中ESS约束和ADN中的ESS约束相似,功率平衡约束和GT出力约束如下:
1)功率平衡约束:
Figure 401257DEST_PATH_IMAGE115
2)GT运行约束:
Figure DEST_PATH_IMAGE197
式中:m代表第m个微电网,t代表第t个时段,
Figure DEST_PATH_IMAGE198
Figure DEST_PATH_IMAGE199
代表GT输出的有功功率和无功功率,
Figure DEST_PATH_IMAGE200
Figure 993169DEST_PATH_IMAGE120
代表GT输出有功功率和无功功率的最大值,
Figure 816769DEST_PATH_IMAGE121
Figure 80391DEST_PATH_IMAGE122
代表GT的最大向下爬坡速率和最大向上爬坡速率,
Figure 571415DEST_PATH_IMAGE123
属于0-1变量,代表GT的启停机标志位,
Figure DEST_PATH_IMAGE201
代表GT处于开机运行状态,
Figure 160659DEST_PATH_IMAGE125
代表GT最长停机时间,
Figure 940397DEST_PATH_IMAGE126
代表GT动作标志位,
Figure 240666DEST_PATH_IMAGE127
代表GT在t时刻从停机转变为开机状态,
Figure 320617DEST_PATH_IMAGE128
代表GT在t时刻从开机转变为停机状态,
Figure 80763DEST_PATH_IMAGE129
代表GT的启停机动作最大次数;
MG的目标函数如下:
Figure DEST_PATH_IMAGE202
式中:
Figure 285479DEST_PATH_IMAGE131
代表第m个MG第一阶段调整的0-1变量,
Figure DEST_PATH_IMAGE203
代表第m个MG第二阶段风光荷出力的不确定性变量,
Figure 484379DEST_PATH_IMAGE133
代表MG第二阶段调整的连续变量,
Figure 559783DEST_PATH_IMAGE134
Figure 349884DEST_PATH_IMAGE135
代表第m个MG第一个阶段和第二阶段的目标函数,
Figure 764202DEST_PATH_IMAGE136
代表GT从停机到开机一次的费用,
Figure 297951DEST_PATH_IMAGE137
代表GT从开机到停机一次的费用,
Figure 227861DEST_PATH_IMAGE138
Figure DEST_PATH_IMAGE204
Figure 595389DEST_PATH_IMAGE140
分别代表GT出力的单位燃料费用、维护费用和环境成本费用。
配电网与各微电网的鲁棒优化模型的目标函数可以统一如下表示:
Figure 368173DEST_PATH_IMAGE141
引入拉格朗日算子,上述目标函数的增广拉格朗日函数为:
Figure DEST_PATH_IMAGE205
则鲁棒优化模型可统一表示为:
Figure DEST_PATH_IMAGE206
上式中,
Figure 751618DEST_PATH_IMAGE144
Figure 660669DEST_PATH_IMAGE145
包括ADN和各MG的变量取值集合,
Figure 995835DEST_PATH_IMAGE144
包括
Figure 865702DEST_PATH_IMAGE146
Figure 741254DEST_PATH_IMAGE147
包括
Figure 645756DEST_PATH_IMAGE148
Figure 682982DEST_PATH_IMAGE149
代表MG的个数,第一个约束和第二个约束代表仅与第一阶段决策变量
Figure 305725DEST_PATH_IMAGE150
相关的不等式约束和等式约束,第三个约束与第四个约束代表仅与第二阶段决策变量
Figure 719388DEST_PATH_IMAGE151
相关的不等式约束与等式约束,第五个约束代表与
Figure 776600DEST_PATH_IMAGE150
Figure 187989DEST_PATH_IMAGE151
相关的不等式约束,第六个约束代表与
Figure 32449DEST_PATH_IMAGE150
和不确定性优化变量相关的等式约束,第七个约束代表二阶锥不等式约束,当
Figure 249803DEST_PATH_IMAGE152
时,不含有第七个约束,即MG的两阶段鲁棒优化模型不含有第七个约束,
Figure 128898DEST_PATH_IMAGE153
代表拉格朗日乘子,
Figure 773506DEST_PATH_IMAGE154
为ADMM算法的参数,
Figure 105261DEST_PATH_IMAGE155
代表AND和MMG中和耦合变量相关的变量,
Figure 860727DEST_PATH_IMAGE156
代表AND和各MG的耦合变量,
Figure 922224DEST_PATH_IMAGE157
表示AND和各MG耦合的节点集合,上述七个约束式中的其他参数均表示各约束的系数矩阵。
如图4所示,ADMM算法流程如下:
1)数据初始化:对每个MG和ADN初始化耦合变量
Figure 111635DEST_PATH_IMAGE158
和拉格朗日乘子
Figure 789741DEST_PATH_IMAGE159
,置ADMM迭代次数
Figure DEST_PATH_IMAGE207
,设置最大迭代次数
Figure 755423DEST_PATH_IMAGE161
和收敛阈值
Figure 609109DEST_PATH_IMAGE162
2)ADN与各MG优化求解:依据得到的
Figure 595520DEST_PATH_IMAGE163
Figure 901867DEST_PATH_IMAGE164
,将ADN和各MG的鲁棒优化模型利用C&CG算法进行并行求解,并得到
Figure 202399DEST_PATH_IMAGE165
Figure 769646DEST_PATH_IMAGE166
;其中,y代表优化的第二阶段变量,下标为A代表主动配电网,m代表第m个微电网,上标k+1代表第k次计算后变量的取值;
3)信息更新:利用计算求解的
Figure 297930DEST_PATH_IMAGE167
Figure 216207DEST_PATH_IMAGE168
变量更新耦合变量和拉格朗日乘子,得到
Figure 992533DEST_PATH_IMAGE169
Figure 679867DEST_PATH_IMAGE170
4)迭代终止判定:计算ADN和各MG优化问题的对偶残差,判断对偶残差是否小于收敛阈值
Figure 883446DEST_PATH_IMAGE162
或迭代次数
Figure 23440DEST_PATH_IMAGE171
,是则停止迭代输出最优解,否则k=k+1并返回步骤2)。
步骤3)中局部耦合变量和拉格朗日的更新公式为:
Figure DEST_PATH_IMAGE208
步骤4)中对偶残差的计算为:
Figure DEST_PATH_IMAGE209
图5是本发明实施例提供的主动配电网与多微电网联合鲁棒优化系统架构图,如图5所示,包括:
联合模型建立单元510,用于建立主动配电网ADN和多微电网MMG联合两阶段鲁棒优化模型,两阶段鲁棒优化模型中第一阶段的变量为离散变量,第二阶段的变量为连续变量;所述联合两阶段鲁棒优化模型包括:ADN两阶段鲁棒优化模型和MMG两阶段鲁棒优化模型;所述ADN两阶段鲁棒优化模型以ADN运行费用最低为目标函数,所述MMG两阶段鲁棒优化模型包括多个微电网MG两阶段鲁棒优化模型,每个MG两阶段鲁棒优化模型以该MG运行费用最低为目标函数;
鲁棒优化模型确定单元520,用于将ADN两阶段鲁棒优化模型和各个MG两阶段鲁棒优化模型的目标函数进行统一,并在统一后的目标函数中引入拉格朗日算子,确定增广拉格朗日函数,基于所述增广拉格朗日函数确定对应的鲁棒优化模型;将ADN的优化变量和各个MG的优化变量进行耦合,得到所述鲁棒优化模型的多个耦合变量;所述优化变量包括所述离散变量和连续变量;
优化模型求解单元530,用于基于交替方向乘子法ADMM迭代求解所述鲁棒优化模型,利用ADMM算法的分布式思想将所鲁棒优化模型拆分成ADN鲁棒优化模型和多个MG鲁棒优化模型;预设各耦合变量的初始值,利用列与约束生成算法并行求解ADN鲁棒优化模型和多个MG鲁棒优化模型,以更新ADN优化变量和各MG优化变量,并确定更新后的耦合变量;若更新后耦合变量与更新前耦合变量对应的对偶残差不小于收敛阈值,则基于更新的ADN优化变量和MG优化变量继续求解ADN鲁棒优化模型和多个MG鲁棒优化模型,直至所述对偶残差小于收敛阈值或迭代次数达到最大次数,输出最后一次迭代求得的ADN优化变量和MG优化变量,完成对ADN和MMG的联合鲁棒优化。
需要说明的是,图5中各个单元的详细功能实现可参见前述方法实施例中的介绍,在此不做赘述。
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种主动配电网与多微电网联合鲁棒优化方法,其特征在于,包括如下步骤:
建立主动配电网ADN和多微电网MMG联合两阶段鲁棒优化模型,两阶段鲁棒优化模型中第一阶段的变量为离散变量,第二阶段的变量为连续变量;所述联合两阶段鲁棒优化模型包括:ADN两阶段鲁棒优化模型和MMG两阶段鲁棒优化模型;所述ADN两阶段鲁棒优化模型以ADN运行费用最低为目标函数,所述MMG两阶段鲁棒优化模型包括多个微电网MG两阶段鲁棒优化模型,每个MG两阶段鲁棒优化模型以该MG运行费用最低为目标函数;
将ADN两阶段鲁棒优化模型和各个MG两阶段鲁棒优化模型的目标函数进行统一,并在统一后的目标函数中引入拉格朗日算子,确定增广拉格朗日函数,基于所述增广拉格朗日函数确定对应的鲁棒优化模型;将ADN的优化变量和各个MG的优化变量进行耦合,得到所述鲁棒优化模型的多个耦合变量;所述优化变量包括所述离散变量和连续变量;
基于交替方向乘子法ADMM迭代求解所述鲁棒优化模型,利用ADMM算法的分布式思想将所述鲁棒优化模型拆分成ADN鲁棒优化模型和多个MG鲁棒优化模型;预设各耦合变量的初始值,利用列与约束生成算法并行求解ADN鲁棒优化模型和多个MG鲁棒优化模型,以更新ADN优化变量和各MG优化变量,并确定更新后的耦合变量;若更新后耦合变量与更新前耦合变量对应的对偶残差不小于收敛阈值,则基于更新的ADN优化变量和MG优化变量继续求解ADN鲁棒优化模型和多个MG鲁棒优化模型,直至所述对偶残差小于收敛阈值或迭代次数达到最大次数,输出最后一次迭代求得的ADN优化变量和MG优化变量,完成对ADN和MMG的联合鲁棒优化。
2.根据权利要求1所述的方法,其特征在于,所述ADN两阶段鲁棒优化模型中第一阶段的变量包括:有载调压器OLTC档位、无功电容器组CB投切组数、储能系统ESS充放电标志位以及网络重构NR的决策变量,第二阶段的变量包括:ESS出力和柔性多状态开关SOP的出力;
各个MG两阶段鲁棒优化模型中第一阶段的变量包括:ESS充放电标志位和燃气轮机GT的启停标志位,第二阶段的变量包括ESS出力和GT的出力。
3.根据权利要求1或2所述的方法,其特征在于,还包括如下步骤:
确定风光荷出力的不确定性模型:
Figure 262127DEST_PATH_IMAGE001
式中:
Figure 382530DEST_PATH_IMAGE002
代表安装风光荷的节点集合,包含在第i个MG中的风光荷或在ADN中第i个节点的风光荷;t代表第t个时段;
Figure 896688DEST_PATH_IMAGE003
Figure 760739DEST_PATH_IMAGE004
Figure 43952DEST_PATH_IMAGE005
代表风光荷实际出力;
Figure 335256DEST_PATH_IMAGE006
Figure 71131DEST_PATH_IMAGE007
Figure 735943DEST_PATH_IMAGE008
代表风光荷日前预测;
Figure 139243DEST_PATH_IMAGE009
Figure 601448DEST_PATH_IMAGE010
Figure 90198DEST_PATH_IMAGE011
为风光荷可允许的预测误差范围;
Figure 296052DEST_PATH_IMAGE012
Figure 288279DEST_PATH_IMAGE013
Figure 452544DEST_PATH_IMAGE014
为给定的调节因子;
Figure 163011DEST_PATH_IMAGE015
Figure 906976DEST_PATH_IMAGE016
Figure 284867DEST_PATH_IMAGE017
Figure 88875DEST_PATH_IMAGE018
Figure 286639DEST_PATH_IMAGE019
Figure 99874DEST_PATH_IMAGE020
属于0-1整数变量,代表风光荷正负偏差的识别变量,上标中PV表示光伏发电、WT表示风力发电、L表示负荷,上标中E表示误差,上标中U表示正偏差,D表示负偏差,并满足如下约束:
Figure 66693DEST_PATH_IMAGE021
Figure 307181DEST_PATH_IMAGE022
式中:T为调度总时段,
Figure 992240DEST_PATH_IMAGE023
Figure 343587DEST_PATH_IMAGE024
Figure 164913DEST_PATH_IMAGE025
代表在调度时段T内风光荷的不确定性因素。
4.根据权利要求3所述的方法,其特征在于,所述ADN两阶段鲁棒优化模型的约束条件包括ADN中风光荷出力的不确定性模型;
所述ADN两阶段鲁棒优化模型的约束条件还包括:ESS运行约束、SOP运行约束、OLTC运行约束、NR运行约束、CB运行约束以及潮流约束;
ADN运行时的目标函数如下所示:
Figure 841882DEST_PATH_IMAGE027
式中:
Figure 745728DEST_PATH_IMAGE028
代表ADN第一阶段调整的0-1变量,
Figure 635187DEST_PATH_IMAGE029
代表ADN第二阶段风光荷出力的不确定性变量,U A 代表u A 取值的集合,
Figure 842177DEST_PATH_IMAGE030
代表ADN第二阶段调整的连续变量,
Figure 424468DEST_PATH_IMAGE031
Figure 818541DEST_PATH_IMAGE032
代表ADN第一个阶段和第二阶段的目标函数,
Figure 777269DEST_PATH_IMAGE033
Figure 307608DEST_PATH_IMAGE034
Figure 60800DEST_PATH_IMAGE035
分别代表接入CB单组容量的费用、线路ij上分段开关动作一次费用以及OLTC改变一次档位的费用,
Figure 207748DEST_PATH_IMAGE036
Figure 704588DEST_PATH_IMAGE037
Figure 355012DEST_PATH_IMAGE038
代表ESS的单位运行费用和维护费用以及ADN的分时电价,
Figure 279106DEST_PATH_IMAGE039
Figure 647770DEST_PATH_IMAGE040
代表储能的充放电功率,
Figure 682723DEST_PATH_IMAGE041
代表1号节点,即平衡节点注入ADN的有功功率,即上级输电网流入ADN的有功功率,
Figure 718812DEST_PATH_IMAGE042
Figure 548227DEST_PATH_IMAGE043
分别代表ESS安装节点集合和各MG接入ADN的节点集合。
5.根据权利要求4所述的方法,其特征在于,所述MG两阶段鲁棒优化模型的约束条件包括MG中风光荷出力的不确定性模型和所述ESS运行约束;
所述MG两阶段鲁棒优化模型的约束条件还包括:
功率平衡约束:
Figure 404188DEST_PATH_IMAGE044
GT运行约束:
Figure 242831DEST_PATH_IMAGE045
式中:m代表第m个微电网,t代表第t个时段,
Figure 867847DEST_PATH_IMAGE046
Figure 130814DEST_PATH_IMAGE047
代表GT输出的有功功率和无功功率,
Figure 208491DEST_PATH_IMAGE048
Figure 116405DEST_PATH_IMAGE049
代表GT输出有功功率和无功功率的最大值,
Figure 595927DEST_PATH_IMAGE050
Figure 298304DEST_PATH_IMAGE051
代表GT的最大向下爬坡速率和最大向上爬坡速率,
Figure 863278DEST_PATH_IMAGE052
属于0-1变量,代表GT的启停机标志位,
Figure 43723DEST_PATH_IMAGE053
代表GT处于开机运行状态,
Figure 377753DEST_PATH_IMAGE054
代表GT最长停机时间,
Figure 985452DEST_PATH_IMAGE055
代表GT动作标志位,
Figure 303300DEST_PATH_IMAGE056
代表GT在t时刻从停机转变为开机状态,
Figure 21858DEST_PATH_IMAGE057
代表GT在t时刻从开机转变为停机状态,
Figure 475973DEST_PATH_IMAGE058
代表GT的启停机动作最大次数;
MG的目标函数如下:
Figure 520152DEST_PATH_IMAGE060
式中:
Figure 794139DEST_PATH_IMAGE061
代表第m个MG第一阶段调整的0-1变量,
Figure 316387DEST_PATH_IMAGE062
代表第m个MG第二阶段风光荷出力的不确定性变量,
Figure 890588DEST_PATH_IMAGE063
代表MG第二阶段调整的连续变量,
Figure 840089DEST_PATH_IMAGE064
Figure 866951DEST_PATH_IMAGE065
代表第m个MG第一个阶段和第二阶段的目标函数,
Figure 192890DEST_PATH_IMAGE066
代表GT从停机到开机一次的费用,
Figure 353089DEST_PATH_IMAGE067
代表GT从开机到停机一次的费用,
Figure 473491DEST_PATH_IMAGE068
Figure 987649DEST_PATH_IMAGE069
Figure 851700DEST_PATH_IMAGE070
分别代表GT出力的单位燃料费用、维护费用和环境成本费用。
6.根据权利要求5所述的方法,其特征在于,将ADN和各MG的两阶段鲁棒优化模型的目标函数统一如下表示:
Figure 134914DEST_PATH_IMAGE071
引入拉格朗日算子,上述目标函数的增广拉格朗日函数为:
Figure 691797DEST_PATH_IMAGE073
则鲁棒优化模型可统一表示为:
Figure 427672DEST_PATH_IMAGE074
上式中,
Figure 360993DEST_PATH_IMAGE075
Figure 233134DEST_PATH_IMAGE076
包括ADN和各MG的变量取值集合,
Figure 226498DEST_PATH_IMAGE075
包括
Figure 449669DEST_PATH_IMAGE077
Figure 655522DEST_PATH_IMAGE078
包括
Figure 913328DEST_PATH_IMAGE079
Figure 812014DEST_PATH_IMAGE080
代表MG的个数,第一个约束和第二个约束代表仅与第一阶段决策变量
Figure 256902DEST_PATH_IMAGE081
相关的不等式约束和等式约束,第三个约束与第四个约束代表仅与第二阶段决策变量
Figure 532025DEST_PATH_IMAGE082
相关的不等式约束与等式约束,第五个约束代表与
Figure 644338DEST_PATH_IMAGE081
Figure 713925DEST_PATH_IMAGE082
相关的不等式约束,第六个约束代表与
Figure 911688DEST_PATH_IMAGE081
和不确定性优化变量相关的等式约束,第七个约束代表二阶锥不等式约束,当
Figure 456414DEST_PATH_IMAGE083
时,不含有第七个约束,即MG的两阶段鲁棒优化模型不含有第七个约束,
Figure 423233DEST_PATH_IMAGE084
代表拉格朗日乘子,
Figure 663722DEST_PATH_IMAGE085
为ADMM算法的参数,
Figure 348781DEST_PATH_IMAGE086
代表AND和MMG中和耦合变量相关的变量,
Figure 700128DEST_PATH_IMAGE087
代表AND和各MG的耦合变量,
Figure 521454DEST_PATH_IMAGE088
表示AND和各MG耦合的节点集合,上述七个约束式中的其他参数均表示各约束的系数矩阵。
7.根据权利要求6所述的方法,其特征在于,所述对ADN和MMG的联合鲁棒优化,具体流程为:
1)数据初始化:对每个MG和ADN初始化耦合变量
Figure 198423DEST_PATH_IMAGE089
和拉格朗日乘子
Figure 105199DEST_PATH_IMAGE090
,置ADMM迭代次数
Figure 260237DEST_PATH_IMAGE091
,设置最大迭代次数
Figure 201648DEST_PATH_IMAGE092
和收敛阈值
Figure 518360DEST_PATH_IMAGE093
2)ADN与各MG优化求解:依据得到的
Figure 912432DEST_PATH_IMAGE094
Figure 605581DEST_PATH_IMAGE095
,将ADN和各MG的鲁棒优化模型利用C&CG算法进行并行求解,并得到
Figure 667078DEST_PATH_IMAGE096
Figure 685850DEST_PATH_IMAGE097
;其中,y代表优化的第二阶段变量,下标为A代表主动配电网,m代表第m个微电网,上标k+1代表第k次计算后变量的取值;
3)信息更新:利用计算求解的
Figure 301639DEST_PATH_IMAGE098
Figure 798479DEST_PATH_IMAGE099
变量更新耦合变量和拉格朗日乘子,得到
Figure 448904DEST_PATH_IMAGE100
Figure 370067DEST_PATH_IMAGE101
4)迭代终止判定:计算ADN和各MG优化问题的对偶残差,判断对偶残差是否小于收敛阈值
Figure 4311DEST_PATH_IMAGE102
或迭代次数
Figure DEST_PATH_IMAGE103
,是则停止迭代输出最优解,否则k=k+1并返回步骤2)。
8.一种主动配电网与多微电网联合鲁棒优化系统,其特征在于,包括:
联合模型建立单元,用于建立主动配电网ADN和多微电网MMG联合两阶段鲁棒优化模型,两阶段鲁棒优化模型中第一阶段的变量为离散变量,第二阶段的变量为连续变量;所述联合两阶段鲁棒优化模型包括:ADN两阶段鲁棒优化模型和MMG两阶段鲁棒优化模型;所述ADN两阶段鲁棒优化模型以ADN运行费用最低为目标函数,所述MMG两阶段鲁棒优化模型包括多个微电网MG两阶段鲁棒优化模型,每个MG两阶段鲁棒优化模型以该MG运行费用最低为目标函数;
鲁棒优化模型确定单元,用于将ADN两阶段鲁棒优化模型和各个MG两阶段鲁棒优化模型的目标函数进行统一,并在统一后的目标函数中引入拉格朗日算子,确定增广拉格朗日函数,基于所述增广拉格朗日函数确定对应的鲁棒优化模型;将ADN的优化变量和各个MG的优化变量进行耦合,得到所述鲁棒优化模型的多个耦合变量;所述优化变量包括所述离散变量和连续变量;
优化模型求解单元,用于基于交替方向乘子法ADMM迭代求解所述鲁棒优化模型,利用ADMM算法的分布式思想将鲁棒优化模型拆分成ADN鲁棒优化模型和多个MG鲁棒优化模型;预设各耦合变量的初始值,利用列与约束生成算法并行求解ADN鲁棒优化模型和多个MG鲁棒优化模型,以更新ADN优化变量和各MG优化变量,并确定更新后的耦合变量;若更新后耦合变量与更新前耦合变量对应的对偶残差不小于收敛阈值,则基于更新的ADN优化变量和MG优化变量继续求解ADN鲁棒优化模型和多个MG鲁棒优化模型,直至所述对偶残差小于收敛阈值或迭代次数达到最大次数,输出最后一次迭代求得的ADN优化变量和MG优化变量,完成对ADN和MMG的联合鲁棒优化。
9.根据权利要求8所述的系统,其特征在于,所述ADN两阶段鲁棒优化模型中第一阶段的变量包括:有载调压器OLTC档位、无功电容器组CB投切组数、储能系统ESS充放电标志位以及网络重构NR的决策变量,第二阶段的变量包括:ESS出力和柔性多状态开关SOP的出力;
各个MG两阶段鲁棒优化模型中第一阶段的变量包括:ESS充放电标志位和燃气轮机GT的启停标志位,第二阶段的变量包括ESS出力和GT的出力。
10.根据权利要求8或9所述的系统,其特征在于,所述ADN两阶段鲁棒优化模型和MG两阶段鲁棒优化模型的风光荷出力的不确定性模型为:
Figure 508105DEST_PATH_IMAGE001
式中:
Figure 278615DEST_PATH_IMAGE002
代表安装风光荷的节点集合,包含在第i个MG中的风光荷或在ADN中第i个节点的风光荷;t代表第t个时段;
Figure 373610DEST_PATH_IMAGE003
Figure 229570DEST_PATH_IMAGE004
Figure 802634DEST_PATH_IMAGE005
代表风光荷实际出力;
Figure 427650DEST_PATH_IMAGE006
Figure 693547DEST_PATH_IMAGE007
Figure 36803DEST_PATH_IMAGE008
代表风光荷日前预测;
Figure 679137DEST_PATH_IMAGE009
Figure 158660DEST_PATH_IMAGE010
Figure 861037DEST_PATH_IMAGE011
为风光荷可允许的预测误差范围;
Figure 160431DEST_PATH_IMAGE012
Figure 340877DEST_PATH_IMAGE013
Figure 940485DEST_PATH_IMAGE014
为给定的调节因子;
Figure 548184DEST_PATH_IMAGE015
Figure 167883DEST_PATH_IMAGE016
Figure 152019DEST_PATH_IMAGE017
Figure 606134DEST_PATH_IMAGE018
Figure 384734DEST_PATH_IMAGE019
Figure 189879DEST_PATH_IMAGE020
属于0-1整数变量,代表风光荷正负偏差的识别变量,上标中PV表示光伏发电、WT表示风力发电、L表示负荷,上标中E表示误差,上标中U表示正偏差,D表示负偏差,并满足如下约束:
Figure 712127DEST_PATH_IMAGE021
Figure 20749DEST_PATH_IMAGE022
式中:T为调度总时段,
Figure 235830DEST_PATH_IMAGE023
Figure 997112DEST_PATH_IMAGE024
Figure 588631DEST_PATH_IMAGE025
代表在调度时段T内风光荷的不确定性因素。
CN202210650563.XA 2022-06-10 2022-06-10 一种主动配电网与多微电网联合鲁棒优化方法及系统 Active CN114726008B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210650563.XA CN114726008B (zh) 2022-06-10 2022-06-10 一种主动配电网与多微电网联合鲁棒优化方法及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210650563.XA CN114726008B (zh) 2022-06-10 2022-06-10 一种主动配电网与多微电网联合鲁棒优化方法及系统

Publications (2)

Publication Number Publication Date
CN114726008A true CN114726008A (zh) 2022-07-08
CN114726008B CN114726008B (zh) 2022-09-13

Family

ID=82232998

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210650563.XA Active CN114726008B (zh) 2022-06-10 2022-06-10 一种主动配电网与多微电网联合鲁棒优化方法及系统

Country Status (1)

Country Link
CN (1) CN114726008B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115270008A (zh) * 2022-09-29 2022-11-01 西南财经大学 最大影响力博主找寻方法及系统、存储介质及终端

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107979111A (zh) * 2017-07-21 2018-05-01 天津大学 一种基于两阶段鲁棒优化的微电网能量管理方法
CN111478358A (zh) * 2019-11-06 2020-07-31 南瑞集团有限公司 一种计及分布式电源不确定性的配电网鲁棒恢复决策方法
CN112257229A (zh) * 2020-09-18 2021-01-22 西安理工大学 一种微网两阶段鲁棒调度方法
CN112290531A (zh) * 2020-07-27 2021-01-29 四川大学 一种用于交直流配电网结合改进乘子法的优化系统和方法
CN113241759A (zh) * 2021-05-13 2021-08-10 国网上海市电力公司 一种配电网与多微网鲁棒调度方法、电子设备及存储介质
US20210295456A1 (en) * 2020-03-23 2021-09-23 Xendee Corporation Robust and fast design of microgrids, der systems, and other energy systems using staged hybrid investment planning
CN113708421A (zh) * 2021-08-23 2021-11-26 国网吉林省电力有限公司长春供电公司 一种柔性配电网的改进两阶段鲁棒运行优化方法及系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107979111A (zh) * 2017-07-21 2018-05-01 天津大学 一种基于两阶段鲁棒优化的微电网能量管理方法
CN111478358A (zh) * 2019-11-06 2020-07-31 南瑞集团有限公司 一种计及分布式电源不确定性的配电网鲁棒恢复决策方法
US20210295456A1 (en) * 2020-03-23 2021-09-23 Xendee Corporation Robust and fast design of microgrids, der systems, and other energy systems using staged hybrid investment planning
CN112290531A (zh) * 2020-07-27 2021-01-29 四川大学 一种用于交直流配电网结合改进乘子法的优化系统和方法
CN112257229A (zh) * 2020-09-18 2021-01-22 西安理工大学 一种微网两阶段鲁棒调度方法
CN113241759A (zh) * 2021-05-13 2021-08-10 国网上海市电力公司 一种配电网与多微网鲁棒调度方法、电子设备及存储介质
CN113708421A (zh) * 2021-08-23 2021-11-26 国网吉林省电力有限公司长春供电公司 一种柔性配电网的改进两阶段鲁棒运行优化方法及系统

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
张宇威等: "基于风光数据驱动不确定集合的配电网与多微网鲁棒经济调度", 《电力建设》 *
黄志强等: "柔性多状态开关与分布式储能系统联合接入规划", 《电力系统自动化》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115270008A (zh) * 2022-09-29 2022-11-01 西南财经大学 最大影响力博主找寻方法及系统、存储介质及终端
CN115270008B (zh) * 2022-09-29 2023-01-10 西南财经大学 最大影响力博主找寻方法及系统、存储介质及终端

Also Published As

Publication number Publication date
CN114726008B (zh) 2022-09-13

Similar Documents

Publication Publication Date Title
Zhao et al. Coordinated restoration of transmission and distribution system using decentralized scheme
Sanseverino et al. An execution, monitoring and replanning approach for optimal energy management in microgrids
Zidan et al. Distribution system reconfiguration for energy loss reduction considering the variability of load and local renewable generation
Martins et al. Active distribution network integrated planning incorporating distributed generation and load response uncertainties
Pamshetti et al. Coordinated allocation of BESS and SOP in high PV penetrated distribution network incorporating DR and CVR schemes
Ranamuka et al. Flexible AC power flow control in distribution systems by coordinated control of distributed solar-PV and battery energy storage units
CN110690702B (zh) 一种考虑综合承载力的主动配电网优化调度及运行方法
CN113364045B (zh) 一种移动式储能参与的主动配电网故障恢复方法
Zhai et al. Robust model predictive control for energy management of isolated microgrids
CN110808597A (zh) 主动配电网中考虑三相不平衡的分布式电源规划方法
Kaysal et al. Hierarchical energy management system with multiple operation modes for hybrid DC microgrid
Zhang et al. Voltage regulation with high penetration of low-carbon energy in distribution networks: A source–grid–load-collaboration-based perspective
CN114726008B (zh) 一种主动配电网与多微电网联合鲁棒优化方法及系统
Raza et al. Robust nonlinear control of regenerative fuel cell, supercapacitor, battery and wind based direct current microgrid
CN115313504A (zh) 含可控光伏的配电网多时间尺度无功功率调度方法及系统
CN112054556B (zh) 一种多微网分布式交互运行优化控制方法与系统
Baziar et al. Evolutionary algorithm-based adaptive robust optimization for AC security constrained unit commitment considering renewable energy sources and shunt FACTS devices
Krishnan et al. An efficient DLN2-CRSO approach based dynamic stability enhancement in micro-grid system
Habib et al. Quasi-dynamic load and battery sizing and scheduling for stand-alone solar system using mixed-integer linear programming
Zhang et al. Hierarchical MPC-based energy management and frequency regulation participation of a virtual power plant
Gupta et al. Improving fairness in photovoltaic curtailments via daily topology reconfiguration for voltage control in power distribution networks
KR102562761B1 (ko) 스마트 그리드에서 p2p 프로슈머 커뮤니티의 지능형 사전 에너지 공유 스케줄링 방법
Ma et al. Optimal dispatching for active distribution network with wind-battery hybrid power system
Makohin et al. Design and implementation of a flexible microgrid controller through mixed integer linear programming optimization
Zhai et al. Coordinating active distribution networks with multi-microgrids: An ADMM-based decentralized adjustable robust operation model

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant