CN114705193A - 一种基于海事大数据的船舶导航路径规划方法及系统 - Google Patents

一种基于海事大数据的船舶导航路径规划方法及系统 Download PDF

Info

Publication number
CN114705193A
CN114705193A CN202210355128.4A CN202210355128A CN114705193A CN 114705193 A CN114705193 A CN 114705193A CN 202210355128 A CN202210355128 A CN 202210355128A CN 114705193 A CN114705193 A CN 114705193A
Authority
CN
China
Prior art keywords
ship
route
track
point
ais
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210355128.4A
Other languages
English (en)
Inventor
牟军敏
陈鹏飞
陈琳瑛
郭绍卿
王链珲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ningbo Navigation Mark Position Of Donghai Navigation Safety Administration (dnsa) Mot
Wuhan University of Technology WUT
Original Assignee
Ningbo Navigation Mark Position Of Donghai Navigation Safety Administration (dnsa) Mot
Wuhan University of Technology WUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ningbo Navigation Mark Position Of Donghai Navigation Safety Administration (dnsa) Mot, Wuhan University of Technology WUT filed Critical Ningbo Navigation Mark Position Of Donghai Navigation Safety Administration (dnsa) Mot
Priority to CN202210355128.4A priority Critical patent/CN114705193A/zh
Publication of CN114705193A publication Critical patent/CN114705193A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/20Instruments for performing navigational calculations
    • G01C21/203Specially adapted for sailing ships
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/21Design, administration or maintenance of databases
    • G06F16/215Improving data quality; Data cleansing, e.g. de-duplication, removing invalid entries or correcting typographical errors
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/29Geographical information databases
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/23Clustering techniques
    • G06F18/232Non-hierarchical techniques
    • G06F18/2321Non-hierarchical techniques using statistics or function optimisation, e.g. modelling of probability density functions
    • G06F18/23213Non-hierarchical techniques using statistics or function optimisation, e.g. modelling of probability density functions with fixed number of clusters, e.g. K-means clustering
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • G06Q10/047Optimisation of routes or paths, e.g. travelling salesman problem

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • General Physics & Mathematics (AREA)
  • Business, Economics & Management (AREA)
  • Remote Sensing (AREA)
  • Databases & Information Systems (AREA)
  • Human Resources & Organizations (AREA)
  • Radar, Positioning & Navigation (AREA)
  • General Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Strategic Management (AREA)
  • Economics (AREA)
  • Automation & Control Theory (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Evolutionary Biology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Development Economics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Game Theory and Decision Science (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Computation (AREA)
  • Marketing (AREA)
  • Operations Research (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Tourism & Hospitality (AREA)
  • General Business, Economics & Management (AREA)
  • Probability & Statistics with Applications (AREA)
  • Navigation (AREA)
  • Traffic Control Systems (AREA)

Abstract

本发明提出了一种基于海事大数据的船舶导航路径规划方法及系统,通过AIS数据预处理模块实现轨迹异常检测和轨迹修复,提升了历史AIS数据的质量;通过航路网络辨识模块搭载的多个创新算法并结合历史AIS信息,有效地辨识并构建得到指定水域的航路网络;通过导航路径规划模块对航路网络的分析和计算得到船舶导航路径。由于船舶导航路径的输出结果是基于历史大数据的,得到的航路网络除了当地船舶定线的航路外,还能将一些小众的习惯性航路辨识出来,能根据不同的船舶类型得到隶属于该种船舶的习惯性航路网络。

Description

一种基于海事大数据的船舶导航路径规划方法及系统
技术领域
本发明属于导航路径规划技术领域,涉及一种船舶导航路径规划方法及系统。
背景技术
随着水运交通的发展,海上贸易愈发频繁,水域船舶密度也随之增大,当前许多港口、码头水域水上交通态势也愈发复杂多样。然而不同类型船舶的航行需求并没有被严格的划分开来,若水域海上施工,再加上水文、气象条件的周期性变化,现有航路可能无法满足通航需求。近年来,随着水运交通的发展,海上贸易愈发频繁,水域船舶密度也随之增大,当前许多港口、码头水域水上交通态势也愈发复杂多样,现有航路可能无法满足通航需求。
发明内容
为解决背景技术中所述的问题,本发明提出了一种基于海事大数据的船舶导航路径规划方法及系统。
一种基于海事大数据的船舶导航路径规划方法,包括以下步骤:
步骤一、运用运动学插值算法对历史AIS数据进行轨迹异常检测和轨迹修复,得到高质量AIS数据;
步骤二、获取航路特征区域:依据得到的高质量AIS数据提取船舶轨迹静止点与转向点,运用密度聚类算法和边界提取算法得到航路特征区域;
步骤三、提取航路中心线及边界:依据得到的高质量AIS数据,运用轨迹相似度度量算法计算得到航路特征区域之间的航路中心线,通过垂线分治法计算出航道宽度来提取航路边界;
步骤四、生成航路网络:基于步骤二得到的航路特征区域和步骤三得到的航路中心线及边界,生成航路网络;
步骤五、构建航路有向拓扑图:根据生成的航路网络利用Networkx框架构建航路有向拓扑图,其中节点间边的权重取节点之间的相对距离;
步骤六、规划船舶导航路径:基于得到的航路有向拓扑图,根据输入的航行始末点,运用Dijkstra最短路径算法计算得到船舶导航路径。
进一步地,所述的步骤一,轨迹异常检测的方法为:通过解析历史AIS数据,当船舶在t时刻的位置x(t)real和速度v(t)real已知时,通过假设运动物体船舶的加速度函数,利用AIS中船舶的速度和位置信息,估计出两点间任意时刻船舶的位置和速度,假设船舶在初始时刻ti的速度v(ti)和位置x(ti),已知另一端点在tj时刻船舶的速度v(tj)real和位置x(tj)real,则船舶在t(ti<t<tj)时刻的估计位置x(t)和估计速度v(t)为:
Figure BDA0003582202910000021
Figure BDA0003582202910000022
其中,b为函数的纵向偏差,m为乘积因子,船舶在t时刻的加速度a(t)=b+m(t-ti),函数的纵向偏差b与乘积因子m的值可通过运动学插值算法中端点的动态信息代入得到;
将上述得到的船舶在t时刻(ti<t<tj)的估计位置x(t)和估计速度v(t)与船舶在t时刻已知的速度v(t)real和位置x(t)real之间的误差转换为坐标系中的点,得到误差集Er,对误差集Er进行循环迭代的K-Means聚类并用聚类评价指标轮廓系数进行收敛判断,当轮廓系数大于0.5时,去除误差最大的点,并重复该过程,直到轮廓系数小于0.5,得到高质量AIS数据。
更进一步地,所述的步骤一,AIS轨迹修复的方法为:通过解析历史AIS数据,当船舶在t时刻的速度v(t)real和位置x(t)real存在缺失而未知时,假设船舶在初始时刻ti的速度v(ti)和位置x(ti),已知另一端点在tj时刻船舶的速度v(tj)real和位置x(tj)real,船舶在t时刻(ti<t<tj)的估计位置x(t)和估计速度v(t)为:
Figure BDA0003582202910000031
Figure BDA0003582202910000032
其中,B为修正后的函数的纵向偏差,M为修正后的乘积因子,B和M为:
B=Ai',
Figure BDA0003582202910000033
Ai'和Aj'为修正后船舶在pi位置与pj位置的加速度,Ai'和Aj'为:
Figure BDA0003582202910000034
Figure BDA0003582202910000035
其中,ai和aj分别为修正前船舶在pi位置与pj位置的加速度,ai'和aj'为船舶在pi-front位置和pj+behind位置的加速度,pi-front是船舶在pi位置等时间间隔tstep的前向点,pj+behind是船舶在pj位置等时间间隔tstep的后向点,等时间间隔tstep由数据集中AIS发送的时间间隔统计值进行确定,pi-front和pj+behind通过下式进行确定:
|ti-ti-front-Δti,j|<tstep,
|tj+behind-tj-Δti,j|<tstep
其中,Δti,j为船舶在pi位置与pj位置的时间间隔。
更进一步地,所述的步骤二,船舶轨迹静止点与转向点的提取方法为:
①对高质量AIS数据进行分析处理,将不同类型船舶的历史轨迹信息分层封装处理;
②对船舶设定速度阈值,通过运动状态识别和DP算法识别,将水域内低于船舶速度阈值的所有船舶轨迹点筛选出来,得到静止点;
③通过轨迹压缩算法,将水域内所有船舶轨迹进行轨迹压缩,根据压缩后的轨迹形态从而得到大规模的船舶转向点。
更进一步地,所述的步骤二,航路特征区域的获取方法为:通过DBSCAN密度聚类算法分别对得到的静止点和转向点处理,得到静止点集和转向点集,然后运用Alphashape边界提取算法对静止点集和转向点集进行处理,得到航路特征区域。
更进一步地,所述的步骤三,航道中心线的提取中,取航路特征区域的形心位置作为特征区域中心点,然后根据历史AIS轨迹穿越航路特征区域的情况,分割水域AIS轨迹,利用动态时间规整算法对轨迹对齐处理,对任意两个节点之间的轨迹Traji,运用随机法选取一条轨迹作为标准轨迹TrajRandom,并将所有轨迹与标准轨迹进行对齐,之后取所有轨迹的算术平均值作为航道中心线:
pi=DTW(Traji,TrajRandom),
Figure BDA0003582202910000041
其中pi表示采用DTW算法得到的Traji与TrajRandom对齐后的坐标点集合,MT表示航道中心线;n表示轨迹TrajRandom的长度,i表示轨迹序号,j表示轨迹对应的时间序号。
航路边界的提取中,航路中心线被航路点划分成了多个中心线段,通过计算各轨迹点到对应中心线段上的垂线距离值并统计其分布,得到各中心线段所对应的航道宽度来确认航路边界。
更进一步地,所述的步骤四中,结合重点港口水域的航道规划信息,对航路特征区域、航路中心线及边界进行分析处理,基于Python工具包Folium开发,借助工具包地图功能实现地图、轨迹、特征区域图层的叠加,得到数据驱动的可视化的航路网络。
更进一步地,所述的步骤五中,依据得到的航路网络,从航路网络节点之间的航路中心线出发,通过墨卡托坐标变换,将经纬度地理坐标系转化为大地坐标系,并计算航路网络节点之间航路中心线长度作为边的权重,然后再进行坐标逆变换,将大地坐标系转化为经纬度地理坐标系,最后基于Python的Networkx框架,构建出航路有向拓扑图。
更进一步地,所述步骤六中,通过前端识别用户在地图上指定的船舶航行始末点,然后通过捕获用户前端输入信息,返回相应的geojson文件并识别船舶航行始末点所对应的经纬点信息,最后根据指定的船舶航行始末点,运用BF算法遍历搜索距离最近的特征区域作为路径始末点;针对路径始末点运用Dijkstra最短路径算法进行计算最短航路路径,并将得到的最短航路路径运用墨卡托坐标逆变换后映射回经纬网中,并转换成相应的geojson文件,进行前端显示,得到船舶导航路径。
一种基于海事大数据的船舶导航路径规划系统,它包括AIS数据预处理模块、航路网络辨识模块和导航路径规划模块;
所述的AIS数据预处理模块包括AIS轨迹异常检测子模块和AIS轨迹修复子模块;所述的AIS轨迹异常检测子模块运用运动学插值算法对历史AIS数据进行轨迹异常检测以得到高质量AIS数据;所述的AIS轨迹修复子模块运用运动学插值算法对历史AIS数据进行轨迹修复以得到高质量AIS数据。
所述的航路网络辨识模块包括筛选船舶类型子模块、指定水域航路辨识子模块和航路网络可视化子模块;所述的筛选船舶类型子模块通过对AIS数据预处理模块输出的高质量AIS数据进行分析处理,提取不同类型船舶轨迹的静止点与转向点;所述的指定水域航路辨识子模块对船舶轨迹的静止点与转向点进行分析处理,获取航路特征区域,并提取出航路中心线及边界;所述的航路网络可视化子模块对航路特征区域、航路中心线及边界进行分析处理,基于Python工具包Folium开发,借助工具包地图功能实现地图、轨迹、特征区域图层的叠加,得到数据驱动的可视化的航路网络;
所述的导航路径规划模块包括航路网络有向拓扑图规划子模块、船位解析子模块和航路规划子模块;所述的航路网络有向拓扑图规划子模块用于将航路网络辨识模块得到的航路网络拓扑化,通过构造边及其权重,并基于Python的Networkx框架构建航路有向拓扑图;所述的船位解析子模块用于识别用户在地图上输入的航行始末点,运用BF算法遍历搜索距离最近的特征区域作为路径始末点;所述的航路规划子模块根据路径始末点,运用Dijkstra最短路径算法计算得到船舶导航路径。
本发明与现有技术相比,通过AIS数据预处理模块实现轨迹异常检测和轨迹修复,AIS数据预处理模块通过引用历史AIS数据,运用运动学插值算法,对历史AIS数据中的信息进行比对和计算,优化了计算过程,数据内容更为精细,提升了历史AIS数据的质量;通过航路网络辨识模块搭载的多个创新算法并结合历史AIS信息,有效地辨识并构建得到指定水域的航路网络;通过导航路径规划模块对航路网络的分析和计算得到船舶导航路径。由于船舶导航路径的输出结果是基于历史大数据的,得到的航路网络除了当地船舶定线的航路外,还能将一些小众的习惯性航路辨识出来,并能根据不同的船舶类型得到隶属于该种船舶的习惯性航路网络。
附图说明
图1为本发明的结构框图。
图2为本发明AIS数据预处理模块的技术路线框图。
图3为本发明航路网辨识模块的技术路线框图。
图4为本发明导航路径规划模块的技术路线框图。
图5为运动学插值算法的概念图。
图6为航路网络特征点图。
图7为航路特征区域图图。
图8为航路网络图。
图9为航路有向拓扑图。
图10为航路规划图。
具体实施方式
下面结合附图详细说明本发明的实施情况,但它们并不构成对本发明的限定,仅做举例而已,同时通过说明,将更加清楚地理解本发明的优点。本领域的普通的技术人员能从本发明公开的内容直接导出或联想到的所有变形,均应认为是本发明的保护范围。实施例中所述的位置关系均与附图所示一致,实施例中其他未详细说明的部分均为现有技术。
基于海事大数据的船舶导航路径规划方法的流程图如图1所示,实现该规划方法的船舶导航路径规划系统由AIS数据预处理模块、航路网络辨识模块和导航路径规划模块这三大模块构成。
下面对船舶导航路径规划系统的各个模块进行详细说明。
1.AIS数据预处理模块
AIS数据预处理模块由AIS轨迹异常检测子模块和AIS轨迹修复子模块构成。
AIS数据预处理模块运用运动学插值算法,对历史AIS数据进行轨迹异常检测和轨迹修复以得到高质量AIS数据。
AIS数据预处理模块中,考虑到原始历史AIS数据质量不一,需对原始历史AIS数据进行清洗,清洗过程中同时对原始历史AIS数据进行解码和AIS规则约束,再经过数据重构,得到所需的历史AIS数据。
AIS数据预处理模块的技术路线图参考图2。
运动学插值算法通过假设运动物体的加速度函数,利用物体的速度和位置信息,能够准确有效地估计出两点间任意时刻物体的位置和速度。
在AIS轨迹异常检测子模块中,通过解析历史AIS数据,当船舶在t时刻的位置x(t)real和速度v(t)real已知时,通过假设运动物体船舶的加速度函数,利用历史AIS数据中船舶的速度和位置信息,可估计出两点间任意时刻船舶的位置和速度,假设船舶在初始时刻ti的速度为v(ti),位置为x(ti),则船舶在t时刻的估计位置x(t)和估计速度v(t)为:
Figure BDA0003582202910000081
其中,b为函数的纵向偏差,m为乘积因子,船舶在t时刻的加速度a(t)=b+m(t-ti),函数的纵向偏差b与乘积因子m的值可通过运动学插值算法中端点的动态信息代入得到。
在已知在tj时刻另一端点的船舶位置x(tj)real和速度v(tj)real的情况下,通过解析历史AIS数据和式①,可以计算得到船舶在t时刻(ti<t<tj)的估计位置x(t)和估计速度v(t)。
对上述计算得到船舶在t时刻(ti<t<tj)的估计位置x(t)和估计速度v(t)与船舶在t时刻已知的速度v(t)real和位置x(t)real之间的误差进行计算,计算完毕之后将这误差标准化并投影到x-y坐标系中,分别作为x坐标和y坐标,将误差转换为x-y坐标系中的点。
下面对误差进行判断,在本实施例中,每次选择x-y坐标系中的3个点,那么误差的种类有四种:没有异常点、有一个异常点、有两个异常点、有三个异常点。利用滑动窗口对轨迹中所有点进行误差估计,得到误差集Er,对误差集Er设置聚类簇数为4进行K-Means聚类,并用聚类评价指标轮廓系数进行收敛判断,当轮廓系数大于0.5时,去除误差最大的那一簇,并重复该过程,以保证所有异常点都能被剔除,直到聚类评价指标轮廓系数小于0.5,得到高质量AIS数据。
当船舶在t时刻的速度v(t)real和位置x(t)real存在缺失而未知时,则需要运用运动学插值算法对历史AIS数据进行AIS轨迹修复,得到船舶在t时刻(ti<t<tj)的估计位置x(t)和估计速度v(t)。
在AIS轨迹修复子模块中,传统的运动学插值只考虑了两个端点的动态信息,如图5(1)所示,本发明的运动学插值算法考虑了船舶运动轨迹的连续性,将端点的前向点pi-front和后向点pj+behind均加以利用,通过确定等时间间隔tstep的前向点pi-front与后向点pj+behind,该前向点pi-front和后向点pj+behind称为一对“调和点”,以提高运动学插值算法的精度,如图5(2)所示。其中,等时间间隔tstep的值由数据集中AIS发送的时间间隔统计值进行确定,取90%分位。
其中,前向点pi-front和后向点pj+behind通过下式确定:
Figure BDA0003582202910000091
其中,Δti,j为船舶在pi位置与pj位置的时间间隔。
令船舶在pi位置与pj位置的加速度分别为ai和aj,船舶在pi-front位置和pj+behind位置的加速度分别为ai'和aj',在AIS轨迹修复中,令船舶在pi位置与pj位置修正后的加速度分别为Ai'和Aj',则Ai'和Aj'为:
Figure BDA0003582202910000092
令B为修正后的函数的纵向偏差,M为修正后的乘积因子,B和M为:
Figure BDA0003582202910000101
将④代入①中,可以得到:
Figure BDA0003582202910000102
通过上述⑤式即可计算得知,当船舶在t时刻的速度v(t)real和位置x(t)real存在缺失而未知时,船舶在t时刻(ti<t<tj)的估计位置x(t)和估计速度v(t),从而得到高质量AIS数据。
2.航路网络辨识模块
航路网络辨识模块用于航路网络的辨识和构建,由筛选船舶类型子模块、指定水域航路辨识子模块和航路网络可视化子模块三大子模块构成。
筛选船舶类型子模块通过对AIS数据预处理模块输出的高质量AIS数据进行分析处理,提取不同类型船舶轨迹的静止点与转向点。指定水域航路辨识子模块对船舶轨迹的静止点与转向点进行分析处理,获取航路特征区域,并提取出航路中心线及边界。航路网络可视化子模块对航路特征区域、航路中心线及边界进行分析处理,基于Python工具包Folium开发,借助工具包地图功能实现地图、轨迹、特征区域图层的叠加,得到数据驱动的可视化的航路网络。
航路网络辨识模块的技术路线图参考图3,该模块的具体实现过程如下所述。
(1)提取船舶特征点
筛选船舶类型子模块中,对AIS数据预处理模块输出的高质量AIS数据进行分析处理,将不同类型船舶的历史轨迹信息分层封装处理,设定船舶速度阈值,通过运动状态识别和DP算法识别,将水域内低于船舶速度阈值的所有船舶轨迹点筛选出来,得到静止点;通过轨迹压缩算法,将水域内所有船舶轨迹进行轨迹压缩,根据压缩后的轨迹形态从而得到大规模的船舶转向点。本实施例中,航路网络的静止点和转向点如图6所示,黑色点代表静止点,灰色点代表转向点。
以下(2)和(3)通过指定水域航路辨识子模块实现。
(2)得到航路特征区域
通过DBSCAN密度聚类算法,分别对(1)中得到的静止点和转向点处理,得到静止点集和转向点集,然后运用Alphashape边界提取算法对静止点集和转向点集进行处理,得到航路特征区域,本实施例的航路特征区域如图7所示。
(3)提取航路中心线及边界
取航路特征区域的形心位置作为特征区域中心点,然后根据历史AIS轨迹穿越航路特征区域的情况,分割水域AIS轨迹,再利用轨迹相似度度量算法计算航路特征区域之间的航路中心线,具体地,利用动态时间规整算法将指定区域的船舶轨迹时间序列进行对齐,并取对齐后船舶轨迹的算术平均值作为指定区域的航路中心线,对任意两个节点之间的轨迹Traji,运用随机法选取一条轨迹作为标准轨迹TrajRandom,并将所有轨迹与标准轨迹进行对齐,之后取所有轨迹的算术平均值作为航路中心线:
Figure BDA0003582202910000111
其中pi表示采用DTW算法得到的Traji与TrajRandom对齐后的坐标点集合,MT表示航道中心线;n表示轨迹TrajRandom的长度,i表示轨迹序号,j表示轨迹对应的时间序号。
由于上述DTW算法得到的航路中心线是由多个航路点连接而成,即通过这些航路点将航路中心线划分成了多个中心线段,故可采用“垂线分治法”来确定航路宽度,通过计算各轨迹点到对应中心线段上的垂线距离值并统计其分布,得到各中心线段所对应的航道宽度,再将其连接起来,得到完整航路,通过统计各个特征区域之间的轨迹的横向位置分布,在本实施例中,取横向位置分布90%分位数对应长度作为航路宽度,确定了航路宽度即可得到航路边界。
(4)构建航路网络
航路网络可视化子模块中,通过上述(1)至(3)中的方法遍历所有节点与节点间的轨迹簇,可以再结合重点港口水域的航道规划信息,对航路特征区域、航路中心线及边界进行分析处理,基于Python工具包Folium开发,借助工具包地图功能实现地图、轨迹、特征区域图层的叠加,得到数据驱动的可视化的航路网络。需要说明的是任意两个端点之间如果有航路,则航路由航路中心线和两侧航路边界组成。
在本实施例中,根据该水域的历史AIS数据,得到的航路网络如图8所示。
3.导航路径规划模块
导航路径规划模块由航路有向拓扑图规划子模块、船位解析子模块和航路规划子模块构成。
航路网络有向拓扑图规划子模块用于将航路网络辨识模块得到的航路网络拓扑化,通过构造边及其权重,并基于Python的Networkx框架构建航路有向拓扑图。船位解析子模块用于识别用户在地图上输入的航行始末点,运用BF算法遍历搜索距离最近的特征区域作为路径始末点。航路规划子模块根据路径始末点,运用Dijkstra算法计算得到船舶导航路径。
导航路径规划模块的技术路线图参考图4,该模块的具体实现过程如下所述。
(1)构建航路有向拓扑图
航路网络有向拓扑图规划子模块中,依据航路网络辨识模块得到的航路网络,从航路网络节点之间的航路中心线出发,通过墨卡托坐标变换,计算航路网络节点之间的航路中心线长度作为边的权重,然后再进行坐标逆变换,最后基于Python的Networkx框架,构建出航路有向拓扑图。
需要说明的是,在航路有向拓扑图的构建过程中主要考虑以下三个因素:(1)航路特征区域中心位置,即拓扑图的节点;(2)图的连通性,主要考虑航路特征区域之间是否有航路,即拓扑图的边;(3)边的权重,由于图中任意两个节点之间可能存在多条边,考虑到实现下一步路径规划的目标,还应该获得任意两个连通节点之间的最短的路径距离,为此,在经由墨卡托坐标变换后,将经纬度地理坐标系转化为大地坐标系,并计算航路网络节点之间的航路中心线长度作为边的权重。
本实施例的航路有向拓扑图如图9所示。
(2)路径始末点的解析
船位解析子模块中,通过前端识别用户在地图上指定的船舶航行始末点,然后通过捕获用户前端输入信息,返回相应的geojson文件并识别船舶航行始末点所对应的经纬点信息,最后根据指定的船舶航行始末点,运用BF算法遍历搜索距离最近的特征区域作为路径始末点。
(3)得到船舶导航路径
航路规划子模块中,在构建的航路有向拓扑图中,从船舶航行时间成本出发,考虑将最短航路路径作为船舶导航路径,针对路径始末点运用Dijkstra最短路径算法进行计算最短航路路径,并将得到的最短航路路径运用墨卡托坐标逆变换后映射回经纬网中,并转换成相应的geojson文件,进行前端显示。
本实施例中,输入船舶航行始末点后,通过分析计算得到的船舶导航路径如图10示。
以上结合附图及具体实施例详细描述了本发明的优选实施方式,但是,本发明并不限于上述实施方式中的具体细节,在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,这些简单变型均属于本发明的保护范围。

Claims (10)

1.一种基于海事大数据的船舶导航路径规划方法,其特征在于,包括以下步骤:
步骤一、运用运动学插值算法对历史AIS数据进行轨迹异常检测和轨迹修复,得到高质量AIS数据;
步骤二、获取航路特征区域:依据得到的高质量AIS数据提取船舶轨迹静止点与转向点,运用密度聚类算法和边界提取算法得到航路特征区域;
步骤三、提取航路中心线及边界:依据得到的高质量AIS数据,运用轨迹相似度度量算法计算得到航路特征区域之间的航路中心线,通过垂线分治法计算出航道宽度来提取航路边界;
步骤四、生成航路网络:基于步骤二得到的航路特征区域和步骤三得到的航路中心线及边界,生成航路网络;
步骤五、构建航路有向拓扑图:根据生成的航路网络利用Networkx框架构建航路有向拓扑图,其中节点间边的权重取节点之间的相对距离;
步骤六、规划船舶导航路径:基于得到的航路有向拓扑图,根据输入的航行始末点,运用Dijkstra最短路径算法计算得到船舶导航路径。
2.根据权利要求1所述的一种基于海事大数据的船舶导航路径规划方法,其特征在于:所述的步骤一中轨迹异常检测的方法为:通过解析历史AIS数据,当船舶在t时刻的位置x(t)real和速度v(t)real已知时,通过假设运动船舶的加速度函数,利用AIS中船舶的速度和位置信息,估计出两点间任意时刻船舶的位置和速度,假设船舶在初始时刻ti的速度v(ti)和位置x(ti),已知另一端点在tj时刻船舶的速度v(tj)real和位置x(tj)real,则船舶在t(ti<t<tj)时刻的估计位置x(t)和估计速度v(t)为:
Figure FDA0003582202900000021
Figure FDA0003582202900000022
其中,b为函数的纵向偏差,m为乘积因子,船舶在t时刻的加速度a(t)=b+m(t-ti),函数的纵向偏差b与乘积因子m的值可通过运动学插值算法中端点的动态信息代入得到;
将上述得到的船舶在t时刻(ti<t<tj)的估计位置x(t)和估计速度v(t)与船舶在t时刻已知的速度v(t)real和位置x(t)real之间的误差转换为坐标系中的点,得到误差集Er,对误差集Er进行循环迭代的K-Means聚类并用聚类评价指标轮廓系数进行收敛判断,当轮廓系数大于0.5时,去除误差最大的点,并重复该过程,直到轮廓系数小于0.5,得到高质量AIS数据。
3.根据权利要求2所述的一种基于海事大数据的船舶导航路径规划方法,其特征在于:所述的步骤一中AIS轨迹修复的方法为:通过解析历史AIS数据,当船舶在t时刻的速度v(t)real和位置x(t)real存在缺失而未知时,假设船舶在初始时刻ti的速度v(ti)和位置x(ti),已知另一端点在tj时刻船舶的速度v(tj)real和位置x(tj)real,船舶在t时刻(ti<t<tj)的估计位置x(t)和估计速度v(t)为:
Figure FDA0003582202900000023
Figure FDA0003582202900000024
其中,B为修正后的函数的纵向偏差,M为修正后的乘积因子,B和M为:
B=Ai',
Figure FDA0003582202900000025
Ai'和Aj'为修正后船舶在pi位置与pj位置的加速度,Ai'和Aj'为:
Figure FDA0003582202900000031
Figure FDA0003582202900000032
其中,ai和aj分别为修正前船舶在pi位置与pj位置的加速度,ai'和aj'为船舶在pi-front位置和pj+behind位置的加速度,pi-front是船舶在pi位置等时间间隔tstep的前向点,pj+behind是船舶在pj位置等时间间隔tstep的后向点,等时间间隔tstep由数据集中AIS发送的时间间隔统计值进行确定,pi-front和pj+behind通过下式进行确定:
|ti-ti-front-Δti,j|<tstep,
|tj+behind-tj-Δti,j|<tstep
其中,Δti,j为船舶在pi位置与pj位置的时间间隔。
4.根据权利要求3所述的一种基于海事大数据的船舶导航路径规划方法,其特征在于:所述的步骤二,船舶轨迹静止点与转向点的提取方法为:
①对高质量AIS数据进行分析处理,将不同类型船舶的历史轨迹信息分层封装处理;
②对船舶设定速度阈值,通过运动状态识别和DP算法识别,将水域内低于船舶速度阈值的所有船舶轨迹点筛选出来,得到静止点;
③通过轨迹压缩算法,将水域内所有船舶轨迹进行轨迹压缩,根据压缩后的轨迹形态从而得到大规模的船舶转向点。
5.根据权利要求4所述的一种基于海事大数据的船舶导航路径规划方法,其特征在于:所述的步骤二,航路特征区域的获取方法为:通过DBSCAN密度聚类算法分别对得到的静止点和转向点处理,得到静止点集和转向点集,然后运用Alphashape边界提取算法对静止点集和转向点集进行处理,得到航路特征区域。
6.根据权利要求5所述的一种基于海事大数据的船舶导航路径规划方法,其特征在于:所述的步骤三,航道中心线的提取中,取航路特征区域的形心位置作为特征区域中心点,然后根据历史AIS轨迹穿越航路特征区域的情况,分割水域AIS轨迹,利用动态时间规整算法对轨迹对齐处理,对任意两个节点之间的轨迹Traji,运用随机法选取一条轨迹作为标准轨迹TrajRandom,并将所有轨迹与标准轨迹进行对齐,之后取所有轨迹的算术平均值作为航道中心线:
pi=DTW(Traji,TrajRandom),
Figure FDA0003582202900000041
其中pi表示采用DTW算法得到的Traji与TrajRandom对齐后的坐标点集合,MT表示航道中心线;n表示轨迹TrajRandom的长度,i表示轨迹序号,j表示轨迹对应的时间序号;
航路边界的提取中,航路中心线被航路点划分成了多个中心线段,通过计算各轨迹点到对应中心线段上的垂线距离值并统计其分布,得到各中心线段所对应的航道宽度来确认航路边界。
7.根据权利要求6所述的一种基于海事大数据的船舶导航路径规划方法,其特征在于:所述的步骤四中,结合重点港口水域的航道规划信息,对航路特征区域、航路中心线及边界进行分析处理,基于Python工具包Folium开发,借助工具包地图功能实现地图、轨迹、特征区域图层的叠加,得到数据驱动的可视化的航路网络。
8.根据权利要求7所述的一种基于海事大数据的船舶导航路径规划方法,其特征在于:所述的步骤五中,依据得到的航路网络,从航路网络节点之间的航路中心线出发,通过墨卡托坐标变换,将经纬度地理坐标系转化为大地坐标系,并计算航路网络节点之间航路中心线长度作为边的权重,然后再进行坐标逆变换,将大地坐标系转化为经纬度地理坐标系,最后基于Python的Networkx框架,构建出航路有向拓扑图。
9.根据权利要求8所述的一种基于海事大数据的船舶导航路径规划方法,其特征在于:所述步骤六中,通过前端识别用户在地图上指定的船舶航行始末点,然后通过捕获用户前端输入信息,返回相应的geojson文件并识别船舶航行始末点所对应的经纬点信息,最后根据指定的船舶航行始末点,运用BF算法遍历搜索距离最近的特征区域作为路径始末点;针对路径始末点运用Dijkstra最短路径算法进行计算最短航路路径,并将得到的最短航路路径运用墨卡托坐标逆变换后映射回经纬网中,并转换成相应的geojson文件,进行前端显示,得到船舶导航路径。
10.一种实现权利要求1-9中任意一项所述的一种基于海事大数据的船舶导航路径规划方法的系统,其特征在于:它包括AIS数据预处理模块、航路网络辨识模块和导航路径规划模块;
所述的AIS数据预处理模块包括AIS轨迹异常检测子模块和AIS轨迹修复子模块;所述的AIS轨迹异常检测子模块运用运动学插值算法对历史AIS数据进行轨迹异常检测以得到高质量AIS数据;所述的AIS轨迹修复子模块运用运动学插值算法对历史AIS数据进行轨迹修复以得到高质量AIS数据;
所述的航路网络辨识模块包括筛选船舶类型子模块、指定水域航路辨识子模块和航路网络可视化子模块;所述的筛选船舶类型子模块通过对AIS数据预处理模块输出的高质量AIS数据进行分析处理,提取不同类型船舶轨迹的静止点与转向点;所述的指定水域航路辨识子模块对船舶轨迹的静止点与转向点进行分析处理,获取航路特征区域,并提取出航路中心线及边界;所述的航路网络可视化子模块对航路特征区域、航路中心线及边界进行分析处理,基于Python工具包Folium开发,借助工具包地图功能实现地图、轨迹、特征区域图层的叠加,得到数据驱动的可视化的航路网络;
所述的导航路径规划模块包括航路网络有向拓扑图规划子模块、船位解析子模块和航路规划子模块;所述的航路网络有向拓扑图规划子模块用于将航路网络辨识模块得到的航路网络拓扑化,通过构造边及其权重,并基于Python的Networkx框架构建航路有向拓扑图;所述的船位解析子模块用于识别用户在地图上输入的航行始末点,运用BF算法遍历搜索距离最近的特征区域作为路径始末点;所述的航路规划子模块根据路径始末点,运用Dijkstra最短路径算法计算得到船舶导航路径。
CN202210355128.4A 2022-04-06 2022-04-06 一种基于海事大数据的船舶导航路径规划方法及系统 Pending CN114705193A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210355128.4A CN114705193A (zh) 2022-04-06 2022-04-06 一种基于海事大数据的船舶导航路径规划方法及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210355128.4A CN114705193A (zh) 2022-04-06 2022-04-06 一种基于海事大数据的船舶导航路径规划方法及系统

Publications (1)

Publication Number Publication Date
CN114705193A true CN114705193A (zh) 2022-07-05

Family

ID=82172978

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210355128.4A Pending CN114705193A (zh) 2022-04-06 2022-04-06 一种基于海事大数据的船舶导航路径规划方法及系统

Country Status (1)

Country Link
CN (1) CN114705193A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115655281A (zh) * 2022-12-06 2023-01-31 亿海蓝(北京)数据技术股份公司 海上航路的规划方法、规划装置和可读存储介质
CN116501826A (zh) * 2023-06-05 2023-07-28 中国人民解放军国防科技大学 一种卫星观测任务自主生成方法、系统及装置
CN117346796A (zh) * 2023-12-05 2024-01-05 武汉理工大学三亚科教创新园 一种基于航路网络的智能航线规划方法、装置及电子设备
CN117851655A (zh) * 2024-03-05 2024-04-09 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院) 基于多算法耦合的船舶航迹缺失数据补全方法及系统

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115655281A (zh) * 2022-12-06 2023-01-31 亿海蓝(北京)数据技术股份公司 海上航路的规划方法、规划装置和可读存储介质
CN116501826A (zh) * 2023-06-05 2023-07-28 中国人民解放军国防科技大学 一种卫星观测任务自主生成方法、系统及装置
CN116501826B (zh) * 2023-06-05 2023-09-12 中国人民解放军国防科技大学 一种卫星观测任务自主生成方法、系统及装置
CN117346796A (zh) * 2023-12-05 2024-01-05 武汉理工大学三亚科教创新园 一种基于航路网络的智能航线规划方法、装置及电子设备
CN117346796B (zh) * 2023-12-05 2024-03-08 武汉理工大学三亚科教创新园 一种基于航路网络的智能航线规划方法、装置及电子设备
CN117851655A (zh) * 2024-03-05 2024-04-09 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院) 基于多算法耦合的船舶航迹缺失数据补全方法及系统
CN117851655B (zh) * 2024-03-05 2024-05-28 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院) 基于多算法耦合的船舶航迹缺失数据补全方法及系统

Similar Documents

Publication Publication Date Title
CN114705193A (zh) 一种基于海事大数据的船舶导航路径规划方法及系统
CN109405839B (zh) 一种基于多路径的交通网络离线地图匹配算法
CN106912018B (zh) 基于信令轨迹的地图匹配方法及系统
CN113032502B (zh) 一种基于改进轨迹段dbscan聚类的船舶异常检测方法
Hu et al. If-matching: Towards accurate map-matching with information fusion
CN113450596B (zh) 基于船舶轨迹特征点提取的时空dp方法
CN108802776B (zh) 基于异常点剔除及轨迹压缩算法的公交gps纠偏方法
CN110008872B (zh) 一种结合车辆轨迹和遥感图像的路网提取方法
CN109949340A (zh) 基于OpenCV的目标尺度自适应跟踪方法
CN109459045B (zh) 一种针对低频gps轨迹的改进交互式投票匹配方法
CN108759833A (zh) 一种基于先验地图的智能车辆定位方法
CN104599286B (zh) 一种基于光流的特征跟踪方法及装置
CN112488061B (zh) 一种联合ads-b信息的多航空器检测与跟踪方法
CN111341103B (zh) 车道信息提取方法、装置、设备及存储介质
Chen et al. Feature line generation and regularization from point clouds
CN114440900A (zh) 改进的隐马尔科夫模型地图匹配方法及装置
CN110751077A (zh) 一种基于部件匹配与距离约束的光学遥感图片船舶检测方法
CN113932821A (zh) 基于连续窗口平均方向特征的轨迹地图匹配方法
CN113985406B (zh) 一种海上雷达目标航迹拼接方法
CN113838129B (zh) 一种获得位姿信息的方法、装置以及系统
CN114937177A (zh) 自动打标、检测模型训练及目标识别方法、和电子设备
CN111402429B (zh) 一种尺度还原、三维重建方法、系统、存储介质及设备
CN110081890B (zh) 一种结合深度网络的动态k最近邻地图匹配方法
CN108615452A (zh) 一种基于人车轨迹点多分辨率处理的未知道路提取方法
CN116127405A (zh) 一种融合点云地图、运动模型和局部特征的位置识别方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination