CN114720688B - 肺癌免疫联合化疗药效预测EVs膜蛋白标志物 - Google Patents

肺癌免疫联合化疗药效预测EVs膜蛋白标志物 Download PDF

Info

Publication number
CN114720688B
CN114720688B CN202210639163.9A CN202210639163A CN114720688B CN 114720688 B CN114720688 B CN 114720688B CN 202210639163 A CN202210639163 A CN 202210639163A CN 114720688 B CN114720688 B CN 114720688B
Authority
CN
China
Prior art keywords
evs
membrane protein
lung cancer
protein marker
cancer immune
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210639163.9A
Other languages
English (en)
Other versions
CN114720688A (zh
Inventor
刘雨桃
陈冬娜
王明昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cancer Hospital and Institute of CAMS and PUMC
Original Assignee
Cancer Hospital and Institute of CAMS and PUMC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cancer Hospital and Institute of CAMS and PUMC filed Critical Cancer Hospital and Institute of CAMS and PUMC
Priority to CN202210639163.9A priority Critical patent/CN114720688B/zh
Publication of CN114720688A publication Critical patent/CN114720688A/zh
Application granted granted Critical
Publication of CN114720688B publication Critical patent/CN114720688B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57407Specifically defined cancers
    • G01N33/57423Specifically defined cancers of lung
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57484Immunoassay; Biospecific binding assay; Materials therefor for cancer involving compounds serving as markers for tumor, cancer, neoplasia, e.g. cellular determinants, receptors, heat shock/stress proteins, A-protein, oligosaccharides, metabolites
    • G01N33/57492Immunoassay; Biospecific binding assay; Materials therefor for cancer involving compounds serving as markers for tumor, cancer, neoplasia, e.g. cellular determinants, receptors, heat shock/stress proteins, A-protein, oligosaccharides, metabolites involving compounds localized on the membrane of tumor or cancer cells

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Urology & Nephrology (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Cell Biology (AREA)
  • Hematology (AREA)
  • Chemical & Material Sciences (AREA)
  • Oncology (AREA)
  • Medicinal Chemistry (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Food Science & Technology (AREA)
  • Biotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Hospice & Palliative Care (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Peptides Or Proteins (AREA)

Abstract

本申请提供了肺癌免疫联合化疗PD‑1抑制剂联合紫杉醇药效预测EVs膜蛋白标志物,所述EVs膜蛋白标志物为CD3、c‑MET、EGFR、HIF‑1alpha及PDGFRA。本申请提供的EVs膜蛋白标志物可用于预测肺癌免疫联合化疗药效,这些标志物表达水平较低的患者在对治疗的受益概率较高,ROC、生存期方面表现较好。

Description

肺癌免疫联合化疗药效预测EVs膜蛋白标志物
技术领域
本申请属于分子生物学诊断和肿瘤治疗领域,具体地,本申请提供了肺癌免疫联合化疗药效预测EVs膜蛋白标志物。
背景技术
细胞外囊泡(Extracellular Vesicles,EVs;包括外泌体(exosome,大小40-150nm))是原核生物/真核生物细胞经过“内吞-融合-外排”等一系列调控过程或以出芽的方式形成的细胞外纳米级小囊泡(40-1000nm),广泛存在于血液、唾液、尿液、乳汁、淋巴液、腹水等体液以及细胞培养上清中,且含量丰富,1ml血液可达108-1012个。EVs作为信号使者,可以在细胞间传递多种活性成分,如蛋白质/多肽、脂质、mRNAs、microRNAs 等,以影响受体细胞的基因表达和功能改变。EVs通过参与细胞间通信、细胞增殖、细胞迁移、血管新生和免疫调节等过程,对机体的生理和病理过程发挥着重要的调节作用【1】。
细胞外囊泡膜蛋白是EVs的重要组成部分,在EVs与靶细胞的识别过程中发挥着关键作用,EVs膜蛋白决定着EVs的细胞靶向性【2-3】。研究发现,EVs膜蛋白参与调控机体的免疫反应【4】。例如,肿瘤细胞分泌的EVs,其膜上可以携带PDL1蛋白,识别T细胞表面的PD1蛋白,从而抑制机体的免疫反应。并且研究发现,肿瘤患者接受PD1免疫治疗的疗效,与血液中EVs膜蛋白PDL1的含量密切相关【5】。细胞外囊泡膜蛋白主要来源于母细胞的细胞膜,具有细胞溯源性,从而可以作为肿瘤等疾病的重要诊断标志物。例如,Sania A等人通过蛋白质组学分析筛选鉴定了胰腺癌细胞外囊泡膜蛋白GPC1,可以实现早期胰腺癌的诊断【6】。因此,针对细胞外囊泡的膜蛋白分析在疾病的诊断以及治疗中具有重要的应用价值【7】。
目前,常规的细胞外囊泡膜蛋白的分析,一般首先需要较多的样本量进行EVs的提取纯化,操作步骤繁琐耗时。然后通过流式或者ELISA的方法检测EVs膜蛋白的表达,存在检测通量小的缺点。
EVArray基于抗体芯片技术,能够便捷地直接对微量血浆(10μl)等临床样本中的EVs膜蛋白实现高灵敏度(fg/ml)高通量的检测和分析,无需提纯EVs。每张芯片可以同时检测多个样本,每个样本可检测数百个EVs膜蛋白,适合进行大规模临床样本标志物的筛选和验证工作【8-11】。EVArray的检测原理为:首先将针对EVs膜蛋白的特异性抗体(Captureantibody)点制成EVArray抗体芯片。然后将含有EVs的样本(10μl血浆)加入EVArray,抗体芯片上的Capture antibody 可以通过识别EVs膜蛋白并将EVs捕获。然后利用Biotin标记的CD63、CD9、CD81等检测抗体检测该EVs膜蛋白的相对表达水平。
发明内容
为发挥EVArray技术的优势,为肺癌治疗筛选EVs膜蛋白标志物。一方面,本申请提供了检测EVs膜蛋白标志物表达的试剂在制备肺癌免疫联合化疗药效预测试剂盒中的应用,其特征在于,所述EVs膜蛋白标志物为CD3、c-MET、EGFR、HIF-1alpha及PDGFRA;所述免疫联合化疗为PD-1抑制剂联合紫杉醇。
另一方面,本申请提供一种肺癌免疫联合化疗药效预测的非诊断或治疗方法,其特征在于,所述方法包括检测EVs膜蛋白标志物表达,所述EVs膜蛋白标志物为CD3、c-MET、EGFR、HIF-1alpha及PDGFRA;所述免疫联合化疗为PD-1抑制剂联合紫杉醇。
进一步地,所述PD-1抑制剂联合紫杉醇为帕博利珠单抗联合紫杉醇,或者信迪利单抗联合紫杉醇。
进一步地,所述检测EVs膜蛋白标志物表达的试剂包括EVArray芯片或者EVs纯化和检测试剂。
进一步地,EVs膜蛋白标志物为肺癌免疫联合化疗药效预测的负相关标志物。
进一步地,EVs膜蛋白标志物为肺癌免疫联合化疗化疗进展患者的诊断标志物。
进一步地,其中EVs膜蛋白标志物为肺癌免疫联合化疗化疗非获益患者的诊断标志物。
本申请所述的非诊断方法包括但不限于科研用途、人口健康档案收集、药物市场分析等。
本申请所述EVs纯化和检测试剂包括本领域已知的EVs纯化和检测方法中所用的试剂或者市售试剂盒。
附图说明
图1为本发明研究流程图。
图2为本发明数据分析流程图。
图3为EVs膜蛋白表达的聚类热图。
图4为EVs膜蛋白分析火山图。
图5为显著性差异表达EVs膜蛋白柱状图。
图6为ROC统计结果。
图7为ROC曲线图。
图8为KM生存分析图。
具体实施方式
实施例1 实验整体设计
本申请的整体实验流程如图1所示,利用EVArray技术平台,进行肺癌免疫治疗联合化疗疗效预测EVs膜蛋白标志物的筛选。
临床样本设计:帕博利珠单抗联合紫杉醇,或者信迪利单抗联合紫杉醇患者中选择免疫联合化疗获益(PR、SD)、非获益患者(PD)两组患者,基线期(D1)和治疗后(D2)两个时间点的血浆样本。共计17例血浆样本,每例取10 μL血浆,利用1xPBS稀释至100μL,上样。另每个样本取2μL 混样,按照1:10稀释,上样100μL作为对照样本。分组信息如下:
Figure 779278DEST_PATH_IMAGE001
EVArray针对的EVs膜蛋白靶点如下表所示,共计57个靶点,主要包括:(1)免疫相关的EVs膜蛋白、(2)免疫分型相关的EVs膜蛋白、(3)放化疗相关的EVs膜蛋白、(4)血管治疗药物(法米替尼、安诺替尼)相关的EVs膜蛋白、(5)肺癌发生发展相关的EVs膜蛋白。以及EVs常见蛋白标志物CD63、CD81、CD9。
Figure 896751DEST_PATH_IMAGE002
实施例2样本处理及芯片实验操作步骤
主要仪器和试剂:
低温离心机、制冰机、移液器、离心管;激光扫描仪、制冰机、恒温摇床、移液器;
Biotin抗体: anti-CD9,215-030,Ancell;anti-CD81,302-030,Ancell;anti-CD9,156-030,Ancell;
Cy3-Streptavidin:SA1010, Invitrogen;
BSA、PBS
实验步骤:
将血浆样本从-80度冰箱取出,冰上解冻后进行初步离心处理(4度,3000g离心20分钟),将上清转移到新的离心管中。每例样本吸取10 μL,利用1xPBS稀释至100μL体系。
(1)抗体芯片每孔加入100μl封闭液室温孵育30min, 抽去每孔中的封闭液。封闭液为3%BSA溶液。
(2)杂交反应:每孔加入100μL稀释的样本,室温孵育30 min。
(3)检测抗体孵育:抽去每孔中的反应液,每孔加入200μl的1xPBS溶液洗涤芯片,重复3次。然后每孔加入100μl偶联Biotin的检测抗体(用1xPBS稀释抗体,按1:1000比例稀释),室温孵育30min。
(4)检测抽去每孔中的反应液,每孔加入200μl的1xPBS,洗涤芯片,重复3次。然后每孔加入100μl的Cy3-Streptavidin(用1xPBS稀释,按1:1000比例稀释),避光室温孵育30min。
(5)检测:去上清,每孔加入200μl的1xPBS溶液洗涤芯片,重复3次。然后将芯片干燥,利用激光扫描仪532nm通道扫描信号,用GenePix软件来读取抗体芯片的荧光值。
实施例3 数据分析
数据分析基本流程如图2所示。
下机数据质控及处理:去除异常值后,计算三个重复点的均值Median,然后扣除该孔中PBS抗体点的读值,得到该抗体点的读值。
蛋白表达分析:
聚类热图分析图3可以展示蛋白的表达趋势。对基线期获益患者(R:2个PR,6个SD)和非获益患者(NR: 3个PD)中EVs膜蛋白进行聚类热图分析,结果如下图所示,与获益患者比较,大部分EVs膜蛋白在非获益患者中表达量更高。
火山图(Volcano plot)图4直观展示两组样品的差异程度及其统计学显著性,可以快速直观地识别变化幅度较大且具有统计学意义的数据点。对基线期获益患者(R:2个PR,6个SD)和非获益患者(NR: 3个PD)中EVs膜蛋白进行火山图分析,结果如下图所示,与非获益患者比较,在获益患者中有5个EVs膜蛋白显著性低表达。该数据表明c-MET等5个蛋白与肺癌免疫治疗联合化疗疗效负相关。
基线期获益患者(R:2个PR,6个SD),非获益患者(NR: 3个PD)中的5个显著性差异表达的EVs膜蛋白进行柱状图分析,结果如图5所示。
临床标志物分析
受试者工作特征曲线 (receiver operating characteristic curve,简称ROC曲线),又称为感受性曲线(sensitivity curve)。ROC曲线下面积(the area under the ROCcurve, AUC)是指ROC曲线与x轴、(1,0)-(1,1)围绕的面积。ROC曲线下面积大于0.5,就证明该诊断试验具有一定的诊断价值。ROC曲线下面积越接近1,离(0,1)点越近,证明诊断试验的真实性越好。对cMET等5个免疫联合化疗负相关的EVs膜蛋白进行ROC曲线分析,确定上述5个EVs膜蛋白在非获益患者诊断方面的诊断价值。统计结果和ROC曲线如图6、7所示,cMET、CD3、EGFR、HIF-1alpha及PDGFRA蛋白的AUC面积为1,灵敏度为100%,特异性为100%,诊断准确度为100%。
针对于慢性病(癌症),因为其无法在短时间内判断预后,不宜采用治愈率和病死率等指标,而是需要对患者进行随访,分析一定时间后患者生存或死亡的情况,这样将事件的结果和出现这一结果所经历的时间结合起来分析的统计方法称为生存分析。KM 方法即Kaplan-Meier survival estimate是一种无参数方法(non-parametric)来从观察的生存时间来估计生存概率的方法。用log rank test来检验,当P<0.05,可以认为两组或多组总体生存曲线差别有统计学意义。对获益患者(R:2个PR,6个SD)和非获益患者(NR: 3个PD)进行KM生存分析。结果如图8所示,当EVs膜蛋白CD3、c-MET、EGFR、HIF-1alpha及PDGFRA高表达的患者PFS要显著短于低表达患者。
结果总结:
(1)经聚类热图、火山图分析,筛选到EVs膜蛋白CD3、c-MET、EGFR、HIF-1alpha及PDGFRA在非获益患者(PD=3)血浆中高表达,在获益患者(SD=6,PR=2)血浆中低表达。因此,上述5个EVs膜蛋白是肺癌免疫联合化疗的负相关因子。
(2)通过ROC曲线分析,CD3、c-MET、EGFR、HIF-1alpha及PDGFRA在肺癌免疫联合化疗进展患者(非获益患者)的诊断方面具有重要的诊断价值,可以作为肺癌免疫联合化疗的非获益患者的诊断标志物,应用于用药指导。
(3)通过KM曲线分析,CD3、c-MET、EGFR、HIF-1alpha及PDGFRA表达高的患者,其PFS明显短于表达低的患者。表明CD3、c-MET、EGFR、HIF-1alpha及PDGFRA可以作为肺癌免疫联合化疗进展患者的诊断标志物,可应用于用药指导。
显然,本发明的上述实施例仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而这些属于本发明的精神所引伸出的显而易见的变化或变动仍处于本发明的保护范围之中。
参考文献:
1. Shao, Huilin et al. “New Technologies for Analysis ofExtracellular Vesicles.” Chemical reviews vol. 118,4 (2018): 1917-1950. doi:10.1021/acs.chemrev.7b00534
2. French, Kinsley C et al. “Extracellular vesicle docking at thecellular port: Extracellular vesicle binding and uptake.” Seminars in cell & developmental biology vol. 67 (2017): 48-55. doi:10.1016/j.semcdb.2017.01.002
3. Buzás, Edit I et al. “Molecular interactions at the surface ofextracellular vesicles.” Seminars in immunopathology vol. 40,5 (2018): 453-464. doi:10.1007/s00281-018-0682-0
4. Marar, Carolyn et al. “Extracellular vesicles in immunomodulationand tumor progression.” Nature immunology vol. 22,5 (2021): 560-570. doi:10.1038/s41590-021-00899-0
5. Chen, Gang et al. “Exosomal PD-L1 contributes to immunosuppressionand is associated with anti-PD-1 response.” Nature vol. 560,7718 (2018): 382-386. doi:10.1038/s41586-018-0392-8
6. Melo, Sonia A et al. “Glypican-1 identifies cancer exosomes anddetects early pancreatic cancer.” Nature vol. 523,7559 (2015): 177-82. doi:10.1038/nature14581
7. Morad, Golnaz et al. “Hallmarks of response, resistance, andtoxicity to immune checkpoint blockade.” Cell vol. 184,21 (2021): 5309-5337.doi:10.1016/j.cell.2021.09.020
8. Bæk, Rikke, and Malene Møller Jørgensen. “Multiplexed Phenotypingof Small Extracellular Vesicles Using Protein Microarray (EV Array).” Methods in molecular biology (Clifton, N.J.) vol. 1545 (2017): 117-127. doi:10.1007/978-1-4939-6728-5_8
9. Jørgensen, Malene et al. “Extracellular Vesicle (EV) Array:microarray capturing of exosomes and other extracellular vesicles formultiplexed phenotyping.” Journal of extracellular vesicles vol. 2 10.3402/jev.v2i0.20920. 18 Jun. 2013, doi:10.3402/jev.v2i0.20920
10. Jakobsen, Kristine R et al. “Exosomal proteins as potentialdiagnostic markers in advanced non-small cell lung carcinoma.” Journal of extracellular vesicles vol. 4 26659. 2 Mar. 2015, doi:10.3402/jev.v4.26659
11. Sandfeld-Paulsen, Birgitte et al. “Exosomal Proteins asDiagnostic Biomarkers in Lung Cancer.” Journal of thoracic oncology : official publication of the International Association for the Study of Lung Cancer vol. 11,10 (2016): 1701-10. doi:10.1016/j.jtho.2016.05.034。

Claims (4)

1.检测EVs膜蛋白标志物表达的试剂在制备肺癌免疫联合化疗药效预测试剂盒中的应用,其特征在于,所述EVs膜蛋白标志物为CD3、c-MET、EGFR、HIF-1alpha及PDGFRA;所述免疫联合化疗为PD-1抑制剂联合紫杉醇。
2.根据权利要求1所述的应用,其中所述PD-1抑制剂联合紫杉醇为帕博利珠单抗联合紫杉醇,或者信迪利单抗联合紫杉醇。
3.根据权利要求1所述的应用,其中所述检测EVs膜蛋白标志物表达的试剂包括EVArray芯片,或者EVs纯化和检测试剂。
4.根据权利要求1所述的应用,其中EVs膜蛋白标志物为肺癌免疫联合化疗药效预测的负相关标志物。
CN202210639163.9A 2022-06-08 2022-06-08 肺癌免疫联合化疗药效预测EVs膜蛋白标志物 Active CN114720688B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210639163.9A CN114720688B (zh) 2022-06-08 2022-06-08 肺癌免疫联合化疗药效预测EVs膜蛋白标志物

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210639163.9A CN114720688B (zh) 2022-06-08 2022-06-08 肺癌免疫联合化疗药效预测EVs膜蛋白标志物

Publications (2)

Publication Number Publication Date
CN114720688A CN114720688A (zh) 2022-07-08
CN114720688B true CN114720688B (zh) 2022-09-06

Family

ID=82232851

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210639163.9A Active CN114720688B (zh) 2022-06-08 2022-06-08 肺癌免疫联合化疗药效预测EVs膜蛋白标志物

Country Status (1)

Country Link
CN (1) CN114720688B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118091162B (zh) * 2024-04-17 2024-08-06 北京市结核病胸部肿瘤研究所 EVs膜蛋白作为NSCLC免疫疗法预后标志物的应用
CN118191339B (zh) * 2024-04-19 2024-08-09 中国医学科学院肿瘤医院 EVs膜蛋白标志物检测试剂制备疗效预测试剂盒的应用

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7065567B2 (ja) * 2014-06-10 2022-05-12 スリービー・ファーマシューティカルズ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング ニューロテンシン受容体リガンドを含むコンジュゲートおよびそれらの使用
KR102215475B1 (ko) * 2017-09-28 2021-02-15 주식회사 탠덤 암 치료용 신규 재조합 원형질막-기반 소포체
WO2019094692A2 (en) * 2017-11-09 2019-05-16 The Trustees Of The University Of Pennsylvania Extracellular vesicle proteins and their use for cancer diagnosis, predicting response to therapy, and treatment
EP3870609A1 (en) * 2018-10-23 2021-09-01 Bristol-Myers Squibb Company Methods of treating tumor
WO2020198066A1 (en) * 2019-03-22 2020-10-01 Duke University Compositions and methods for enhancing cancer immune checkpoint therapy
CN114072155A (zh) * 2019-04-01 2022-02-18 豪恩·西蒙·夏 用于癌症免疫疗法的组合物和方法

Also Published As

Publication number Publication date
CN114720688A (zh) 2022-07-08

Similar Documents

Publication Publication Date Title
CN114720688B (zh) 肺癌免疫联合化疗药效预测EVs膜蛋白标志物
Feezor et al. Whole blood and leukocyte RNA isolation for gene expression analyses
Jørgensen et al. Extracellular Vesicle (EV) Array: microarray capturing of exosomes and other extracellular vesicles for multiplexed phenotyping
JP5905003B2 (ja) 肺癌バイオマーカーとその使用
Kadara et al. A five-gene and corresponding protein signature for stage-I lung adenocarcinoma prognosis
Tang et al. Glycan motif profiling reveals plasma sialyl-lewis x elevations in pancreatic cancers that are negative for sialyl-lewis A
Petricoin et al. Proteomic approaches in cancer risk and response assessment
EP1575420A4 (en) PROSTATE CANCER-BIOMARKERS
US20170059581A1 (en) Methods for diagnosis and prognosis of inflammatory bowel disease using cytokine profiles
Chinello et al. The proteomic landscape of renal tumors
AU2018273032B2 (en) Novel stool-based protein biomarkers for colorectal cancer screening
CN115032397B (zh) 一种胃癌预后分子标志物
Gao et al. Identification of gene modules associated with survival of diffuse large B-cell lymphoma treated with CHOP-based chemotherapy
CN111748627A (zh) 膀胱癌耗竭型t细胞亚群、其特征基因及其应用
Zekri et al. Serum biomarkers for early detection of hepatocellular carcinoma associated with HCV infection in egyptian patients
CN114540491A (zh) 一种基于岩藻糖基化细胞外囊泡中差异化表达miRNA的肝癌预测模型建立及应用
Wang et al. Different expression of S100A8 in malignant and benign gallbladder diseases
Fata et al. Are clear cell carcinomas of the ovary and endometrium phenotypically identical? A proteomic analysis
Goonewardena et al. Monocyte-Mediated Thrombosis Linked to Circulating Tissue Factor and Immune Paralysis in COVID-19
CN116179550A (zh) 一种用于肝细胞癌药物敏感性检测的外泌体标志物获取方法
CN118191339B (zh) EVs膜蛋白标志物检测试剂制备疗效预测试剂盒的应用
Kohn et al. Promising directions for the diagnosis and management of gynecological cancers
WO2004102191A2 (en) Serum protein profiling for the diagnosis of epithelial cancers
CA2525743A1 (en) Differential diagnosis of colorectal cancer and other diseases of the colon
Marc Najjar et al. 34th Annual Meeting & Pre-Conference Programs of the Society for Immunotherapy of Cancer (SITC 2019): part

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant