CN112277310A - 负泊松比蜂窝型短纤维复合高强材料的3d打印方法及应用 - Google Patents

负泊松比蜂窝型短纤维复合高强材料的3d打印方法及应用 Download PDF

Info

Publication number
CN112277310A
CN112277310A CN201911243364.1A CN201911243364A CN112277310A CN 112277310 A CN112277310 A CN 112277310A CN 201911243364 A CN201911243364 A CN 201911243364A CN 112277310 A CN112277310 A CN 112277310A
Authority
CN
China
Prior art keywords
negative poisson
printing
poisson ratio
hexagonal
fiber composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911243364.1A
Other languages
English (en)
Inventor
张雪霞
严鹏飞
严彪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tongji University
Original Assignee
Tongji University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tongji University filed Critical Tongji University
Priority to CN201911243364.1A priority Critical patent/CN112277310A/zh
Publication of CN112277310A publication Critical patent/CN112277310A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/112Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using individual droplets, e.g. from jetting heads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • B29C64/393Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/162Selection of materials

Abstract

本发明涉及一种负泊松比‑蜂窝型短纤维复合高强材料的3D打印方法,包括以下步骤:基层结构设置过程,在打印模型中设置每层中的内折六边形负泊松比区域和蜂窝状结构区域,其中内折六边形负泊松比区域开设有呈行排列的内折六边形镂空重复单元,且其相邻的两个内折边间的夹角α'=235‑252°,其中蜂窝状结构区域开设有呈行排列的六边形镂空重复单元,且其相邻两条侧边的夹角α=108‑125°;打印机设置过程;打印选材过程,打印材料选材为玻纤或碳纤高分子打印丝;打印过程。与现有技术相比,本发明将负泊松比‑蜂窝型两种结构复合到一起,并将玻纤或碳纤等短纤维复合高强材料应用于蜂窝结构材料的性能改进中,显著的提升了现有蜂窝材料的性能。

Description

负泊松比蜂窝型短纤维复合高强材料的3D打印方法及应用
技术领域
本发明涉及3D打印技术领域,尤其是涉及一种负泊松比蜂窝型短纤维复合高强材料的3D打印方法及应用。
背景技术
蜂窝结构材料具有许多优越的性能,从力学角度分析,封闭的六角等边蜂窝结构相比其他结构,能以最少的材料获得最好的力学性能,而蜂窝结构板受垂直于板面的载荷时,它的弯曲刚度与同材料、同厚度的实心板相差无几,甚至更高,但其重量却轻70~90%,而且不易变形、不易断裂、并具有减震、隔音、隔热等众多优点集一身。
以上两种材料在当前制备过程中均需要通过模压等简练制备方法来生产,由于蜂窝空隙的结构特殊性,使得本类材料的生产成本高,产品良率低,同时因为模压过程中需要设计大型的专用模具,但对于该种材料在开模过程中难度较大。而且蜂窝结构材料在实际的工程应用中还存在着刚性不足的缺陷,但要改善该种缺陷就需要在现有的蜂窝结构材料中加入新的刚性结构单元,新结构的开发和生产受到模具设计的限制而无法实现。
发明内容
本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种负泊松比蜂窝型短纤维复合高强材料的3D打印方法及应用,打破了现有技术中模具设计对于蜂窝结构材料进一步结构改进的限制,在本发明中直接将玻纤或碳纤等短纤维复合高强材料应用于蜂窝结构材料的性能改进中,构成了“负泊松比-蜂窝型”复合吸能结构,该复合结构为内折六边形负泊松比结构与蜂窝型结构的层状方式复合,系平面二维拉伸后得到的三维结构,该结构主要包含4大特征:具有蜂窝状结构区域、内折六边形负泊松比结构区域、“负泊松比-蜂窝”复合结构界面区域以及复合方式,并取得了通过工艺方法的设计实现了显著的性能提升。
本发明的目的可以通过以下技术方案来实现:
本发明中负泊松比-蜂窝型短纤维复合高强材料的3D打印方法,包括以下步骤:
基层结构设置过程,在打印模型中设置每层中的内折六边形负泊松比区域和蜂窝状结构区域,
其中内折六边形负泊松比区域开设有呈行排列的内折六边形镂空重复单元,每个内折六边形镂空单元均为轴对称结构,且其相邻的两个内折边间的夹角α'=235-252°。
其中蜂窝状结构区域开设有呈行排列的六边形镂空重复单元,每个六边形镂空单元均为轴对称结构,且其相邻两条侧边的夹角α=108-125°。
打印机设置过程,打印层厚设置为0.1-0.4mm,喷嘴孔径设置为0.4-0.8mm,打印温度为240-260℃,热床温度为60-80℃;
打印选材过程,打印材料选材为玻纤或碳纤高分子打印丝;α的稍小角度设计以及尼龙或PC的选材是本结构的高强度设计基础,稍小的α角使得整体结构的刚度增加,但过小会影响其缓冲行程及吸能性能,在本发明中选取α=108-125°,以此保证在具有充足吸能性能的前提下尽可能的增加其耐冲击强度性能。
打印过程,以基层材料为XY平面,并以Z向进行逐层打印,获得负泊松比-蜂窝型短纤维复合高强材料。
进一步地,所述的基层结构设置过程中,内折六边形负泊松比区域包括2行或多行内折六边形镂空重复单元;
蜂窝状结构区域包括2行或多行内折六边形镂空重复单元;蜂窝状结构区域和内折六边形负泊松比结构区域内部都至少要又两层对应的层状单体以发挥各自的效能。
内折六边形负泊松比区域与蜂窝状结构区域交替排列。
进一步地,夹角α'+α=360°,内折六边形镂空单元的两个内折边的长度为均b';
六边形镂空单元中相邻两条侧边的长度均为b,且b'=b。
进一步地,内折六边形镂空单元中内折角端点间的距离为a';
内折六边形镂空单元中底边的长度为a,且a=a'=4-8mm。
进一步地,内折六边形镂空单元中底边的长度为c';
内折六边形镂空单元的最大宽度为c,且c'=c=6-10mm。
进一步地,所述的基层结构设置过程中,相邻的内折六边形负泊松比区域与蜂窝状结构区域间相互插槽排列。
进一步地,相互插槽排列过程中六边形镂空单元的底边正对内折六边形镂空单元的侧方折边凹陷处。在两层单体之间可自然过渡,形成零厚度的曲折截面。
进一步地,接壤端板层的特征为:如蜂窝六角与端板层接壤,则再延续半个周期,即延伸出长度接近于a/2的竖边,优选为(0.85~1.12)×a/2,如图1与图2上部的粗边所示;如内折六角与端板层接壤,也在延续半个周期,即延伸出长度接近于c'/2的竖边,优选为(0.88~1.17)×c'/2,如图1与图2下部的粗边所示。这样可较优发挥各自结构的吸能效果。
进一步地,所述的基层结构设置过程中,边宽t设为0.9-1.5mm。
进一步地,所述的打印过程中的喷丝直径为1.75mm,打印速度为40-60mm/s。
进一步地,所述的打印过程中打印温度设置为240-260℃是较为适宜的范围,在范围内恰好可以避免因为温度过高而使得挤出的熔丝中混有气泡,同时避免了产生材料坍塌及拉丝现象和产品表面的起皱现象,同时该范围内也避免了因为温度不足而产生的喷嘴堵塞或层间剥离、开裂、翘曲、变形等现象。
进一步地,层厚度指利用切片软件对三维数据模型进行切片时层与层之间的距离,即打印时每层厚度,层厚小于在0.1-0.4mm范围内时,具有较为适宜的厚度,同时可以保证较优的精度与较高的加工效率。
进一步地,在打印过程中,图1和图2所示截面方向为平行于底板(即XY平面),而拉伸方向为Z轴方向。由于沿竖直方向(Z向)的强度较弱,垂直与Z向的表面轮廓精度和表面粗糙度质量较高。因此,在成型过程中,优选将主要发生吸能收缩的截面沿XY平面成型,以确保制件质量处于最佳状态。
本发明中通过上述制备方法获得的负泊松比-蜂窝型短纤维复合高强材料在在耐压缩/冲击材料中具有广泛的应用。
本发明制备的负泊松比-蜂窝型短纤维复合高强材料,当受到外界压力时,蜂窝结构首先发生屈服变形,随着力的增加,负泊松比结构也发生屈服变形,相对于一般的蜂窝结构来说,复合吸能结构由于负泊松比效应的存在会使得结构应力应变曲线在平台区后出现平台应力增强的现象,这一阶段在应力应变所围成的面积中占比较大,因此这一阶段对于结构整体吸收能量的能力拥有着不可忽视的作用。其次蜂窝结构区域相对较柔,承担大变形吸能功能;而内折六边形负泊松比结构区域由于其较大的抗变形内力显得结构刚度更强,承担相对刚性的抗冲功能。
打印结构所得的平台应力范围为3.0-4.5MPa,平台结束应变范围50-60%比吸能值Es为15-30KJ/m3吸能效率70-80%。
与现有技术相比,本发明具有以下的优点:
1)本发明将负泊松比-蜂窝型两种结构复合到一起,并将玻纤或碳纤等短纤维复合高强材料应用于蜂窝结构材料的性能改进中,将实现吸能结构的“刚柔并济”,更高效的实现缓冲效能,显著的提升了现有蜂窝材料的性能,拓展了该类材料在现有工程技术中的应用。
2)本发明中采用3D打印的工艺方法实现了负泊松比蜂窝型短纤维复合高强材料的生产制备,实现了复杂的两种构型材料的逐层增量生产,使得原料的利用率达到100%,可实现大批量的工业化推广。
附图说明
图1为蜂窝状结构区域和内折六边形负泊松比结构区域交替排列图;
图2为另一种蜂窝状结构区域和内折六边形负泊松比结构区域交替排列图;
图3为内折六边形镂空单元的结构示意图;
图4为六边形镂空单元的结构示意图;
图5为一种负泊松比蜂窝型短纤维复合高强材料的成品结构示意图。
具体实施方式
下面结合附图和具体实施例对本发明进行详细说明。
实施例1
本实施例中负泊松比-蜂窝型短纤维复合高强材料的3D打印方法,包括以下步骤:
基层结构设置过程:在打印模型中设置每层中的内折六边形负泊松比区域和蜂窝状结构区域,其中内折六边形负泊松比区域开设有呈行排列的内折六边形镂空重复单元。内折六边形负泊松比区域包括2行或多行内折六边形镂空重复单元;蜂窝状结构区域包括2行或多行内折六边形镂空重复单元;蜂窝状结构区域和内折六边形负泊松比结构区域内部都至少要又两层对应的层状单体以发挥各自的效能。内折六边形负泊松比区域与蜂窝状结构区域交替排列。基层结构设置过程中,相邻的内折六边形负泊松比区域与蜂窝状结构区域间相互插槽排列。相互插槽排列过程中六边形镂空单元的底边正对内折六边形镂空单元的侧方折边凹陷处。在两层单体之间可自然过渡,形成零厚度的曲折截面。
具体的尺寸以及结构设计过程:参见图3和图4,每个内折六边形镂空单元均为轴对称结构,且其相邻的两个内折边间的夹角α'=235-252°,其中蜂窝状结构区域开设有呈行排列的六边形镂空重复单元,每个六边形镂空单元均为轴对称结构,且其相邻两条侧边的夹角α=108-125°。夹角α'+α=360°,内折六边形镂空单元的两个内折边的长度为均b,六边形镂空单元中相邻两条侧边的长度均为b,且b'=b。内折六边形镂空单元中内折角端点间的距离为a'。内折六边形镂空单元中底边的长度为a,且a=a'=4-8mm。内折六边形镂空单元中底边的长度为c',内折六边形镂空单元的最大宽度为c,且c'=c=6-10mm。接壤端板层的特征为:如蜂窝六角与端板层接壤,则再延续半个周期,即延伸出长度接近于a/2的竖边,优选为(0.85~1.12)×a/2,如图1与图2上部的粗边所示;如内折六角与端板层接壤,也在延续半个周期,即延伸出长度接近于c'/2的竖边,优选为(0.88~1.17)×c'/2,如图1与图2下部的粗边所示。这样可较优发挥各自结构的吸能效果。
打印层厚设置为0.1-0.4mm,喷嘴孔径设置为0.4-0.8mm,打印温度为240-260℃,热床温度为60-80℃。打印过程中打印温度设置为240-260℃是较为适宜的范围,在范围内恰好可以避免因为温度过高而使得挤出的熔丝中混有气泡,同时避免了产生材料坍塌及拉丝现象和产品表面的起皱现象,同时该范围内也避免了因为温度不足而产生的喷嘴堵塞或层间剥离、开裂、翘曲、变形等现象。层厚度指利用切片软件对三维数据模型进行切片时层与层之间的距离,即打印时每层厚度,层厚小于在0.1-0.4mm范围内时,具有较为适宜的厚度,同时可以保证较优的精度与较高的加工效率。
打印选材过程,打印材料选材为玻纤或碳纤高分子打印丝。打印过程以基层材料为XY平面,并以Z向进行逐层打印,获得负泊松比-蜂窝型短纤维复合高强材料。基层结构设置过程中,边宽t设为0.9-1.5mm。打印过程中的喷丝直径为1.75mm,打印速度为40-60mm/s。在打印过程中,图1和图2所示截面方向为平行于底板(即XY平面),而拉伸方向为Z轴方向。由于沿竖直方向(Z向)的强度较弱,垂直与Z向的表面轮廓精度和表面粗糙度质量较高。因此,在成型过程中,优选将主要发生吸能收缩的截面沿XY平面成型,以确保制件质量处于最佳状态。
按照上述实施步骤进行一次加工:
材质:尼龙玻纤
复合的结构,两种单体尺寸参数关系为a=a'即c=c',其中尺寸范围a=4mm,c=8mm,两条相邻侧壁夹角为α=118°。边宽/壁厚t为1.0mm,参见图5。
层厚:0.2-0.4mm.
丝的直径:1.75mm
喷嘴孔径:0.4mm
打印速度:40mm/s
打印温度:240-250℃,热床温度:70-80℃
对此结构进行压缩和冲击试验,得到应力-应变曲线,得到的平台应力范围为3-4MPa,平台结束应变时的范围50-55%,比吸能值Es范围为15-17KJ/m3,吸能效率70-80%。
实施例2
实施步骤与实施例相同,区别在于采用不同的实施工艺参数:
材质:尼龙碳纤
复合的结构,两种单体尺寸参数关系为a=a'即c=c',其中尺寸范围a=4mm,c=8mm,两条相邻侧壁夹角为α=116度。边宽/壁厚t为1.0mm,参见图5。
层厚:0.2-0.4mm.
丝的直径:1.75mm
喷嘴孔径:0.4mm
打印速度:40mm/s
打印温度:240-250℃,热床温度:70-80℃
对此结构进行压缩和冲击试验,得到应力-应变曲线,得到的平台应力范围为5-6MPa,平台结束应变时的范围48-55%,比吸能值Es范围为25-30KJ/m3.吸能效率72-78%。
上述的对实施例的描述是为便于该技术领域的普通技术人员能理解和使用发明。熟悉本领域技术的人员显然可以容易地对这些实施例做出各种修改,并把在此说明的一般原理应用到其他实施例中而不必经过创造性的劳动。因此,本发明不限于上述实施例,本领域技术人员根据本发明的揭示,不脱离本发明范畴所做出的改进和修改都应该在本发明的保护范围之内。

Claims (10)

1.一种负泊松比-蜂窝型短纤维复合高强材料的3D打印方法,其特征在于,包括以下步骤:
基层结构设置过程,在打印模型中设置每层中的内折六边形负泊松比区域和蜂窝状结构区域,
其中内折六边形负泊松比区域开设有呈行排列的内折六边形镂空重复单元,每个内折六边形镂空单元均为轴对称结构,且其相邻的两个内折边间的夹角α'=235-252°,
其中蜂窝状结构区域开设有呈行排列的六边形镂空重复单元,每个六边形镂空单元均为轴对称结构,且其相邻两条侧边的夹角α=108-125°;
打印机设置过程,打印层厚设置为0.1-0.4mm,喷嘴孔径设置为0.4-0.8mm,打印温度为240-260℃,热床温度为60-80℃;
打印选材过程,打印材料选材为玻纤或碳纤高分子打印丝;
打印过程,以基层材料为XY平面,并以Z向进行逐层打印,获得负泊松比-蜂窝型短纤维复合高强材料。
2.根据权利要求1所述的一种负泊松比-蜂窝型短纤维复合高强材料的3D打印方法,其特征在于,所述的基层结构设置过程中,内折六边形负泊松比区域包括2行或多行内折六边形镂空重复单元;
蜂窝状结构区域包括2行或多行内折六边形镂空重复单元;
内折六边形负泊松比区域与蜂窝状结构区域交替排列。
3.根据权利要求2所述的一种负泊松比-蜂窝型短纤维复合高强材料的3D打印方法,其特征在于,夹角α'+α=360°,内折六边形镂空单元的两个内折边的长度为均b';
六边形镂空单元中相邻两条侧边的长度均为b,且b'=b。
4.根据权利要求3所述的一种负泊松比-蜂窝型短纤维复合高强材料的3D打印方法,其特征在于,内折六边形镂空单元中内折角端点间的距离为a';
内折六边形镂空单元中底边的长度为a,且a=a'=4-8mm。
5.根据权利要求4所述的一种负泊松比-蜂窝型短纤维复合高强材料的3D打印方法,其特征在于,内折六边形镂空单元中底边的长度为c';
内折六边形镂空单元的最大宽度为c,且c'=c=6-10mm。
6.根据权利要求5所述的一种负泊松比-蜂窝型短纤维复合高强材料的3D打印方法,其特征在于,所述的基层结构设置过程中,相邻的内折六边形负泊松比区域与蜂窝状结构区域间相互插槽排列。
7.根据权利要求6所述的一种负泊松比-蜂窝型短纤维复合高强材料的3D打印方法,其特征在于,相互插槽排列过程中六边形镂空单元的底边正对内折六边形镂空单元的侧方折边凹陷处。
8.根据权利要求1所述的一种负泊松比-蜂窝型短纤维复合高强材料的3D打印方法,其特征在于,所述的基层结构设置过程中,边宽t设为0.9-1.5mm。
9.根据权利要求6所述的一种负泊松比-蜂窝型短纤维复合高强材料的3D打印方法,其特征在于,所述的打印过程中的喷丝直径为1.75mm,打印速度为40-60mm/s。
10.一种权1中制备的负泊松比-蜂窝型短纤维复合高强材料在在耐压缩/冲击材料中的应用。
CN201911243364.1A 2019-12-06 2019-12-06 负泊松比蜂窝型短纤维复合高强材料的3d打印方法及应用 Pending CN112277310A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911243364.1A CN112277310A (zh) 2019-12-06 2019-12-06 负泊松比蜂窝型短纤维复合高强材料的3d打印方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911243364.1A CN112277310A (zh) 2019-12-06 2019-12-06 负泊松比蜂窝型短纤维复合高强材料的3d打印方法及应用

Publications (1)

Publication Number Publication Date
CN112277310A true CN112277310A (zh) 2021-01-29

Family

ID=74418890

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911243364.1A Pending CN112277310A (zh) 2019-12-06 2019-12-06 负泊松比蜂窝型短纤维复合高强材料的3d打印方法及应用

Country Status (1)

Country Link
CN (1) CN112277310A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113910636A (zh) * 2021-09-30 2022-01-11 华中科技大学 纤维增强内凹六边形蜂窝芯子及其成型模具和成型方法
CN114714688A (zh) * 2022-03-31 2022-07-08 江南大学 一种零/负泊松比多层多向增强体材料及制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103287025A (zh) * 2012-02-28 2013-09-11 香港纺织及成衣研发中心有限公司 一种三维负泊松比间隔针织物及其制作方法
CA2907492A1 (en) * 2013-03-22 2014-09-25 Gregory Thomas Mark Three dimensional printing
CN104763772A (zh) * 2015-03-31 2015-07-08 华南理工大学 一种缓冲吸能结构
CN108248015A (zh) * 2017-12-15 2018-07-06 北京机科国创轻量化科学研究院有限公司 一种连续纤维增强复合材料三维打印成形方法
CN108248018A (zh) * 2018-02-02 2018-07-06 东华大学 一种3d打印拉胀纱、加工方法及用途
CN109970021A (zh) * 2017-12-28 2019-07-05 财团法人工业技术研究院 三维结构
CN110298079A (zh) * 2019-05-29 2019-10-01 南京航空航天大学 一种混合负泊松比结构内芯汽车电池保护系统及其设计方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103287025A (zh) * 2012-02-28 2013-09-11 香港纺织及成衣研发中心有限公司 一种三维负泊松比间隔针织物及其制作方法
CA2907492A1 (en) * 2013-03-22 2014-09-25 Gregory Thomas Mark Three dimensional printing
CN104763772A (zh) * 2015-03-31 2015-07-08 华南理工大学 一种缓冲吸能结构
CN108248015A (zh) * 2017-12-15 2018-07-06 北京机科国创轻量化科学研究院有限公司 一种连续纤维增强复合材料三维打印成形方法
CN109970021A (zh) * 2017-12-28 2019-07-05 财团法人工业技术研究院 三维结构
CN108248018A (zh) * 2018-02-02 2018-07-06 东华大学 一种3d打印拉胀纱、加工方法及用途
CN110298079A (zh) * 2019-05-29 2019-10-01 南京航空航天大学 一种混合负泊松比结构内芯汽车电池保护系统及其设计方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113910636A (zh) * 2021-09-30 2022-01-11 华中科技大学 纤维增强内凹六边形蜂窝芯子及其成型模具和成型方法
CN114714688A (zh) * 2022-03-31 2022-07-08 江南大学 一种零/负泊松比多层多向增强体材料及制备方法
CN114714688B (zh) * 2022-03-31 2022-12-13 江南大学 一种零/负泊松比多层多向增强体材料及制备方法

Similar Documents

Publication Publication Date Title
CN111859487B (zh) 基于曲率设计的三维可控拉胀结构与材料
CN112277310A (zh) 负泊松比蜂窝型短纤维复合高强材料的3d打印方法及应用
CN101328955B (zh) 四棱锥构型的树脂基点阵复合材料平板及其制备方法
CN109869431A (zh) 一种具有负泊松比特性的三维抗冲击材料
DK2714376T3 (en) The foam core of a laminated composite article and its manufacture
CN104494214B (zh) 一种z向定向连续纤维增强蜂窝芯材及其制备工艺与应用
CN108953443B (zh) 内凹八边形立方点阵夹层板结构
CN112966353B (zh) 一种金属不锈钢梯度蜂窝芯及其制造方法
CN112664601A (zh) 一种具有负泊松比特性的圆弧曲线蜂窝芯结构
CN103302908A (zh) 点阵夹芯板的芯材及挤压嵌锁制造方法
CN112277311A (zh) 负泊松比蜂窝型复合吸能材料的3d打印方法及应用
CN113915274B (zh) 一种星型-菱形负泊松比结构
CN112283277A (zh) 结构承载与振动控制一体化的复合点阵结构及其制备方法
CN115819974B (zh) 一种具有可定制力学属性的复合材料结构体系及制备方法
CN109063297A (zh) 一种基于sls工艺的溃缩式复合结构头盔内衬及其设计方法
CN102555221A (zh) 一种蜂窝制造方法
Faidallah et al. Study of the Mechanical Characteristics of Sandwich Structures FDM 3D-printed
CN112922994A (zh) 一种基于可降解材料的复合吸能结构及其3d打印工艺
CN208303591U (zh) 分区压制式板材多点成形装置
CN114523662B (zh) 一种三维超材料功能构件及其制作方法
CN113968197B (zh) 三维负泊松比沙漏型结构及基于该结构的蜂窝组合结构
CN113525273B (zh) 一种具有负泊松比特性的三维结构及其组合方法
CN104494015A (zh) 一种可连续制备蜂窝芯材的模具、装置及其使用方法
CN207983616U (zh) 一种用于制作免拆卸模板的模具
CN220053100U (zh) 一种具有负泊松比效应的泡沫夹芯板

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination