CN114717263A - 高同源重组率的细胞系的制备方法 - Google Patents

高同源重组率的细胞系的制备方法 Download PDF

Info

Publication number
CN114717263A
CN114717263A CN202210465356.7A CN202210465356A CN114717263A CN 114717263 A CN114717263 A CN 114717263A CN 202210465356 A CN202210465356 A CN 202210465356A CN 114717263 A CN114717263 A CN 114717263A
Authority
CN
China
Prior art keywords
vector
homologous recombination
cell line
sfr1
swi5
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210465356.7A
Other languages
English (en)
Inventor
朱玉凤
武永强
高湘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hebei University of Science and Technology
Original Assignee
Hebei University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hebei University of Science and Technology filed Critical Hebei University of Science and Technology
Priority to CN202210465356.7A priority Critical patent/CN114717263A/zh
Publication of CN114717263A publication Critical patent/CN114717263A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0684Cells of the urinary tract or kidneys
    • C12N5/0686Kidney cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/93Ligases (6)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2510/00Genetically modified cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/10Plasmid DNA
    • C12N2800/106Plasmid DNA for vertebrates
    • C12N2800/107Plasmid DNA for vertebrates for mammalian

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Biophysics (AREA)
  • Urology & Nephrology (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Toxicology (AREA)
  • Cell Biology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明涉及一种高同源重组率的细胞系的制备方法,利用siRNA技术和基因编辑技术,将一段供体载体稳定插入在AAVS1位置,可将NHEJ通路中重要基因LIG4和Ku70敲低,同时过表达同源重组通路中重要蛋白SWI5和SFR1,经单克隆分选方法筛选得到高同源重组效率的改良型293T细胞系。利用此方法所得到的细胞系的增值效果和转染效果和野生型相似,同源重组效率则是野生型的20倍,更有利于后续精确基因编辑操作进而更高效且低成本的开展科学研究。

Description

高同源重组率的细胞系的制备方法
技术领域
本发明涉及一种高同源重组率的细胞系的制备方法。
背景技术
HEK293细胞,又叫人胚胎肾细胞293,是一个衍生自人胚胎肾细胞的细胞系,具有转染效率高,易于培养等特点,是一个很常用的表达研究外源基因的细胞株。
CRISPR-Cas基因编辑技术是由RNA引导的Cas核酸酶在基因组特定位点切割而产生DNA双链断裂(DSB),然后DSB被细胞内源性修复机修复后会发生基因序列变化,进而实现基因组编辑。这些断裂主要通过两种主要修复途径之一修复,即经典的非同源端连接(c-NHEJ)和同源定向修复(HDR),后者局限于细胞周期的S/G2期,出现频率明显较低。精确的基因组编辑应用依赖于HDR,大量的c-NHEJ形成的突变是实现高速率精确序列修改的障碍。HDR效率极低,293T细胞中一般低于1%,增加了工作量和成本。
(1)抑制c-NHEJ途径
c-NHEJ途径的关键分子有DNA Ligase-IV、Ku70-和DNA- pkcs等,通过在循环细胞中短暂抑制c-NHEJ,DSB修复可以偏向于HDR。Maruyama等人(2015)在哺乳动物细胞系和小鼠受精卵中使用SCR7抑制CRISPR/ cas9诱导的dsb的c-NHEJ修复。在一项类似的研究中,DNA连接酶- iv通过sc7、shRNA介导的基因沉默或腺病毒(Ad)定向的连接酶- iv蛋白酶体降解在人和小鼠细胞系中被靶向(Chu等人,2015)。联合敲除Ku70/Ligase IV、SCR7治疗或Ad蛋白表达均可有效抑制c-NHEJ,并使HEK293细胞的HR事件增加8倍。
(2)提高HDR途径的效率
RS-1是单链DNA结合蛋白Rad51的增强子,通过文库筛选,通过刺激活跃的突触前Rad51丝的形成来支持HR (Jayathilaka et al. 2008)。研究发现,在HEK293和U2OS细胞中,RS-1在CRISPR/ cas9诱导的dsb位点上插入的报告基因增加了3- 6倍。同时使用RS-1和SCR7对HDR没有额外的影响(Pinder等,2015)。此外,在同一研究中,SCR-7的作用最小,但同时注射mRNA治疗Rad51过表达与RS-1治疗效果相当。同时有研究表明RAD 51需要辅助蛋白Swi5-Sfr1这两个模块才能启动HR修复。
(3)调整Cas9核酸酶的作用周期
Lin等人预组装Cas9/sgRNA核糖核蛋白(RNP)复合物到作用到小鼠胚胎成纤维细胞,HEK293,或人胚胎干细胞(ES)细胞。与未处理的细胞相比,将RNPs定时递送到m期同步HEK细胞可导致HR增加4倍(38% vs 9%)。Yang等人使用诺可达唑或ABT-751描述了诱导多能干细胞(iPS)细胞和神经祖细胞的同步化。他们发现,在同步细胞中,对目标基因编辑的效果增加了3- 6倍,编辑后的iPS细胞可以成功分化为多个谱系(Yang et al. 2016)。
(4)调整HDR捐助者的结构
通常情况下,HDR供体的模板要么是基于质粒的dsDNA,要么是合成的单链供体寡核苷酸(ssodn)。以质粒为基础的载体适合引入大的序列变化和插入,而ssodn适合短时间(<50 nt)的修改。通常情况下,ssodn使用的是DSB位点两侧各50-80 nt的对称同源区域,代表目标位点的正向链或反向链。然而,最近一项基于Cas9蛋白与DSB末端相互作用的研究描述了一种优化的ssODN设计,从而提高了HDR率(Richardson et al. 2016)。
综上所述,现有技术通过DSB的形成来决定基因编辑的位置,但对DNA修复结果的控制却少得多,由内源性DSB修复机制产生的基因编辑产品往往不符合特定的实验需求,对提高HDR的效率较低,且条件要求严格。
发明内容
本发明的目的是提供一种改造细胞系的载体以及利用该载体改造细胞系并获得高同源重组率的细胞系的方法。
本发明采用如下技术方案:
一种供体载体,其包括如下基因片段:AAVS1-CMV-SWI5-P2A-SFR1-SV40PolyA-H1-LIG4i-U6-Ku70i-AAVS1。
其中,所述Ku70i核苷酸序列如SEQ ID No.4所示,所述LIG4i的核苷酸序列如SEQID No.5所示。
其中,所述供体载体通过如下方法制备:
(a)确定Ku70有效的siRNA 序列SEQ ID No.4;确定LIG4有效的siRNA 序列SEQ IDNo.5;合成基因片段H1-LIG4i-spacer-U6-Ku70i;
(b)分别扩增SWI5和SFR1两个基因,桥式PCR将SWI5-P2A-SFR1融合在一起,利用Nhe1和Apa1两个酶切位点连接在PCDNA3.1载体上;
(c)以PCDNA3.1-SWI5-P2A-SFR1为模板,扩增AAVS1-CMV- SWI5-P2A-SFR1-SV40PolyA,连接载体,得到载体-D1;
(d)以步骤(a)合成的基因片段为模板,扩增,连接载体-D1,得到供体载体。
一种上述供体载体在高同源重组率的细胞系制备中的应用。
一种高同源重组率的细胞系的制备方法,其包括如下步骤:
(1)将核苷酸序列如SEQ ID No.1的基因插入PX330载体,构建PX330-AAVS1;
(2)将PX330-AAVS1与上述供体载体共转染细胞;
(3)单克隆形式筛选已正确插入到靶点的单克隆细胞。
制备方法的步骤(2)中,将PX330-AAVS1与供体载体共转染野生型293T细胞。
一种利用上述高同源重组率的细胞系的制备方法制备的高同源重组率的293T细胞系。
本发明的有益效果在于:
本发明提供了一种改造HEK293T细胞系的方法,并获得一种高同源重组率的改造型HEK293T细胞系(这可以是一种用于科学研究的细胞系产品),该细胞系是基于HEK293T细胞,利用siRNA技术和基因编辑技术,将一段供体DNA稳定插入在AAVS1位置,此供体DNA可将NHEJ通路中重要基因 Ligase4(LIG4)和Ku70敲低(基于siRNA技术),同时过表达同源重组通路中重要蛋白 SWI5和SFR1。经单克隆分选方法筛选得到高同源重组效率的改良型293T细胞系。利用此方法所得到的细胞系的增值效果和转染效果和野生型相似,同源重组效率则是野生型的20倍。
本发明理论上可以改造任意常用细胞系,可以为科学研究提供更优的高效同源重组型细胞系,改造后细胞系稳定,更有利于后续精确基因编辑操作进而更高效且低成本的开展科学研究。
附图说明
图1为293THDR-Lamin荧光(左)与野生型293T-Lamin荧光(右)对比图。
图2为293THDR-TubinB荧光(左)与野生型293T-TubinB荧光(右)对比图。
图3为293THDR细胞系与野生型293T细胞系的流式细胞同源重组效率分析图。
具体实施方式
以下结合实施例对本发明的技术方案进行详细地阐述。以下实施例仅仅用于说明和解释本发明,而不构成对本发明技术方案的限制。
一、基本载体
基因编辑载体:PX330。
sgRNA选取:AAVS1位点的可高效切割的位点。
SEQIDNo.1:GGGAGGGAGAGCTTGGCAGG。
退火片段准备:两个引物退火得到退火片段,退火缓冲液选用不含Mg离子的PCRbuffer Taq酶的缓冲液,退火体系为:总体积20ul,包含2 ul 10×PCR buffer,1 ulAAVS1sgRNA F(10pM),1 ul AAVS1sgRNA R(10pM),16ul水。
引物序列:
AAVS1 sgRNA F(SEQ ID No.2):caccgGGGAGGGAGAGCTTGGCAGG。
AAVS1 sgRNA R(SEQ ID No.3):aaacCCTGCCAAGCTCTCCCTCCCc。
退火程序如下:
Figure DEST_PATH_IMAGE001
构建方法:PX330用bbs1酶单切,切胶回收,与回收的退火片段用T4连接酶,构建PX330-AAVS1。
二、供体载体
下面以最简单的pGEM载体为例,连入供体片段,构建供体载体。需要说明的是,该载体包括但不限于含有大肠杆菌所需的复制起始序列、抗性基因、多克隆位点等,适用于所有可在大肠杆菌中复制的载体,例如PET28载体、pEGFP载体等。
供体片段组成:
AAVS1-CMV- SWI5-P2A-SFR1-SV40PolyA-H1-LIG4i-U6-Ku70i-AAVS1。
供体载体的制备方法如下:
(1)确定Ku70的siRNA 序列。
SEQ ID No.4(Ku70i):GGAAGAGATAGTTTGATTT。
(2)确定LIG4 有效的siRNA 序列。
SEQ ID No.5(LIG4i):GCTAGATGGTGAACGTATG。
由外包公司合成基因片段H1-LIG4i-spacer-U6-Ku70i。
(3)确定SWI5和SFR1表达功能性蛋白的CDS序列
通过NCBI查询同源重组通路中重要蛋白 SWI5和SFR1的CDS序列,设计相应引物,分别扩增SWI5和SFR1两个基因,然后桥式PCR将SWI5-P2A-SFR1融合在一起,利用Nhe1和Apa1两个酶切位点连接在PCDNA3.1载体上。
1)以cDNA为模板,扩增得到SWI5基因。
扩增引物为:
SWI5 F(SEQ ID No.6):cagcggcgtggccagaggga。
SWI5 R(SEQ ID No.7):gtcattcatgtccagcccaaactct。
扩增条件为:退火温度58℃,延伸20s,30个循环。
通过琼脂糖凝胶电泳确定扩增出来的片段和目的片段大小一致,利用试剂盒回收片段。
2)以cDNA为模板,扩增得到SFR1基因。
扩增引物为:
SFR1 F(SEQ ID No.8):atggcggagggagagaaaaac。
SFR1 R(SEQ ID No.9):ttaaacatctataaattcttcttcacttctgtt。
扩增参数为:退火温度53℃,延伸20s,30个循环。
通过琼脂糖凝胶电泳确定扩增出来的片段和目的片段大小一致,利用试剂盒回收片段。
3)连接到PCDNA3.1,构建完成PCDNA3.1-SWI5-P2A-SFR1。
以SWI5和SFR1两个片段为模板,通过桥式PCR将SWI5-P2A-SFR1融合在一起。
引物为:
SWI5-NheF(SEQ ID No.10):CTAGCTAGCGCCACCATGGTGcagcggcgtggccagagg。
SWI5-P2A-brR(SEQ ID No.11):GACATCCCCTGCTTGTTTCAACAGGGAGAAGTTAGTGGCACGCGTgtcattcatgtccagccc。
p2a-SFR1-brF(SEQ ID No.12):GAAACAAGCAGGGGATGTCGAAGAGAATCCCGGGCCAatggcggagggagagaaaaac。
SFR1-apaR(SEQ ID No.13):AACGGGCCCttaaacatctataaattcttcttcacttc。
桥式PCR扩增过程为:
①第一轮PCR
引物为SWI5-NheF和SWI5-P2A-brR为一组,退火温度为55℃,延伸20s,30个循环,扩增片段通过琼脂糖凝胶电泳后,切胶回收768bp大小的片段。
引物为p2a-SFR1-brF和SFR1-apaR为一组,退火温度为52℃,延伸20s,30个循环,扩增片段通过琼脂糖凝胶电泳后,切胶回收784bp大小的片段。
②第二轮PCR
以上两个切胶回收的片段为模板,模板量均为30ng,引物为SWI5-NheF和SFR1-apaR,退火温度为59℃,延伸40s,30个循环,扩增片段通过琼脂糖凝胶电泳后,切胶回收1533bp大小的片段。
片段切胶回收后,利用Nhe1和Apa1两个酶切位点连接在PCDNA3.1载体上。连接到PCDNA3.1构建完成PCDNA3.1-SWI-P2A-SFR。
(4)以PCDNA3.1-SWI5-P2A-SFR1为模板,扩增AAVS1-CMV- SWI5-P2A-SFR1-SV40PolyA,连接pGEM载体,得到pGEM-D1。
扩增引物为:
AAVS1-CVM-EF(SEQ ID No.14):GGAATTCCCCCCTGCCAAGCTCTCCCTCCCGACATTGATTATTGACTAGTTATTAATAG。
Poly-KR(SEQ ID No.15):GGGGTACCCCATAGAGCCCACCGCAT。
扩增参数为:退火温度为52℃,延伸20s,30个循环。
扩增片段通过琼脂糖凝胶电泳后,切胶回收2476bp大小的片段。利用EcoR1和Kpn1两个酶切位点,连接到PGEM载体。
(5)以合成基因为模板,扩增,连接PGEM-D1载体。
扩增引物为:
H1-KF(SEQ ID No.16):GGGGTACCAATTCATATTTGCATGTCGC。
AAVS1-SalR(SEQ ID No.17):GCAGGTCGACGGGAGGGAGAGCTTGGCAGGGGGGATTACGCCAAGCTGAAG。
扩增参数为:退火温度为52℃,延伸20s,30个循环,扩增片段通过琼脂糖凝胶电泳后,目的片段大小为650bp。
通过琼脂糖凝胶电泳确定扩增出来的片段和目的片段大小一致,利用试剂盒回收片段,利用Kpn1和Sal1两个酶切位点,连接到pGEM-D1载体上,得到pGEM-D1-GT载体。
三、高效同源重组型细胞系的制备
将基本载体和供体载体共转染野生型293T细胞,72h后单克隆形式筛选。
细胞转染步骤:将基本载体PX330-AAVS1和供体载体pGEM-D1-GT各800ng共转染野生型293T细胞,转染前24h 用 1×105个细胞铺24孔板,1.5ul/孔,转染试剂为lipofectin2000。
筛选方式如下:
72h后筛选单克隆,单克隆细胞培养14天左右,各取一半细胞提取基因组,分别用两组PCR验证前后端是否都正确插入到靶位点。通过设计引物扩增片段,对比片段长度与预想长度是否一致的方法验证目标片段是否插入设想位点,从而确定筛选到的细胞是否为阳性细胞。将筛选到的阳性细胞及为高同源重组细胞。为表述方便,将其命名为293THDR细胞。
四、高效同源重组型细胞系的验证
单克隆细胞培养14天左右,取一半提取基因组,利用A和B两组PCR分别验证前后端是否都正确插入到靶位点。
A、理论值377bp:
CMV-testR(SEQ ID No.18):GCGGGCCATTTACCGTAAG。
TEXT-F1(SEQ ID No.19):CCGGTTAATGTGGCTCTGGT。
B、理论值363bp:
TEXT-R(SEQ ID No.20):AAAACTGACGCACGGAGGAA。
U6-textF(SEQ ID No.21):GTGGAAAGGACGAAACACCg。
五、利用改造的细胞系进行基因编辑,测试HDR效率
利用cas9核酸酶针对293T细胞的Lamin和TubinB位点,进行基因编辑。
实验例1
构建载体Lam-Donor-gn及NLS-cas9-gk-H1-lamin sg,共转染293THDR细胞及野生型293T细胞,转染后培养72小时,经流式细胞分析,293THDR细胞同源重组的细胞比例为野生型293T细胞同源重组效率的20倍左右。结果如图1所示。
实验例2
构建载体tubB-Donor-gn及 NLS-cas9-gk-H1-TUB SG1,共转染293THDR细胞及野生型293T细胞,转染后培养72小时,经流式细胞分析,293THDR细胞同源重组的细胞比例为野生型293T细胞同源重组效率的20倍左右。结果如图2和图3所示。
SEQUENCE LISTING
<110> 河北科技大学
<120> 高同源重组率的细胞系的制备方法
<130> 2022
<160> 21
<170> PatentIn version 3.3
<210> 1
<211> 20
<212> DNA
<213> 人工合成
<400> 1
gggagggaga gcttggcagg 20
<210> 2
<211> 25
<212> DNA
<213> 人工合成
<400> 2
caccggggag ggagagcttg gcagg 25
<210> 3
<211> 25
<212> DNA
<213> 人工合成
<400> 3
aaaccctgcc aagctctccc tcccc 25
<210> 4
<211> 19
<212> DNA
<213> 人工合成
<400> 4
ggaagagata gtttgattt 19
<210> 5
<211> 19
<212> DNA
<213> 人工合成
<400> 5
gctagatggt gaacgtatg 19
<210> 6
<211> 20
<212> DNA
<213> 人工合成
<400> 6
cagcggcgtg gccagaggga 20
<210> 7
<211> 25
<212> DNA
<213> 人工合成
<400> 7
gtcattcatg tccagcccaa actct 25
<210> 8
<211> 21
<212> DNA
<213> 人工合成
<400> 8
atggcggagg gagagaaaaa c 21
<210> 9
<211> 33
<212> DNA
<213> 人工合成
<400> 9
ttaaacatct ataaattctt cttcacttct gtt 33
<210> 10
<211> 39
<212> DNA
<213> 人工合成
<400> 10
ctagctagcg ccaccatggt gcagcggcgt ggccagagg 39
<210> 11
<211> 63
<212> DNA
<213> 人工合成
<400> 11
gacatcccct gcttgtttca acagggagaa gttagtggca cgcgtgtcat tcatgtccag 60
ccc 63
<210> 12
<211> 58
<212> DNA
<213> 人工合成
<400> 12
gaaacaagca ggggatgtcg aagagaatcc cgggccaatg gcggagggag agaaaaac 58
<210> 13
<211> 38
<212> DNA
<213> 人工合成
<400> 13
aacgggccct taaacatcta taaattcttc ttcacttc 38
<210> 14
<211> 59
<212> DNA
<213> 人工合成
<400> 14
ggaattcccc cctgccaagc tctccctccc gacattgatt attgactagt tattaatag 59
<210> 15
<211> 26
<212> DNA
<213> 人工合成
<400> 15
ggggtacccc atagagccca ccgcat 26
<210> 16
<211> 28
<212> DNA
<213> 人工合成
<400> 16
ggggtaccaa ttcatatttg catgtcgc 28
<210> 17
<211> 51
<212> DNA
<213> 人工合成
<400> 17
gcaggtcgac gggagggaga gcttggcagg ggggattacg ccaagctgaa g 51
<210> 18
<211> 19
<212> DNA
<213> 人工合成
<400> 18
gcgggccatt taccgtaag 19
<210> 19
<211> 20
<212> DNA
<213> 人工合成
<400> 19
ccggttaatg tggctctggt 20
<210> 20
<211> 20
<212> DNA
<213> 人工合成
<400> 20
aaaactgacg cacggaggaa 20
<210> 21
<211> 20
<212> DNA
<213> 人工合成
<400> 21
gtggaaagga cgaaacaccg 20

Claims (7)

1.一种供体载体,其特征在于,其包括如下基因片段:AAVS1-CMV-SWI5-P2A-SFR1-SV40PolyA-H1-LIG4i-U6-Ku70i-AAVS1。
2.根据权利要求1所述的供体载体,其特征在于,所述Ku70i的核苷酸序列如SEQ IDNo.4所示,所述LIG4i的核苷酸序列如SEQ ID No.5所示。
3.根据权利要求2所述的供体载体,其特征在于,通过如下方法制备:
(a)确定Ku70有效的siRNA 序列SEQ ID No.4;确定LIG4有效的siRNA 序列SEQ IDNo.5;合成基因片段H1-LIG4i-spacer-U6-Ku70i;
(b)分别扩增SWI5和SFR1两个基因,桥式PCR将SWI5-P2A-SFR1融合在一起,利用Nhe1和Apa1两个酶切位点连接在PCDNA3.1载体上;
(c)以PCDNA3.1-SWI5-P2A-SFR1为模板,扩增AAVS1-CMV- SWI5-P2A-SFR1-SV40PolyA,连接载体,得到载体-D1;
(d)以步骤(a)合成的基因片段为模板,扩增,连接载体-D1,得到供体载体。
4.一种如权利要求1所述的供体载体在高同源重组率的细胞系制备中的应用。
5.一种高同源重组率的细胞系的制备方法,其特征在于,其包括如下步骤:
(1)将核苷酸序列如SEQIDNo.1的基因插入PX330载体,构建PX330-AAVS1;
(2)将PX330-AAVS1与权利要求1所述的供体载体共转染细胞;
(3)单克隆形式筛选已正确插入到靶点的单克隆细胞。
6.根据权利要求5所述的制备方法,其特征在于,步骤(2)中,将PX330-AAVS1与供体载体共转染野生型293T细胞。
7.一种利用权利要求6所述的制备方法制备的高同源重组率的293T细胞系。
CN202210465356.7A 2022-04-29 2022-04-29 高同源重组率的细胞系的制备方法 Pending CN114717263A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210465356.7A CN114717263A (zh) 2022-04-29 2022-04-29 高同源重组率的细胞系的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210465356.7A CN114717263A (zh) 2022-04-29 2022-04-29 高同源重组率的细胞系的制备方法

Publications (1)

Publication Number Publication Date
CN114717263A true CN114717263A (zh) 2022-07-08

Family

ID=82245923

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210465356.7A Pending CN114717263A (zh) 2022-04-29 2022-04-29 高同源重组率的细胞系的制备方法

Country Status (1)

Country Link
CN (1) CN114717263A (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140242702A1 (en) * 2013-02-25 2014-08-28 Sigma Aldrich Co. Llc Methods and compositions for enhancing nuclease-mediated gene disruption
CN106399367A (zh) * 2016-08-31 2017-02-15 深圳市卫光生物制品股份有限公司 提高crispr介导的同源重组效率的方法
CN109880851A (zh) * 2019-03-28 2019-06-14 西北农林科技大学 用于富集CRISPR/Cas9介导的同源重组修复细胞的筛选报告载体及筛选方法
US20200149038A1 (en) * 2016-04-01 2020-05-14 Children's Medical Center Corporation Methods and compositions relating to homology-directed repair
US20210008161A1 (en) * 2019-06-17 2021-01-14 Crispr Therapeutics Ag Methods and compositions for improved homology directed repair
US20210130818A1 (en) * 2018-07-04 2021-05-06 Yale University Compositions and Methods for Enhancement of Homology-Directed Repair Mediated Precise Gene Editing by Programming DNA Repair with a Single RNA-Guided Endonuclease

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140242702A1 (en) * 2013-02-25 2014-08-28 Sigma Aldrich Co. Llc Methods and compositions for enhancing nuclease-mediated gene disruption
US20200149038A1 (en) * 2016-04-01 2020-05-14 Children's Medical Center Corporation Methods and compositions relating to homology-directed repair
CN106399367A (zh) * 2016-08-31 2017-02-15 深圳市卫光生物制品股份有限公司 提高crispr介导的同源重组效率的方法
US20210130818A1 (en) * 2018-07-04 2021-05-06 Yale University Compositions and Methods for Enhancement of Homology-Directed Repair Mediated Precise Gene Editing by Programming DNA Repair with a Single RNA-Guided Endonuclease
CN109880851A (zh) * 2019-03-28 2019-06-14 西北农林科技大学 用于富集CRISPR/Cas9介导的同源重组修复细胞的筛选报告载体及筛选方法
US20210008161A1 (en) * 2019-06-17 2021-01-14 Crispr Therapeutics Ag Methods and compositions for improved homology directed repair

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BILGE ARGUNHAN 等: "The differentiated and conserved roles of Swi5-Sfr1 in homologous recombination", 《FEBS LETT 》, vol. 591, no. 14, pages 2041 *

Similar Documents

Publication Publication Date Title
CN115651927B (zh) 编辑rna的方法和组合物
CA3154236C (en) Modified stem cell memory t cells, methods of making and methods of using same
CN113939591A (zh) 编辑rna的方法和组合物
CN105518135B (zh) CRISPR-Cas9特异性敲除猪CMAH基因的方法及用于特异性靶向CMAH基因的sgRNA
EP3443088A1 (en) Grna fusion molecules, gene editing systems, and methods of use thereof
WO2017136629A1 (en) Vectors and system for modulating gene expression
CN107208096A (zh) 基于crispr的组合物和使用方法
JP2022548062A (ja) 亢進したdna産生を有する修飾型細菌レトロエレメント
EP3414333A1 (en) Replicative transposon system
WO2018195313A1 (en) Site-specific dna modification using a donor dna repair template having tandem repeat sequences
CN115667283A (zh) Rna指导的千碱基规模基因组重组工程
WO2022198080A1 (en) Multiplex editing with cas enzymes
CN106520829B (zh) 一种终止双等位基因转录的方法
CN108118057B (zh) 一种基因编辑系统及其制备方法和应用
CN112574992A (zh) 一种circRNA过表达成环载体DNA序列及其构建方法与应用
CN110499335B (zh) CRISPR/SauriCas9基因编辑系统及其应用
CN114990093B (zh) 氨基酸序列小的蛋白序列mini rfx-cas13d
CN114717263A (zh) 高同源重组率的细胞系的制备方法
CN110551762A (zh) CRISPR/ShaCas9基因编辑系统及其应用
CN114807240B (zh) 一种连接有适配体的模板分子及其试剂盒
JP2024509048A (ja) Crispr関連トランスポゾンシステム及びその使用方法
CN110551763A (zh) CRISPR/SlutCas9基因编辑系统及其应用
CN117821462B (zh) 基因编辑修复阿尔兹海默症相关psen1位点突变
WO2024119461A1 (en) Compositions and methods for detecting target cleavage sites of crispr/cas nucleases and dna translocation
US20230193243A1 (en) Compositions comprising a cas12i2 polypeptide and uses thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination