CN114714688B - 一种零/负泊松比多层多向增强体材料及制备方法 - Google Patents

一种零/负泊松比多层多向增强体材料及制备方法 Download PDF

Info

Publication number
CN114714688B
CN114714688B CN202210336682.8A CN202210336682A CN114714688B CN 114714688 B CN114714688 B CN 114714688B CN 202210336682 A CN202210336682 A CN 202210336682A CN 114714688 B CN114714688 B CN 114714688B
Authority
CN
China
Prior art keywords
layer
fiber
reinforcement material
resin
zero
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210336682.8A
Other languages
English (en)
Other versions
CN114714688A (zh
Inventor
张典堂
韩钮栋
王晓旭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangnan University
Original Assignee
Jiangnan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangnan University filed Critical Jiangnan University
Priority to CN202210336682.8A priority Critical patent/CN114714688B/zh
Publication of CN114714688A publication Critical patent/CN114714688A/zh
Application granted granted Critical
Publication of CN114714688B publication Critical patent/CN114714688B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/02Layer formed of wires, e.g. mesh
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/043Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/06Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of natural rubber or synthetic rubber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/14Layered products comprising a layer of metal next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/18Layered products comprising a layer of metal comprising iron or steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B25/00Layered products comprising a layer of natural or synthetic rubber
    • B32B25/10Layered products comprising a layer of natural or synthetic rubber next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B25/00Layered products comprising a layer of natural or synthetic rubber
    • B32B25/20Layered products comprising a layer of natural or synthetic rubber comprising silicone rubber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/02Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by features of form at particular places, e.g. in edge regions
    • B32B3/08Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by features of form at particular places, e.g. in edge regions characterised by added members at particular parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/10Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a discontinuous layer, i.e. formed of separate pieces of material
    • B32B3/12Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a discontinuous layer, i.e. formed of separate pieces of material characterised by a layer of regularly- arranged cells, e.g. a honeycomb structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/12Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives
    • B32B37/1284Application of adhesive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/08Impregnating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/10Removing layers, or parts of layers, mechanically or chemically
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/24Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer not being coherent before laminating, e.g. made up from granular material sprinkled onto a substrate
    • B32B2037/243Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B2038/0052Other operations not otherwise provided for
    • B32B2038/0064Smoothing, polishing, making a glossy surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B2038/0052Other operations not otherwise provided for
    • B32B2038/0076Curing, vulcanising, cross-linking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/02Coating on the layer surface on fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/26Polymeric coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/021Fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/04Impregnation, embedding, or binder material
    • B32B2260/046Synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0253Polyolefin fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0261Polyamide fibres
    • B32B2262/0269Aromatic polyamide fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/103Metal fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/106Carbon fibres, e.g. graphite fibres
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)

Abstract

本发明公开了一种零/负泊松比多层多向增强体材料及制备方法,属于多层多向增强体材料领域。本发明中制备零/负泊松比多层多向增强体材料的方法,包括:(1)按照蜂窝结构设计底板导向针孔排布,并排列固定预浸渍刚性纤维棒;(2)将纤维缠绕于刚性纤维棒上,形成蜂窝结构的纤维层;(3)在纤维层表面平铺一层树脂,固化;(4)重复步骤(2)、(3),直至达到需要的厚度,抽离底板,修整多余预浸渍刚性纤维棒与树脂,得到蜂窝结构材料;(5)将蜂窝结构材料与硅橡胶层粘合,得到所述的多层多向增强体材料。本发明的零/负泊松比多层多向增强体材料的制备成本低、操作简便、无污染且更易投入工业化生产。

Description

一种零/负泊松比多层多向增强体材料及制备方法
技术领域
本发明涉及一种零/负泊松比多层多向增强体材料及制备方法,属于多层多向增强体材料领域。
背景技术
传统的飞行器在研发时往往只能针对单一飞行状态作出最佳气动布局设计,无法使飞行中的各个阶段都能够获得最佳的气动布局。而可变形飞行器可以根据不同的飞行阶段对自身气动布局作出自适应调整,飞行器即可在起飞、巡航、降落等不同的飞行阶段均能够获得最佳的气动布局,从而节约燃料、增加飞行器的可操控性并获得更好的多任务执行能力。可变形蒙皮是实现可变形飞行器的关键技术之一。这种蒙皮除了需要承受大面积变形之外,也需要具备足够的刚度以及一定的厚度和宽幅维持机体气动布局。
纺织领域对于零/负泊松比超结构材料的研究也是近30年才开始的,三维机织复合材料是复合材料领域中不可替代的战略新兴材料,在结构承载、功能性材料等方面有巨大应用价值,但是常规的三维机织复合材料的面内剪切性能不足,在航空航天及深海探索领域有着一定的局限性。为了改善三维机织复合材料面内剪切性能不足的问题,研究人员提出了多层多向层联机织结构,这种结构以层层角联锁作为主体结构,改善了面内剪切性能的问题,但是这种制备方法对于面内的纤维排列可设计性不足,较难进行自由化结构设计。对于零/负泊松比超结构所需要的各类多孔结构很难做到全覆盖生产,而且由于纺织纤维均为柔性材料,零/负泊松比超结构不论是通过三维机织或是三维针织织造实现,都会由于织物下机后缺乏足够的刚度,难以维持零/负泊松比超结构。
3D打印是近年来非常热门的材料制备方法,易于设计模型并制备出具有零/负泊松比形状的制件。但受限于3D打印设备的尺寸会影响到制件的三维尺寸和宽幅,限制了其实际应用范围。另外,受限于固有的成型原理,及发展还不完善,其打印成型的制件尚不足以满足在短期内实现工业化制备。
发明内容
[技术问题]
目前通过3D打印制备的增强材料尺寸受到限制,传统纺织领域很难做到“刚柔并济”——在做到零/负泊松比超结构效应的同时拥有一定的力学性能。
[技术方案]
为了解决上述问题,本发明提供了一种具备零/负泊松比的多层多向增强体材料及制备方法。本发明的增强体制件尺寸、宽幅均不受限制,制件有较高的厚度能够获得很好的垂直方向力学性能,制件各部分纤维体积含量高且均匀性好、一致性高;由此制备的增强体材料拉伸变形能够达到25%以上,增强体材料拉伸强度达到120MPa以上,压缩强度达到80MPa以上。本发明的制备方法具有制备成本低、操作简单、适应性强等优点。
本发明的第一个目的是提供一种制备零/负泊松比多层多向增强体材料的方法,包括如下步骤:
(1)按照蜂窝结构设计底板导向针孔排布,并排列固定预浸渍刚性纤维棒;其中,预浸渍刚性纤维棒与底板垂直;
(2)将纤维缠绕于刚性纤维棒上,形成蜂窝结构的纤维层;
(3)在纤维层表面平铺一层树脂,固化;
(4)重复步骤(2)、(3),直至达到需要的厚度,抽离底板,修整多余预浸渍刚性纤维棒与树脂,得到蜂窝结构材料;
(5)将步骤(4)的蜂窝结构材料与硅橡胶层粘合,得到所述的多层多向增强体材料。
在本发明的一种实施方式中,步骤(1)所述的蜂窝结构为钻石型蜂窝或手风琴型蜂窝。
在本发明的一种实施方式中,步骤(1)所述的导向针孔的直径在0.5-3mm。
在本发明的一种实施方式中,步骤(1)所述的相邻导向针孔之间的距离为1-5mm。
在本发明的一种实施方式中,步骤(1)所述的预浸渍刚性纤维棒的制备方法为:
将碳纤维束浸渍在环氧树脂中,固化,得到所述的预浸渍刚性纤维棒;其中,所述的碳纤维束是将2、3束碳纤维进行合并,得到纤维束,其中纤维束的捻度为1-3捻/1cm;碳纤维为T700 12k碳纤维,细度在500-1000tex,固化条件是在85-98℃下干燥7-10h;预浸渍刚性纤维棒直径为0.4-1mm。
在本发明的一种实施方式中,步骤(1)所述的预浸渍刚性纤维棒中纤维体积分数在70%以上,进一步优选为90%。
在本发明的一种实施方式中,步骤(1)所述的相邻预浸渍刚性纤维棒之间的距离为1-5mm。
在本发明的一种实施方式中,步骤(1)所述的底板的尺寸大于增强体材料的尺寸。
在本发明的一种实施方式中,步骤(2)所述的纤维为高性能纤维、金属纤维中的一种;其中高性能纤维包括碳纤维、芳纶纤维、超高分子量聚乙烯纤维、玄武岩纤维、聚苯硫醚纤维、石英玻璃纤维中的一种或几种;金属纤维包括不锈钢纤维、铜纤维中的一种或两种。
在本发明的一种实施方式中,步骤(2)所述的纤维的细度为100-1000tex。
在本发明的一种实施方式中,步骤(3)所述的树脂为光固化树脂,包括易生eSUN公司LCD水洗光固化树脂、挚风公司柔性LCD光固化树脂、Formlabs公司生产的Tough1500Resin光固化树脂、Formlabs公司的Elastic 50A Resin中的一种。
在本发明的一种实施方式中,步骤(3)所述的树脂平铺一层的厚度为0.2-0.5mm。
在本发明的一种实施方式中,步骤(3)所述的固化是经过紫外线灯光照射固化,紫外灯的频率在395-405nm,曝光时间为7-8秒。
在本发明的一种实施方式中,步骤(5)所述的硅橡胶层是道康宁公司的184型硅橡胶,Sylgard 184硅橡胶溶液包含两个组分,分别是硅胶基体溶液A和固化剂B,将组分A和组分B按照质量比A:B=10:1均匀混合;接着将其放入真空箱中移除混合溶液中的气泡,之后将混合溶液轻轻倒入事先准备好的平板模具中(厚度:0.5mm-5mm);最后将平板模具和溶液放入真空加热炉中,保持温度在100℃,固化1h后得到厚度为0.5mm-5mm的硅橡胶层。
在本发明的一种实施方式中,步骤(5)所述的蜂窝超结构与硅橡胶层的粘合,使用的是Formlabs公司生产的Tough 1500Resin光固化树脂,光固化树脂需经过紫外线灯光照射固化,紫外灯的频率在395-405nm,曝光时间为7-8秒。
本发明的第二个目的是本发明所述的方法制备得到的零/负泊松比多层多向增强体材料。
本发明的第三个目的是本发明所述的零/负泊松比多层多向增强体材料在汽车工业、航空航天、人体防护以及生物医学领域的应用。
[有益效果]
(1)本发明所述的零/负泊松比柔性复合材料的尺寸不会受到限制,能够制备出大尺寸、高宽幅的制件,且织造过程中,纤维受到的摩擦小,能够最大限度地保持纱线性能;垂直方向纱线的引入很好地改善了制件的垂直方向力学性能;能够根据需要设计出不同的纱线排列路径,获得预想的零/负泊松比超结构,具有灵活的可设计性;当增强体受到载荷时,材料整体呈现零/负泊松比超结构特性。
(2)本发明中预浸渍刚性纤维棒可以很好地固定所设计的织物结构,在编织过程中很好地固定织物结构,铺设并及时照射紫外线固化的光固化树脂能够确保增强体材料在下机之后缠绕的纤维不发生松动移位,不会出现无法展现零/负泊松比效应的情况。
(3)本发明的零/负泊松比多层多向增强体材料的制备成本低、操作简便、无污染且更易投入工业化生产。
附图说明
图1是制备钻石型蜂窝多层多向增强体材料的设备结构示意图;其中,a是钻石型蜂窝的底板设计示意图;b是安置底板预浸渍刚性纤维棒示意图。
图2是xoy平面钻石型蜂窝纤维结构示意图。
图3是零泊松比钻石型蜂窝多层多向增强体材料制备流程图;其中,a是第一束碳纤维的走向设计及缠绕方式示意图;b是第二束碳纤维的走向设计及缠绕方式示意图;c是第一层碳纤维排铺示意图;d是零泊松比增强体材料编织示意图。
图4是钻石型蜂窝多层多向增强体材料成型示意图。
图5是制备手风琴型蜂窝多层多向增强体材料的设备结构示意图;其中,a是手风琴型蜂窝的底板设计示意图;b是安置预浸渍刚性纤维棒的示意图。
图6是xoy平面手风琴型蜂窝纤维结构示意图。
图7是负泊松比手风琴型蜂窝多层多向增强体材料制备流程图;其中,a是第一根玻璃纤维的走向设计及缠绕方式示意图;b是第一层玻璃纤维排铺示意图;c是负泊松比增强体材料编织示意图。
图8是手风琴型蜂窝多层多向增强体材料成型示意图。
具体实施方式
以下对本发明的优选实施例进行说明,应当理解实施例是为了更好地解释本发明,不用于限制本发明。
测试方法:
拉伸性能测试:测试所采用的标准为ASTM D-3039《Standard Test Method forTensile Properties of Polymer Matrix Composite Materials》,测试机械为INSTRON-3385H型万能强力机,拉伸速度为2mm/min,测试试样经向的拉伸强度、拉伸模量和泊松比。
压缩性能测试:测试所采用的标准是ASTM D6641-14《Standard Test Method forCompressive Properties of Polymer Matrix Composite using a Combined LoadingCompression(CLC)Test Fixture 1》,测试机械为INSTRON-3385H型万能强力机,压缩速度为1.3mm/min,参考实验标准中的相关公式,试验并计算得到压缩试样经向的压缩强度及泊松比。
实施例中采用的硅橡胶层是道康宁公司的184型硅橡胶,Sylgard 184硅橡胶溶液包含两个组分,分别是硅胶基体溶液A和固化剂B,将组分A和组分B按照质量比A:B=10:1均匀混合;接着将其放入真空箱中移除混合溶液中的气泡,之后将混合溶液轻轻倒入事先准备好的平板模具中(厚度:2mm);最后将平板模具和溶液放入真空加热炉中,保持温度在100℃,固化1h后得到厚度为2mm的硅橡胶层。
实施例1
一种钻石型蜂窝零泊松比多层多向增强体材料,xoy平面内纤维和z向纤维选用来自日本东丽集团的T700 12k碳纤维,细度为800tex;钻石型蜂窝零泊松比多层多向增强体材料的厚度为10mm,xoy平面的碳纤维层数共有14层;
制备钻石型蜂窝零泊松比多层多向增强体材料的方法,包括如下步骤:
(1)按照蜂窝结构设计底板导向针孔排布,并排列固定预浸渍刚性纤维棒:
设计多层多向增强体材料xoy平面上纤维结构(如图2所示),底板整体尺寸为160mm*152mm*20mm,在底板xoy平面上布置导向针孔,针孔直径为1mm,针孔间距离为4mm,排布示意简图如图1中a所示,x向和y向底板导向针孔数量排列为30×28;
将两束碳纤维(T700 12k碳纤维,细度为800tex)进行合并,得到纤维束,纤维束捻度为2捻/1cm;将纤维束预先浸渍于型号WSR618(E-51)环氧树脂中,放入烘箱90℃下固化8h后,制得长度为50mm、直径为1mm,纤维体积分数为90%的预浸渍刚性纤维棒;
将固化后的预浸渍刚性纤维棒安置于底板导向针孔中,示意图如图1中b所示;
(2)将纤维缠绕于刚性纤维棒上,形成蜂窝结构的纤维层:
xoy平面内的导向纤维路径要尽可能不重复或少重复,如图3中a所示,具体是首先引入第一束碳纤维束,构成钻石型蜂窝结构的上半部分,接着引入面内的第二束纤维束(如图3中b所示),与第一束碳纤维构成具有零泊松比超结构的钻石型蜂窝结构;重复上述步骤,即可制得如图3中c所示的第一层碳纤维层;
(3)在纤维层表面平铺一层树脂,固化:
利用胶头滴管将Formlabs所生产的Tough 1500Resin光固化树脂充分且均匀地涂抹在碳纤维与预浸渍刚性纤维棒缠绕处并利用紫外灯以395nm紫外光照射固化8秒,之后利用胶头滴管和金属刮片将光固化树脂均匀平整地填充于纤维上,平铺的厚度为0.5mm,等待树脂通过自身流动充分浸润纤维层后,以395nm紫外光照射固化8秒,使光固化树脂与碳纤维层粘结固化;
(4)重复步骤(2)、(3):
重复铺设14层碳纤维层和滴加固化光固化树脂后,xoy平面内的纱线和树脂即铺设完毕;
利用刀片沿着底板与增强体材料的交界处轻划,使得增强体材料与底板缓慢剥离,期间可轻摇增强体外多余的预浸渍刚性纤维棒加速增强体材料剥离速度,将增强体材料整体取下后,利用剪刀除去多余的预浸渍刚性纤维棒,并用抛光打磨机清理增强体材料表面多余的固化树脂,得到蜂窝结构材料,如图3中d所示;
(5)与硅橡胶层粘合:
利用Formlabs公司生产的Tough 1500Resin光固化树脂将蜂窝结构材料与2mm厚的硅橡胶层粘合在一起,在紫外线频率为395nm的紫外灯下固化7s,得到所述的具有零泊松比效应的钻石型蜂窝多层多向增强体材料(如图4所示)。
将得到的钻石型蜂窝多层多向增强体材料进行性能测试,测试结果如下:
拉伸强度达到158.78MPa,应变可以达到28.21%,应变和拉伸强度继续增大会导致光固化树脂开裂,而增强体材料在经过25%的应变后仍可以恢复原状,同时泊松比达到0.02,经向压缩强度为107.96MPa,泊松比为0.01,基本维持零泊松比超结构特性,以上数据的变异系数CV值均在6%以内,误差较小。
实施例2
调整实施例1步骤(1)中预浸渍刚性纤维棒的纤维体积分数为50%、60%、70%、80%,其他和实施例1保持一致,得到多层多向增强体材料。
将得到的多层多向增强体材料进行测试,测试结果如下:
表1
纤维体积分数 拉伸强度(MPa) 应变(%) 应变泊松比 压缩强度(MPa) 压缩泊松比
50% 183.06 7.52 0.17 146.48 0.32
60% 178.20 11.35 0.18 130.56 0.27
70% 169.92 16.72 0.09 125.32 0.21
80% 162.63 22.82 0.07 112.71 0.10
90%(实施例1) 158.78 28.21 0.02 107.96 0.01
从表1可以看出:随着预浸渍刚性纤维棒纤维体积分数的提升,增强体材料经向拉伸强度和压缩强度呈现下降趋势而应变有所增大,这是因为z向预浸渍刚性纤维棒中环氧树脂基体占比的下降使得增强体材料z向力学性能下降,预浸渍刚性纤维棒对于各纤维层间支持作用下降,因此应变也会有所提升。同时可以注意到:在以上纤维体积分数下,增强体材料整体的零泊松比超结构效应有所减弱,这可能是因为在纤维体积分数较低时,预浸渍刚性纤维棒因为环氧树脂含量较高,整体刚度较高,构成蜂窝结构的碳纤维无法带动预浸渍刚性纤维棒产生形变,从而无法产生零泊松比超结构效应。结合实施例1和2,可以发现:将预浸渍刚性纤维棒纤维体积分数设置为70-90%能够在兼顾拉伸强度和较大应变的同时呈现零泊松比超结构效应。
实施例3
调整实施例1步骤(2)中的光固化树脂为Formlabs公司的Elastic 50A Resin,其他和实施例1保持一致,得到多层多向增强体材料。
将得到的多层多向增强体材料进行测试,测试结果如下:
增强体材料的经向拉伸强度为63.62MPa,应变为32.30%,泊松比为0.06;压缩性能测试得到经向压缩强度为67.79MPa,泊松比为0.03。
和实施例1相比,实施例3的最大应变相比实施例1有了很大提升,但是拉伸强度和压缩强度也有很大下降,这是因为此实施例3中所采用的光固化树脂在固化后整体强度较低,且有较高的弹性模量,但是,增强体材料整体的力学强度过低会在实际工程应用中出现较多问题。
对比例1
省略实施例1中的步骤(3),继续重复步骤(2)的操作,逐层缠绕碳纤维于预浸渍刚性纤维棒上,直到铺设完14层碳纤维层;
因为缺少了光固化树脂的固定作用,因此要将编织完成的三维织物尽可能小心地从底板上取下,防止预浸渍刚性纤维棒脱落或纤维层中的蜂窝结构破坏;
取下三维织物后,将织物放入预先用无水乙醇清洗过并涂抹有脱模剂的模具中,倒入380毫升Formlabs公司生产的Tough 1500Resin光固化树脂,将紫外灯频率设置为395nm,并照射织物整体15秒,使得树脂固化与织物形成一体;
树脂固化后,利用刀片将增强体材料与模具剥离,使用剪刀和抛光打磨机等设备将增强体材料表面整理平整,擦去增强体表面残留的脱模剂,用纱布蘸取少量酒精擦拭表面,保证增强体表面的整洁,利用Tough 1500Resin光固化树脂将增强体材料与2mm厚的硅橡胶层粘合后,得到多层多向增强体材料。
将得到的多层多向增强体材料进行测试,测试结果如下:
拉伸性能测试中,增强体材料的经向拉伸强度达到170.63MPa,应变为7.82%,泊松比为0.35;压缩性能测试中,增强体材料经向压缩强度为120.34MPa,泊松比为0.38。与实施例1相比,对比例1的总体力学性能有一定改善,但已经不再拥有零泊松比效应,这是因为光固化树脂的一体成型带来了更好的力学性能,可相比实施例1,注入的光固化树脂使得蜂窝结构无法呈现变形,因此零泊松比超结构遭到破坏。
实施例4
一种手风琴型负泊松比多层多向增强体材料,xoy平面内纱线采用来自中国巨石集团的190tex石英玻璃纤维×3股,z向纱线为日本东丽集团的T700 12k碳纤维,细度为800tex,;手风琴型蜂窝负泊松比多层多向增强体材料的厚度为7mm,xoy平面内的石英玻璃纤维层数为11层。
制备手风琴型蜂窝负泊松比多层多向增强体材料的方法,包括如下步骤:
(1)按照蜂窝结构设计底板导向针孔排布,并排列固定预浸渍刚性纤维棒:
xoy平面内选用的纤维结构是手风琴型蜂窝超结构,根据手风琴蜂窝超结构(如图6所示)设计底板导向针孔,底板整体尺寸为165mm*160mm*20mm,在底板xoy平面上布置导向针孔,针孔直径为1mm(如图5中a所示),孔间间距为2mm,x向和y向针孔数量排列为56*60;
将两束碳纤维(T700 12k碳纤维,细度为800tex)进行合并,得到纤维束,纤维束捻度为2捻/1cm;将纤维束预先浸渍于型号WSR618(E-51)环氧树脂中,将纤维束预先浸渍于型号WSR618(E-51)环氧树脂中,在90℃的烘箱中固化8h后制得长为50mm、直径为1mm,纤维体积分数为90%的刚性碳纤维棒;
将固化后的预浸渍刚性碳纤维棒安置在底板导向针孔中(如图5中b所示),这些预浸渍刚性纤维棒即可作为负泊松比多层多向增强体材料的z向纱线;
(2)将纤维缠绕于刚性纤维棒上,形成蜂窝结构的纤维层:
如图7中a所示,引入xoy平面内的第一根石英玻璃纤维;按照相同方法,引入xoy平面内的第二根纱线,与第一根纱线构成手风琴型蜂窝负泊松比纤维超结构,重复上述步骤,制得xoy平面内第一层纤维结构(如图7中b所示);
(3)在纤维层表面平铺一层树脂,固化:
利用胶头滴管将Tough 1500Resin光固化树脂充分且均匀地涂抹在纤维与预浸渍刚性纤维棒缠绕处并利用紫外线灯以395nm紫外光照射固化约8秒,之后利用胶头滴管和金属刮片将光固化树脂均匀平整地铺设于纤维上,平铺的厚度为0.5mm,待纤维充分被树脂浸润后,以395nm紫外光照射固化8秒,使光固化树脂与碳纤维层粘结固化;
(4)重复步骤(2)、(3)
重复铺设11层石英玻璃纤维和光固化树脂后,手风琴型蜂窝负泊松比多层多向增强体材料的面内纤维铺设完成;
利用刀片沿着底板与增强体材料的交界处轻划,使得增强体材料与底板缓慢剥离,期间轻摇增强体材料外多余的预浸渍刚性纤维棒加速增强体剥离速度,将增强体材料整体取下后,利用剪刀除去多余的预浸渍刚性纤维棒,并用抛光打磨机清理增强体材料表面,得到蜂窝结构材料,如图7中c所示;
(5)与硅橡胶层粘合:
利用Formlabs公司生产的Tough 1500Resin光固化树脂将增强体材料与2mm厚的硅橡胶皮粘合在一起,用于固化的紫外线频率为395nm,在紫外线频率为395nm的紫外灯下固化7s,得到所述的手风琴型蜂窝负泊松比多层多向增强体材料(如图8所示)。
将得到的手风琴型蜂窝多层多向增强体材料进行性能测试,测试结果如下:
增强体材料在拉伸测试中,拉伸强度为187.81MPa,应变为25.12%,泊松比为-0.52;压缩测试中压缩强度为130.24MPa,泊松比为-0.12,全部数据的变异系数均在5%以内。增强体材料整体呈现出较好的负泊松比超结构特性。
对比例2
调整实施例4步骤(2)中的光固化树脂为Formlabs公司的High Temp Resin型树脂,其他和实施例4保持一致,得到多层多向增强材料。
将得到的多层多向增强体材料进行测试,测试结果如下:
拉伸性能测试得到经向拉伸强度为250.92MPa,应变为4.3%,泊松比0.23;压缩性能测试得到经向压缩强度167.10MPa,泊松比为0.15。对比发现,采用High Temp Resin光固化树脂的增强体材料整体力学性能有了很大提升,但是应变较小且无法呈现负泊松比超结构特性。这是因为对比例2中使用的树脂固化后力学性能较好,但弹性模量较小,承受较大应变后会破裂损坏。
对比例3
省略实施例1中的步骤(3),继续重复步骤(2)的操作,逐层缠绕碳纤维于预浸渍刚性纤维棒上,直到铺设完11层碳纤维层;
尽可能小心地将三维织物从底板上取下;
取下三维织物后,将织物放入预先用无水乙醇清洗过并涂抹有脱模剂的模具中,倒入320毫升Formlabs公司生产的Tough 1500Resin光固化树脂,将紫外灯频率设置为395nm,并照射增强体材料15秒,使得树脂固化与织物形成一体;
使用刀片将增强体材料与模具剥离,用剪刀和抛光打磨机等设备将增强体材料表面整理平整,利用Tough 1500Resin光固化树脂将增强体材料与2mm厚的硅橡胶层粘合后,得到多层多向增强体材料。
将得到的多层多向增强体材料进行测试,测试结果如下:
拉伸性能测试得到拉伸强度为194.34MPa,应变为6.24%,泊松比为0.21;压缩性能得到压缩强度为127.12MPa,泊松比为0.29。与实施例4对比发现,实施例4所得的多层多向增强体材料虽然相较于一体成型的方法力学性能有所下降,但能够很好地通过蜂窝的中空结构维持面内的负泊松比超结构。
虽然本发明已以较佳实施例公开如上,但其并非用以限定本发明,任何熟悉此技术的人,在不脱离本发明的精神和范围内,都可做各种的改动与修饰,因此本发明的保护范围应该以权利要求书所界定的为准。

Claims (10)

1.一种制备零/负泊松比多层多向增强体材料的方法,其特征在于,包括如下步骤:
(1)按照蜂窝结构设计底板导向针孔排布,并排列固定预浸渍刚性纤维棒;其中,预浸渍刚性纤维棒与底板垂直;
(2)将纤维缠绕于刚性纤维棒上,形成蜂窝结构的纤维层;
(3)在纤维层表面平铺一层树脂,固化;
(4)重复步骤(2)、(3),直至达到需要的厚度,抽离底板,修整多余预浸渍刚性纤维棒与树脂,得到蜂窝结构材料;
(5)将步骤(4)的蜂窝结构材料与硅橡胶层粘合,得到所述的多层多向增强体材料。
2.根据权利要求1所述的方法,其特征在于,步骤(1)所述的预浸渍刚性纤维棒的制备方法为:
将碳纤维束浸渍在环氧树脂中,固化,得到所述的预浸渍刚性纤维棒;其中,所述的碳纤维束是将2、3束碳纤维进行合并,得到纤维束,其中纤维束的捻度为1-3捻/1cm;碳纤维为T700 12k碳纤维,细度在500-1000tex,固化条件是在85-98℃下干燥7-10h;预浸渍刚性纤维棒直径为0.4-1mm。
3.根据权利要求1所述的方法,其特征在于,步骤(1)所述的预浸渍刚性纤维棒中纤维体积分数在70%以上。
4.根据权利要求1所述的方法,其特征在于,步骤(3)所述的树脂为光固化树脂,包括易生eSUN公司LCD水洗光固化树脂、挚风公司柔性LCD光固化树脂、Formlabs公司生产的Tough1500Resin光固化树脂、Formlabs公司的Elastic 50A Resin中的一种。
5.根据权利要求1所述的方法,其特征在于,步骤(1)所述的蜂窝结构为钻石型蜂窝或手风琴型蜂窝。
6.根据权利要求1所述的方法,其特征在于,步骤(1)所述的导向针孔的直径在0.5-3mm。
7.根据权利要求1所述的方法,其特征在于,步骤(1)所述的相邻导向针孔之间的距离为1-5mm。
8.根据权利要求1所述的方法,其特征在于,步骤(3)所述的树脂平铺一层的厚度为0.2-0.5mm。
9.权利要求1-8任一项所述的方法制备得到的零/负泊松比多层多向增强体材料。
10.权利要求9所述的零/负泊松比多层多向增强体材料在汽车工业、航空航天、人体防护以及生物医学领域的应用。
CN202210336682.8A 2022-03-31 2022-03-31 一种零/负泊松比多层多向增强体材料及制备方法 Active CN114714688B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210336682.8A CN114714688B (zh) 2022-03-31 2022-03-31 一种零/负泊松比多层多向增强体材料及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210336682.8A CN114714688B (zh) 2022-03-31 2022-03-31 一种零/负泊松比多层多向增强体材料及制备方法

Publications (2)

Publication Number Publication Date
CN114714688A CN114714688A (zh) 2022-07-08
CN114714688B true CN114714688B (zh) 2022-12-13

Family

ID=82242480

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210336682.8A Active CN114714688B (zh) 2022-03-31 2022-03-31 一种零/负泊松比多层多向增强体材料及制备方法

Country Status (1)

Country Link
CN (1) CN114714688B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0034453A1 (en) * 1980-02-09 1981-08-26 The British Petroleum Company p.l.c. Process and apparatus for the manufacture of cellular composites
WO2013117838A1 (fr) * 2012-02-06 2013-08-15 Plasticell Procédé et installation de fabrication d'une structure alvéolaire en nid d'abeilles
CN108973250A (zh) * 2018-07-18 2018-12-11 吉林大学 一种纤维增强树脂蜂窝夹芯结构复合材料及其制备方法
CN109970021A (zh) * 2017-12-28 2019-07-05 财团法人工业技术研究院 三维结构
CN112277310A (zh) * 2019-12-06 2021-01-29 同济大学 负泊松比蜂窝型短纤维复合高强材料的3d打印方法及应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0034453A1 (en) * 1980-02-09 1981-08-26 The British Petroleum Company p.l.c. Process and apparatus for the manufacture of cellular composites
WO2013117838A1 (fr) * 2012-02-06 2013-08-15 Plasticell Procédé et installation de fabrication d'une structure alvéolaire en nid d'abeilles
CN109970021A (zh) * 2017-12-28 2019-07-05 财团法人工业技术研究院 三维结构
CN108973250A (zh) * 2018-07-18 2018-12-11 吉林大学 一种纤维增强树脂蜂窝夹芯结构复合材料及其制备方法
CN112277310A (zh) * 2019-12-06 2021-01-29 同济大学 负泊松比蜂窝型短纤维复合高强材料的3d打印方法及应用

Also Published As

Publication number Publication date
CN114714688A (zh) 2022-07-08

Similar Documents

Publication Publication Date Title
Justo et al. Characterization of 3D printed long fibre reinforced composites
Frketic et al. Automated manufacturing and processing of fiber-reinforced polymer (FRP) composites: An additive review of contemporary and modern techniques for advanced materials manufacturing
Sano et al. 3D printing of discontinuous and continuous fibre composites using stereolithography
Mei et al. Influence of mixed isotropic fiber angles and hot press on the mechanical properties of 3D printed composites
Saeed et al. Predication of the in-plane mechanical properties of continuous carbon fibre reinforced 3D printed polymer composites using classical laminated-plate theory
Karalekas et al. Composite rapid prototyping: overcoming the drawback of poor mechanical properties
CN101389457B (zh) 预成型体用强化纤维基材等、以及该强化纤维基材的层合体的制造方法等
Hossain et al. Effect of Fiber Orientation on the Tensile Properties of Jute Epoxy Laminated Composite.
CN112011073B (zh) 树脂供给材料、预成型体、及纤维增强树脂的制造方法
JP2016074204A (ja) 複合ラミネート上へのパターンのプリント
Karalekas Study of the mechanical properties of nonwoven fibre mat reinforced photopolymers used in rapid prototyping
EP3392012B1 (en) Method for manufacturing press-molded body
TW201637829A (zh) 樹脂供給材料、預形體、及纖維強化樹脂之製造方法
EP3719079A1 (en) Composite material and production method therefor
Verma et al. The key role of thread and needle selection towards ‘through-thickness reinforcement’in tufted carbon fiber-epoxy laminates
TW201800218A (zh) 纖維強化複合材料之製造方法
CN114714688B (zh) 一种零/负泊松比多层多向增强体材料及制备方法
He et al. On structure-mechanical and tribological property relationships of additive manufactured continuous carbon fiber/polymer composites
JP7156513B2 (ja) 繊維強化複合材料成形品の製造方法およびプリプレグ
Rahman Process Optimization of 3D Printing with Continuous Fiber Reinforced UV Curable Thermoset Resin
Kostar et al. Characterization and comparative study of three-dimensional braided hybrid composites
Hahn et al. Structural design criteria for filament-wound composite shells
Koysin et al. Fibre distribution inside yarns of textile composite: gemetrical and FE modelling
Hank Capillary Effects of Nanoporous Networks on Aerospace Autoclave-grade Prepreg Composites Enabling Vacuum-bag-only Manufacturing
DE102014119160A1 (de) Formmasse

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant