CN114703334A - 钒钛矿高炉冶炼炉缸活跃性评价方法 - Google Patents

钒钛矿高炉冶炼炉缸活跃性评价方法 Download PDF

Info

Publication number
CN114703334A
CN114703334A CN202210355513.9A CN202210355513A CN114703334A CN 114703334 A CN114703334 A CN 114703334A CN 202210355513 A CN202210355513 A CN 202210355513A CN 114703334 A CN114703334 A CN 114703334A
Authority
CN
China
Prior art keywords
hearth
parameter
blast furnace
furnace
activity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210355513.9A
Other languages
English (en)
Inventor
郑魁
饶家庭
董晓森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pangang Group Panzhihua Iron and Steel Research Institute Co Ltd
Original Assignee
Pangang Group Panzhihua Iron and Steel Research Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pangang Group Panzhihua Iron and Steel Research Institute Co Ltd filed Critical Pangang Group Panzhihua Iron and Steel Research Institute Co Ltd
Priority to CN202210355513.9A priority Critical patent/CN114703334A/zh
Publication of CN114703334A publication Critical patent/CN114703334A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/006Automatically controlling the process
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B7/00Blast furnaces
    • C21B7/24Test rods or other checking devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Iron (AREA)

Abstract

本发明涉及钒钛矿高炉冶炼方法领域,尤其是一种稳定高炉炉缸的工作活跃性的钒钛矿高炉冶炼炉缸活跃性评价方法,包括如下步骤:a、首先,选取表征炉缸工作状态的参数如下:热状态参数、风力穿透能力参数、炉缸炉料更新速度参数、炉缸煤气量参数以及炉缸综合结果参数,对相应参数进行在线计算和数据采集;b、计算得到上述参数历史数据,作为数据样本用于分析;c、结合上述各参数值变化情况,确定各参数得分范围值,分值分为100分,90分,75分,60分,0分五个阶次;d、应用层次分析方法,结合高炉炼铁知识,计算得到各参数对炉缸活跃性的权重影响值;e、构建判定依据和报警依据。本发明尤其适用于钒钛矿高炉冶炼炉缸活跃性评价之中。

Description

钒钛矿高炉冶炼炉缸活跃性评价方法
技术领域
本发明涉及钒钛矿高炉冶炼方法领域,尤其是一种钒钛矿高炉冶炼炉缸活跃性评价方法。
背景技术
在高炉冶炼过程中,高炉炉缸是高炉的“心脏”和“发动机”,为高炉冶炼过程提供源源不断的热量和还原反应过程所必须的煤气,还是铁水渗碳、渣铁分离的主要场所,同时还负责排出渣铁,为上部物料的下行提供空间。因此,炉缸工作状态是否良好,直接影响到整个高炉生产的稳定顺行和高产高效。而高钛型钒钛磁铁矿在冶炼过程中,由于生成的炉渣TiO2含量高于20%,在充满炙热焦炭的高炉内,极易被还原生成高熔点Ti(C,N),造成渣铁粘稠,严重时引起炉缸中心堆积和粘结,恶化高炉料柱透气透液性,缩小炉缸有效工作空间,增加渣铁分离和排出炉缸的难度,犹如人体心脏血液浓度变稠、多处形成血栓堵塞,必然引起高炉炉况的恶化。因此,采用一个行之有效的方法,及时量化的反馈高炉炉缸工作状态,指导高炉操作人员及时调整,确保高炉稳定顺行,是十分重要的。
在实际生产中,影响高炉炉缸工作状态的表征参数较多,有反映炉缸热状态的铁水物理温度,以Si或Si+Ti为代表反映炉缸热状态的化学温度,以风口前理论燃烧温度和炉热指数Wu为代表的热状态参数;以实际风速、鼓风动能、风口回旋区深度等为代表,表征风力穿透料柱深度的参数;以富氧率、矿石冶炼周期表征炉缸下料速度的参数;以铁水[S]含量和铁水[Ti-Si]值为代表的炉缸综合状态参数;以炉腹煤气量和炉腹煤气指数为代表,表征炉缸内气流量的参数;以及以炉缸中心温度和侧壁温度为依据的炉缸整体热变化参数。上述参数往往仅从某一个方面表征了炉缸一个方面的工作状态问题,且往往也各自存在优缺点。如:铁水物理温度和化学温度检测频次低,取样到出检测结果时间长,对生产指导存在滞后性;风口前理论燃烧温度虽能及时反馈下部调剂的综合热效果,但要求稳定在一定的合理范围内,由于高炉生产数据的波动,理论燃烧温度也会波动,只能从稳定下部调剂参数综合效果的角度,从趋势上判断炉缸热状态走势,炉热指数存在同样的问题;实际风速、鼓风动能、风口回旋区深度等参数,只能表征热风的物理穿透作用,无法反馈炉缸的热状态;富氧率变动大,作为强化冶炼手段,在其它强化冶炼措施调整到位的情况下,即使富氧率低,其负面作用也会掩盖;矿石冶炼周期为区间段计算数据,难以及时反馈短时间内的炉缸状态;铁水[S]含量受炉温和炉渣碱度双重影响,只能结合炉温判断高炉炉缸状态;铁水[Ti-Si]能够较好的反馈炉缸活跃状态,但受炉温控制波动的影响,波动幅度大,难以以其单个值作为炉缸工作状态判定依据;炉腹煤气指数表征着单位炉缸截面需要穿过的煤气均量,难以有效反馈中心和边缘气流的分布;炉缸中心温度和边缘侧壁温度,由于随着冶炼时间延长,铁水对炉底砖衬和炉缸侧壁砖衬的侵蚀深度加深,炉缸中心温度和侧壁温度在长周期范围内会呈现增长趋势,难以界定一个有效的底线值。因此,鉴于炉缸活跃性表征指标的片面性,有必要结合各指标的优势,构建一个能充分消除各指标表征缺陷的综合评价体系。
发明内容
本发明所要解决的技术问题是提供一种通过量化的评价方式来反馈炉缸工作状态的综合效果,从而便于高炉操作人员及时纠偏,稳定高炉炉缸的工作活跃性的钒钛矿高炉冶炼炉缸活跃性评价方法。
本发明解决其技术问题所采用的技术方案是:钒钛矿高炉冶炼炉缸活跃性评价方法,包括如下步骤:a、首先,选取表征炉缸工作状态的参数如下:热状态参数、风力穿透能力参数、炉缸炉料更新速度参数、炉缸煤气量参数以及炉缸综合结果参数,对相应参数进行在线计算和数据采集;b、结合上述参数的计算规则及计算过程所需的高炉历史生产数据,计算得到上述参数历史数据,作为数据样本用于分析;c、结合上述各参数值变化情况,与以铁产量或高炉利用系数为代表的参数进行对比,经过数据清洗,剔除异常数据后,结合炉况稳定的时间周期,确定各参数得分范围值,分值分为100分,90分,75分,60分,0分五个阶次;d、应用层次分析方法,结合高炉炼铁知识,计算得到各参数对炉缸活跃性的权重影响值;e、构建判定依据和报警依据:根据各参数在线采集数据值落入各自对应的评分范围,赋予其具体得分,各参数得分值乘以各自的权重值,最后进行加权平均,得到炉缸活跃性的总评分值,根据总评分值所处范围和总评分值变化趋势,对炉缸活跃性进行优≥90分、良75分~90分、中60~75分、差<60分进行划分,当总评分值呈现连续超过3天下降时或评分值低于75分,系统发出预警提醒;当部分参数严重失分时,系统发出提醒指令,提醒高炉操作人员进行关注和采取措施。
进一步的是,步骤a中,所述热状态参数包括铁水[Si+Ti]、风口前理论燃烧温度和炉热指数Wu。
进一步的是,步骤a中,风力穿透能力参数包括:实际风速、鼓风动能以及风口回旋区面积占比。
进一步的是,步骤a中,炉缸炉料更新速度参数包括:富氧率和矿石冶炼周期。
进一步的是,步骤a中,炉缸煤气量参数包括炉腹煤气指数。
进一步的是,步骤a中,炉缸综合结果参数包括铁水[S]含量以及铁水[Ti-Si]值。
本发明的有益效果是:本方法能够结合高钛型钒钛磁铁矿高炉冶炼特点,对高炉炉缸工作状态及活跃程度给予更合理的综合评价,为高炉操作人员及时反馈炉缸活跃状态的发展趋势,以便于高炉操作人员及时了解不利于炉缸活跃的影响因素,及时采取相应调剂措施,避免因炉缸不活跃程度加深导致炉况波动,促进高炉稳定顺行,在钒钛磁铁矿高炉冶炼领域具有十分广泛的推广应用前景。本发明尤其适用于钒钛矿高炉冶炼炉缸活跃性评价之中。
附图说明
图1是A高炉炉缸活跃性综合得分变化。
图2是B高炉炉缸活跃性综合得分变化。
具体实施方式
钒钛矿高炉冶炼炉缸活跃性评价方法,包括如下步骤:a、首先,选取表征炉缸工作状态的参数如下:热状态参数、风力穿透能力参数、炉缸炉料更新速度参数、炉缸煤气量参数以及炉缸综合结果参数,对相应参数进行在线计算和数据采集;b、结合上述参数的计算规则及计算过程所需的高炉历史生产数据,计算得到上述参数历史数据,作为数据样本用于分析;c、结合上述各参数值变化情况,与以铁产量或高炉利用系数为代表的参数进行对比,经过数据清洗,剔除异常数据后,结合炉况稳定的时间周期,确定各参数得分范围值,分值分为100分,90分,75分,60分,0分五个阶次;d、应用层次分析方法,结合高炉炼铁知识,计算得到各参数对炉缸活跃性的权重影响值;e、构建判定依据和报警依据:根据各参数在线采集数据值落入各自对应的评分范围,赋予其具体得分,各参数得分值乘以各自的权重值,最后进行加权平均,得到炉缸活跃性的总评分值,根据总评分值所处范围和总评分值变化趋势,对炉缸活跃性进行优≥90分、良75分~90分、中60~75分、差<60分进行划分,当总评分值呈现连续超过3天下降时或评分值低于75分,系统发出预警提醒;当部分参数严重失分时,系统发出提醒指令,提醒高炉操作人员进行关注和采取措施。
本发明中,涉及的炉缸工作热状态参数优选包括铁水[Si+Ti]、风口前理论燃烧温度以及炉热指数Wu,它们的相应计算规则为如下:
一、铁水[Si+Ti]为对应炉次铁水化学成分检测中[Si]含量和[Ti]含量之和;
二、风口前理论燃烧温度计算可由下述公式(1)或公式(2)进行计算:
Figure BDA0003582359650000031
Tf=1555.470+0.697TB-5.234HB+3385.625VO2-1818.404VCoal 公式(2)
其中,公式(2)为以公式(1)为基础,结合高炉自身原燃料质量和特点计算得到的经验计算公式。
三、炉热指数Wu
Figure BDA0003582359650000032
上述参数中,Tf–为理论燃烧温度,℃;Q—为焦炭带入风口区域物理热,kj。Q—为喷吹煤粉带入物理热,kj。QR焦—为焦炭中C进行不完全燃烧生产CO放热,kj。QR煤—为喷吹煤粉中C进行不完全燃烧生产CO放热,kj。Q—为热风带入风口区域物理热,kj。Q载气—为煤粉载气带入风口区域物理热,kj。Q—为大气鼓风湿度水分解所需热,kj。Q—为煤粉分解热,kj。Q—灰分带走物理热及灰分熔化耗热,kj。QSiO—为灰分中SiO2气化热,kj。QS—未然煤粉带走物理热,kj。C(CO+N2)—为CO和N2的平均热容,CH2为H2热容,kj/(m3·℃)。C、Cs—为灰分、未然煤粉的热容,kj/(kg·℃)。VCO、VN2、VH2—为炉腹煤气中CO、N2、H2量,m3。W、WS—为吨铁产生灰量和未然煤粉量,kg/t。TB为热风温度,℃。HB为1m3干风所带的水蒸气量,g/m3。VO2为富氧流量与风量比值,m3/m3。Vcoal为喷煤量与风量比值,kg/m3。Pi为1000m3干风所能冶炼的生铁量,t。z为铁的直接还原消耗碳量,kg。
本发明中,涉及的风力穿透能力参数优选包括:实际风速、鼓风动能以及风口回旋区面积占比,它们相应的计算规则如下:
一、实际风速=标准风速*(0.101325/273)*[(273+TB)/(P/10+0.101325)];
二、鼓风动能:
Figure BDA0003582359650000041
三、风口回旋区面积占比:
DR=0.88+0.0029E-0.0176M/n
WR=DT×2.631(DR/DT)0.331
SA/Sd=Σ[n(DR×WR)]÷1/4πd2
E为鼓风动能kJ/s;r为空气密度Kg/m3,取1.293Kg/m3;V为标态下风量m3/s;n为风口个数;ΣnS为总的风口面积m2;TB为热风温度℃;PB为热风压力MPa;g为重力加速度m2/s;S为风口平均面积,m2;DR为风口回旋区深度,m;WR为风口回旋区宽度,m;DT为风口长度,m;M为煤比,kg/t;SA为风口回旋区面积,m2;Sd为炉缸横截面积,m2;d为炉缸直径。
本发明中,影响炉料更新速度的参数包括:富氧率、矿石冶炼周期,它们计算规则如下:
一、富氧率:
fO2=[(V*0.21+V*0.99)/(V+V)-0.21]*100
二、矿石冶炼周期:
Figure BDA0003582359650000042
t矿石冶炼周期,h;V料线至风口中心线的实际高炉工作容积,m3;PT为铁水产量,t/d;v为吨铁对应的炉料体积(与入炉结构、入炉品位有关),m3;c为炉料在炉内的压缩率,取0.11-0.12。
本发明中,炉缸煤气量参数主要包括炉腹煤气指数,其计算规则如下:
Figure BDA0003582359650000043
Figure BDA0003582359650000044
V为风量,不包括富氧量,m3/min;V为富氧量,m3/min;H为煤粉的含氢量,%,可取5%。d:VBG为高炉炉腹煤气发生量,m3/min;xBG炉腹煤气指数。
本发明中,体现炉缸综合结果的参数有铁水[S]含量、铁水[Ti-Si]值,尤其是铁水[Ti-Si]值持续缩小,或持续为负数时,从生产经验表现来看,炉缸工作状态势必已出现问题。
因此,本发明中,涉及的炉缸活跃性表征参数共包括:铁水[Si+Ti]、风口前理论燃烧温度,炉热指数Wu、实际风速、鼓风动能、风口回旋区面积占比、富氧率、矿石冶炼周期、炉腹煤气指数、铁水[S]含量、铁水[Ti-Si]值。
实施例
实施例1
以钒钛磁铁矿为主要生产原料的A高炉,按本发明构建了炉缸工作活跃性评价体系,按各评价参数进行了数据在线计算、数据采集、数据自动打分和评价分析。各评分项的打分矩阵及用层次分析法计算得到的权重如下表1所示,根据A高炉历史数据计算分析得到的各参数评评分范围如表2所示。以表2中铁水[Ti+Si]和鼓风动能对得分规则进行说明。0.30≤[Ti+Si]<0.42时,评分项[Ti+Si]为100分;0.26≤[Ti+Si]<0.30,及0.42≤[Ti+Si]<0.46时,评分项[Ti+Si]为90分;[Ti+Si]<0.20,[Ti+Si]>0.52时,评分项[Ti+Si]为0分;其余区间段依次类推。对于鼓风动能,鼓风动能≥150kJ/s时,得100分;145≤鼓风动能<150kJ/s时,得90分;其余阶段依次类推。各评分参数经自动数据采集和计算,并根据表2中评分范围和评分规则自动评分后,各参数乘以表1中根据层次分析方法确定的各评分参数权重,并进行加权,得到A高炉炉缸活跃性评价总分,如图1所示。在2021年1月中旬,根据炉缸活跃性综合评价参数评分结果,自1月15日炉缸活跃性综合评分呈现持续降低趋势,1月21日开始呈现连续降低,评价系统不断发出预警信号,但期间A高炉以利用系数为代表的铁产量数据表现出良好的生产态势,并且有所增高,高炉操作人员并未对此采取过多的关注,直至2月1日,A高炉风量和风压关系突然紧张难调,利用系数大幅降低,经过为期4天的恢复,产量才恢复至正常生产,但较之前整体降低了。经失分参数项倒查,根本原因在于1月中旬开始,A高炉入炉S负荷从3.8kg/t大幅增加至5.5kg/t,高炉未响应提高铁水温度[Si+Ti]来增强高炉的脱硫能力和抗风险能力,随后铁水[Ti-Si]差值逐步从0.053降低至0.013,炉缸整体活跃程度降低,继而在2月1日导致A高炉受风能力变差,高炉憋压,压差陡增,高炉被迫大幅采取减风量、风压等措施,导致高炉损失铁产量近5000t,造成超过10万元经济损失。炉况恢复后,采取提高铁水温度[Si+Ti],降低入炉S负荷等措施,炉缸综合评分和炉况均得到改善。
表1 A高炉炉缸活跃性评价参数体系打分矩阵及权重值
Figure BDA0003582359650000051
Figure BDA0003582359650000061
表2 A高炉炉缸活跃性评价体系评价参数评分范围
Figure BDA0003582359650000062
说明书附图中,图1为A高炉炉缸活跃性综合得分变化。
实施例2
以钒钛磁铁矿为主要生产原料的B高炉,按本发明构建了炉缸工作活跃性评价体系,并进行了在线数据计算和自动评分,其权重参数计算与案例1中表1相同,各参数评分范围如表3所示,由于B高炉整体容积小于A高炉,炉缸直径等也小于A高炉,其自身冶炼特点和原燃料特点与A高炉有所差异,因此各参数项的具体评分范围也与A高炉有所不同,表现出自身的适宜参数特点。图2为B高炉炉缸活跃性评价体系阶段应用结果,从图中可以看出,自4月11日到4月25日,炉缸活跃性综合评分呈现持续下行趋势并发出预警信号,尽管期间高炉利用系数相对平稳,高炉操作人员及时关注炉缸活跃状态,对主要失分项进行倒查,发现主要是由于富氧率降低,导致鼓风动能有所减小,高炉风口回旋区面积占比降低,继而引起铁水[Ti-Si]值降低,导致综合评分降低。高炉操作人员及时增加富氧量,同时配合适当降低喷煤比,以提高喷煤有效燃烧率,从而确保高炉透气性不受大的影响,在之后的炉况波动中,稳定了高炉炉况,没有导致利用系数大幅降低。
表3 B高炉炉缸活跃性评价体系评价参数评分范围
Figure BDA0003582359650000071
说明书附图中,图2为B高炉炉缸活跃性综合得分变化
本发明对高炉炉缸工作状态及活跃程度给予更合理的综合评价,为高炉操作人员及时反馈炉缸活跃状态的发展趋势,以便于高炉操作人员及时了解不利于炉缸活跃的影响因素,及时采取相应调剂措施,避免因炉缸不活跃程度加深导致炉况波动,促进高炉稳定顺行。

Claims (6)

1.钒钛矿高炉冶炼炉缸活跃性评价方法,其特征在于,包括如下步骤:
a、首先,选取表征炉缸工作状态的参数如下:热状态参数、风力穿透能力参数、炉缸炉料更新速度参数、炉缸煤气量参数以及炉缸综合结果参数,对相应参数进行在线计算和数据采集;
b、结合上述参数的计算规则及计算过程所需的高炉历史生产数据,计算得到上述参数历史数据,作为数据样本用于分析;
c、结合上述各参数值变化情况,与以铁产量或高炉利用系数为代表的参数进行对比,经过数据清洗,剔除异常数据后,结合炉况稳定的时间周期,确定各参数得分范围值,分值分为100分,90分,75分,60分,0分五个阶次;
d、应用层次分析方法,结合高炉炼铁知识,计算得到各参数对炉缸活跃性的权重影响值;
e、构建判定依据和报警依据:根据各参数在线采集数据值落入各自对应的评分范围,赋予其具体得分,各参数得分值乘以各自的权重值,最后进行加权平均,得到炉缸活跃性的总评分值,根据总评分值所处范围和总评分值变化趋势,对炉缸活跃性进行优≥90分、良75分~90分、中60~75分、差<60分进行划分,当总评分值呈现连续超过3天下降时或评分值低于75分,系统发出预警提醒;当部分参数严重失分时,系统发出提醒指令,提醒高炉操作人员进行关注和采取措施。
2.如权利要求1所述的钒钛矿高炉冶炼炉缸活跃性评价方法,其特征在于:步骤a中,所述热状态参数包括铁水[Si+Ti]、风口前理论燃烧温度和炉热指数Wu。
3.如权利要求1或2所述的钒钛矿高炉冶炼炉缸活跃性评价方法,其特征在于:步骤a中,风力穿透能力参数包括:实际风速、鼓风动能以及风口回旋区面积占比。
4.如权利要求1或2所述的钒钛矿高炉冶炼炉缸活跃性评价方法,其特征在于:步骤a中,炉缸炉料更新速度参数包括:富氧率和矿石冶炼周期。
5.如权利要求1或2所述的钒钛矿高炉冶炼炉缸活跃性评价方法,其特征在于:步骤a中,炉缸煤气量参数包括炉腹煤气指数。
6.如权利要求1或2所述的钒钛矿高炉冶炼炉缸活跃性评价方法,其特征在于:步骤a中,炉缸综合结果参数包括铁水[S]含量以及铁水[Ti-Si]值。
CN202210355513.9A 2022-04-06 2022-04-06 钒钛矿高炉冶炼炉缸活跃性评价方法 Pending CN114703334A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210355513.9A CN114703334A (zh) 2022-04-06 2022-04-06 钒钛矿高炉冶炼炉缸活跃性评价方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210355513.9A CN114703334A (zh) 2022-04-06 2022-04-06 钒钛矿高炉冶炼炉缸活跃性评价方法

Publications (1)

Publication Number Publication Date
CN114703334A true CN114703334A (zh) 2022-07-05

Family

ID=82173526

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210355513.9A Pending CN114703334A (zh) 2022-04-06 2022-04-06 钒钛矿高炉冶炼炉缸活跃性评价方法

Country Status (1)

Country Link
CN (1) CN114703334A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115341060A (zh) * 2022-09-15 2022-11-15 中冶赛迪工程技术股份有限公司 一种确定高炉富氧率的系统、方法、设备及介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104388613A (zh) * 2014-11-13 2015-03-04 北京首钢股份有限公司 一种高炉炉缸活跃性定量评价的方法
CN110752042A (zh) * 2019-10-16 2020-02-04 广东韶钢松山股份有限公司 高炉炉缸状态确定方法、装置及电子设备
CN110796305A (zh) * 2019-10-28 2020-02-14 中冶赛迪重庆信息技术有限公司 炉缸安全预警方法、系统、设备及存储介质
CN111581598A (zh) * 2020-04-09 2020-08-25 宣化钢铁集团有限责任公司 一种量化评估高炉下部工作状态的方法
CN113528721A (zh) * 2021-06-30 2021-10-22 包头钢铁(集团)有限责任公司 一种评价高炉炉缸活跃程度的建立方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104388613A (zh) * 2014-11-13 2015-03-04 北京首钢股份有限公司 一种高炉炉缸活跃性定量评价的方法
CN110752042A (zh) * 2019-10-16 2020-02-04 广东韶钢松山股份有限公司 高炉炉缸状态确定方法、装置及电子设备
CN110796305A (zh) * 2019-10-28 2020-02-14 中冶赛迪重庆信息技术有限公司 炉缸安全预警方法、系统、设备及存储介质
CN111581598A (zh) * 2020-04-09 2020-08-25 宣化钢铁集团有限责任公司 一种量化评估高炉下部工作状态的方法
CN113528721A (zh) * 2021-06-30 2021-10-22 包头钢铁(集团)有限责任公司 一种评价高炉炉缸活跃程度的建立方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
由文泉 等: "《实用高炉炼铁技术》", vol. 1, 冶金工业出版社, pages: 407 - 417 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115341060A (zh) * 2022-09-15 2022-11-15 中冶赛迪工程技术股份有限公司 一种确定高炉富氧率的系统、方法、设备及介质
CN115341060B (zh) * 2022-09-15 2023-12-26 中冶赛迪工程技术股份有限公司 一种确定高炉富氧率的系统、方法、设备及介质

Similar Documents

Publication Publication Date Title
CN1216154C (zh) 一种高效低co2排放富氢燃气纯氧高炉炼铁工艺
CN107641669B (zh) 一种利用扫描雷达实现4000m3高炉高效低耗冶炼的方法
CN106011341B (zh) 高炉冶炼钒钛矿提高煤比的方法
CN114107585B (zh) 一种高炉富氧量与风口进风面积的量化方法
CN116502769A (zh) 高炉炉况的评分方法与系统
CN104781426A (zh) 高炉的操作方法以及铁水的制造方法
CN114703334A (zh) 钒钛矿高炉冶炼炉缸活跃性评价方法
CN108265140A (zh) 一种高炉高效排锌方法
CN114277205A (zh) 一种确定高炉喷吹介质最佳喷吹量的方法
CN113420426A (zh) 一种确定高炉顺行状况的方法、装置、介质及计算机设备
CN106467929A (zh) 多目标高炉冶炼工序碳排放优化方法
CN111304386A (zh) 一种能促进高炉排锌的方法
CN113667781B (zh) 一种降低高炉燃料比的方法
EP3989013A1 (en) Method for controlling process, operation guidance method, method for operating blast furnace, method for manufacturing molten iron, and device for controlling process
CN113392529A (zh) 一种高炉区域热状态在线分析方法
CN114139799A (zh) 一种高炉风口进风面积的确定方法
CN113265498A (zh) 一种高炉炉型管控方法
CN111074025A (zh) 一种确定高炉鼓风风量的方法
Desai et al. Effect of hot reducing gas (HRG) injection on blast furnace operational parameters: theoretical investigation
CN114381569B (zh) 一种转炉系统煤气回收优化综合评价方法
CN116050085A (zh) 一种基于热平衡计算的钒钛矿高炉冶炼调控方法
KR100356156B1 (ko) 고로의연소효율향상방법
CN112989570B (zh) 一种基于高炉工况下的炉顶煤气量的计算方法
CN220959672U (zh) 一种颗粒硫磺直接喷吹进烟化炉内硫化挥发的装置
JP2002105517A (ja) 高炉の操業方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination