CN114690150A - Continuous wave frequency modulation phased array laser radar chip, scanning method and laser radar - Google Patents
Continuous wave frequency modulation phased array laser radar chip, scanning method and laser radar Download PDFInfo
- Publication number
- CN114690150A CN114690150A CN202011603608.5A CN202011603608A CN114690150A CN 114690150 A CN114690150 A CN 114690150A CN 202011603608 A CN202011603608 A CN 202011603608A CN 114690150 A CN114690150 A CN 114690150A
- Authority
- CN
- China
- Prior art keywords
- light
- coupler
- chip
- phased array
- phase modulator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 27
- 230000003287 optical effect Effects 0.000 claims abstract description 82
- 230000008878 coupling Effects 0.000 claims abstract description 6
- 238000010168 coupling process Methods 0.000 claims abstract description 6
- 238000005859 coupling reaction Methods 0.000 claims abstract description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 22
- 229910052710 silicon Inorganic materials 0.000 claims description 22
- 239000010703 silicon Substances 0.000 claims description 22
- 230000035559 beat frequency Effects 0.000 claims description 20
- 239000000758 substrate Substances 0.000 claims description 20
- 238000001514 detection method Methods 0.000 claims description 10
- 229910000577 Silicon-germanium Inorganic materials 0.000 claims description 4
- 238000010009 beating Methods 0.000 claims 1
- 230000005540 biological transmission Effects 0.000 abstract description 15
- 239000010410 layer Substances 0.000 description 61
- 238000010586 diagram Methods 0.000 description 15
- 239000011241 protective layer Substances 0.000 description 12
- 238000010438 heat treatment Methods 0.000 description 9
- 239000000463 material Substances 0.000 description 9
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 8
- 230000010354 integration Effects 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- 230000008859 change Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000005530 etching Methods 0.000 description 4
- LEVVHYCKPQWKOP-UHFFFAOYSA-N [Si].[Ge] Chemical compound [Si].[Ge] LEVVHYCKPQWKOP-UHFFFAOYSA-N 0.000 description 3
- 238000005457 optimization Methods 0.000 description 3
- 230000002441 reversible effect Effects 0.000 description 3
- 238000003491 array Methods 0.000 description 2
- 238000011478 gradient descent method Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 1
- 230000001143 conditioned effect Effects 0.000 description 1
- RDYMFSUJUZBWLH-UHFFFAOYSA-N endosulfan Chemical compound C12COS(=O)OCC2C2(Cl)C(Cl)=C(Cl)C1(Cl)C2(Cl)Cl RDYMFSUJUZBWLH-UHFFFAOYSA-N 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000009415 formwork Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/48—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
- G01S7/481—Constructional features, e.g. arrangements of optical elements
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/88—Lidar systems specially adapted for specific applications
- G01S17/89—Lidar systems specially adapted for specific applications for mapping or imaging
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/48—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
- G01S7/483—Details of pulse systems
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Computer Networks & Wireless Communication (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Electromagnetism (AREA)
- Optical Radar Systems And Details Thereof (AREA)
- Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
Abstract
本申请实施例提供一种连续波调频相控阵激光雷达芯片、扫描方法及激光雷达,该芯片包括输入耦合器用于将输入光耦合到芯片上;第一耦合器用于将耦合到芯片上的用于发射的光传输到分束器;分束器用于对用于发射的光进行分束,输出多束发射光波;调相器用于对发射光波进行调相;光学天线用于将调相后的发射光波发射至空间以及接收空间中被测物体反射回的反射光波,将反射光波经调相器、分束器以及第一耦合器传输至接收光处理层;第一耦合器用于接收通过光学天线接收到芯片上的接收光并将接收光传输至所述接收光处理层;接收光处理层用于对接收光进行信号处理,输出电信号。保证了与传统收发分立的相控阵系统性能一致的同时,减少了整个系统的复杂度。
Embodiments of the present application provide a continuous wave frequency-modulated phased array laser radar chip, a scanning method, and a laser radar. The chip includes an input coupler for coupling input light to the chip; The transmitted light is transmitted to the beam splitter; the beam splitter is used to split the light used for transmission and output multiple beams of transmitted light waves; the phase modulator is used to phase modulate the transmitted light waves; the optical antenna is used to The transmitted light wave is transmitted to the space and the reflected light wave reflected by the measured object in the receiving space is transmitted, and the reflected light wave is transmitted to the receiving light processing layer through the phase modulator, the beam splitter and the first coupler; the first coupler is used for receiving through the optical antenna. The received light on the chip is received and the received light is transmitted to the received light processing layer; the received light processing layer is used to perform signal processing on the received light and output an electrical signal. While ensuring the performance of the traditional discrete phased array system, the complexity of the entire system is reduced.
Description
技术领域technical field
本申请实施例涉及雷达技术领域,尤其涉及一种连续波调频相控阵激光雷达芯片、扫描方法及激光雷达。The embodiments of the present application relate to the technical field of radar, and in particular, to a continuous wave frequency-modulated phased array laser radar chip, a scanning method, and a laser radar.
背景技术Background technique
连续波调频相控阵激光雷达的概念早已被提出,各种不同的设计方案也在不断开展。目前的连续波调频相控阵激光雷达中的基本模块也均已成熟,如激光雷达芯片上的光源模块、分束模块、调相模块、平衡探测模块、光学天线等。其中,连续波调频相控阵激光雷达芯片为了实现光的发射和接收,通常是通过两套独立的相控阵系统(相控阵系统可以包括分束模块、调相模块、光学天线等)来实现发射和接收的。The concept of continuous wave FM phased array lidar has been proposed for a long time, and various design schemes are constantly being developed. The basic modules in the current continuous wave FM phased array lidar are also mature, such as the light source module, beam splitting module, phase modulation module, balanced detection module, and optical antenna on the lidar chip. Among them, in order to realize the transmission and reception of light, the continuous wave frequency modulation phased array lidar chip usually uses two independent phased array systems (phased array systems can include beam splitting modules, phase modulation modules, optical antennas, etc.) To achieve transmission and reception.
比如,一个相控阵系统通过调相模块调节相位实现不同角度光的发射,另一个相控阵系统跟随该激光雷达芯片上的发射系统的发射角度来探测同该发射角度原路反射回该芯片的光。但是,这样芯片上的器件多了一倍,导致芯片上的器件繁杂,同样,激光雷达系统中用于驱动芯片正常工作的驱动电路也同样需要增大一倍的控制量,这对整个激光雷达系统都是不利的。For example, one phased array system adjusts the phase through the phase modulation module to realize the emission of light at different angles, and another phased array system follows the emission angle of the emission system on the lidar chip to detect the same emission angle and reflect back to the chip. of light. However, the number of devices on the chip is doubled in this way, resulting in complicated devices on the chip. Similarly, the driving circuit used to drive the normal operation of the chip in the lidar system also needs to double the amount of control, which affects the entire lidar. The system is bad.
现有技术中还没有方案在保证与传统收发分立的相控阵系统性能一致的同时,减少整个系统的复杂度。There is no solution in the prior art that reduces the complexity of the entire system while ensuring the performance consistent with the traditional phased array system with discrete transceivers.
发明内容SUMMARY OF THE INVENTION
本申请实施例提供一种连续波调频相控阵激光雷达芯片、扫描方法及激光雷达,能够保证与传统收发分立的相控阵系统性能一致的同时,减少整个系统的复杂度。Embodiments of the present application provide a continuous-wave frequency-modulated phased array laser radar chip, a scanning method, and a laser radar, which can reduce the complexity of the entire system while ensuring the same performance as a traditional phased array system with discrete transceivers.
第一方面,本申请实施例提供一种连续波调频相控阵激光雷达芯片,包括:输入耦合器、第一耦合器、分束器、调相器、光学天线以及接收光处理层;In a first aspect, an embodiment of the present application provides a continuous wave frequency modulated phased array lidar chip, including: an input coupler, a first coupler, a beam splitter, a phase modulator, an optical antenna, and a received light processing layer;
所述输入耦合器和所述接收光处理层分别与所述第一耦合器通过波导连接,所述第一耦合器、分束器、调相器与光学天线依次通过波导连接;The input coupler and the received light processing layer are respectively connected with the first coupler through waveguides, and the first coupler, beam splitter, phase modulator and optical antenna are sequentially connected through waveguides;
所述输入耦合器,用于将输入光耦合到所述芯片上;the input coupler for coupling input light to the chip;
所述第一耦合器,用于将耦合到所述芯片上的用于发射的光传输到所述分束器中;the first coupler for transmitting light coupled to the chip for emission into the beam splitter;
所述分束器,用于对所述用于发射的光进行分束,输出多束发射光波;the beam splitter, for splitting the light for emission, and outputting multiple emission light waves;
所述调相器,用于对所述发射光波进行调相;the phase modulator, used for phase modulation of the emitted light wave;
所述光学天线,用于将调相后的所述发射光波发射至空间,以及接收所述空间中被测物体反射回的反射光波,并将所述反射光波经所述调相器、所述分束器以及所述第一耦合器传输至接收光处理层;The optical antenna is used to transmit the phase-modulated emitted light wave to the space, receive the reflected light wave reflected by the measured object in the space, and pass the reflected light wave through the phase modulator, the the beam splitter and the first coupler are transmitted to the received light processing layer;
所述第一耦合器,还用于接收通过所述光学天线接收到所述芯片上的接收光,并将所述接收光传输至所述接收光处理层;the first coupler is further configured to receive the received light received on the chip through the optical antenna, and transmit the received light to the received light processing layer;
所述接收光处理层,用于对所述接收光进行信号处理,输出电信号。The received light processing layer is used for performing signal processing on the received light and outputting an electrical signal.
在一种可能的设计中,如上所述的连续波调频相控阵激光雷达芯片,还包括:功率分配器;In a possible design, the continuous wave FM phased array lidar chip as described above further includes: a power divider;
所述功率分配器的输入端通过波导连接所述输入耦合器,所述功率分配器的输出端连接所述第一耦合器以及所述接收光处理层;The input end of the power divider is connected to the input coupler through a waveguide, and the output end of the power divider is connected to the first coupler and the received light processing layer;
所述功率分配器,用于对耦合到所述芯片上的光进行能量分配,得到发射光和本地光,所述发射光被传输至所述第一耦合器,所述本地光被传输至所述接收光处理层。The power divider is used for energy distribution of the light coupled to the chip to obtain emission light and local light, the emission light is transmitted to the first coupler, and the local light is transmitted to the The received light processing layer.
在一种可能的设计中,如上所述的连续波调频相控阵激光雷达芯片,所述接收光处理层包括:平衡探测器和第二耦合器;In a possible design, in the continuous wave frequency modulation phased array lidar chip described above, the received light processing layer includes: a balanced detector and a second coupler;
所述第二耦合器的输入端通过波导与所述功率分配器的输出端以及所述第一耦合器连接,所述第二耦合器的输出端通过波导与所述平衡探测器连接;The input end of the second coupler is connected to the output end of the power divider and the first coupler through a waveguide, and the output end of the second coupler is connected to the balanced detector through a waveguide;
所述第二耦合器,用于将所述本地光和所述反射光波进行拍频,并将拍频后的光波传输至所述平衡探测器中;The second coupler is used to beat the local light and the reflected light wave, and transmit the beat frequency light wave to the balanced detector;
所述平衡探测器,用于探测所述拍频后的光波,并输出探测到的光波的电信号。The balanced detector is used for detecting the light wave after the beat frequency, and outputting an electrical signal of the detected light wave.
在一种可能的设计中,如上所述的连续波调频相控阵激光雷达芯片,还包括:SOI衬底;In a possible design, the continuous-wave frequency-modulated phased array lidar chip as described above further includes: an SOI substrate;
所述输入耦合器、第一耦合器、分束器、调相器、光学天线、接收光处理层位于所述SOI衬底的顶部硅层上。The input coupler, the first coupler, the beam splitter, the phase modulator, the optical antenna, and the received light processing layer are located on the top silicon layer of the SOI substrate.
在一种可能的设计中,所述芯片中的波导为TE模的单模波导,所述TE模的单模波导的形状为脊形波导或者条形波导。In a possible design, the waveguide in the chip is a single-mode waveguide of the TE mode, and the shape of the single-mode waveguide of the TE mode is a ridge waveguide or a strip waveguide.
在一种可能的设计中,如上所述的连续波调频相控阵激光雷达芯片,所述功率分配器为光开关型功率分配器。In a possible design, for the continuous wave frequency modulation phased array lidar chip described above, the power divider is an optical switch type power divider.
在一种可能的设计中,如上所述的连续波调频相控阵激光雷达芯片,所述平衡探测器为两个波导型硅锗探测器。In a possible design, in the above-mentioned continuous-wave frequency-modulated phased array lidar chip, the balanced detectors are two waveguide-type silicon germanium detectors.
在一种可能的设计中,如上所述的连续波调频相控阵激光雷达芯片,所述第一耦合器的结构为2*1多模干涉耦合器或2*2多模干涉耦合器,所述第二耦合器为50:50定向耦合器或者2*2多模干涉耦合器。In a possible design, in the continuous wave FM phased array lidar chip described above, the structure of the first coupler is a 2*1 multimode interference coupler or a 2*2 multimode interference coupler, so The second coupler is a 50:50 directional coupler or a 2*2 multimode interference coupler.
第二方面,本申请实施例提供一种相控阵激光雷达,包括如上述第一方面任一项所述的连续波调频相控阵激光雷达芯片。In a second aspect, an embodiment of the present application provides a phased array laser radar, including the continuous wave frequency-modulated phased array laser radar chip according to any one of the first aspects above.
第三方面,本申请实施例提供一种扫描方法,应用于上述的连续波调频相控阵激光雷达芯片的相控阵激光雷达,所述方法包括:In a third aspect, an embodiment of the present application provides a scanning method, which is applied to the phased array laser radar of the continuous wave frequency modulation phased array laser radar chip described above, and the method includes:
当光源打开时,调节所述功率分配器,将用于发射的光和用于平衡探测的本地光调整到预设的比例,其中,所述光源是一个频率做周期性线性变化的激光器通过输入耦合器将光源的光耦合到所述芯片上;When the light source is turned on, the power divider is adjusted to adjust the ratio of the light used for emission and the local light used for balanced detection to a preset ratio, wherein the light source is a laser whose frequency changes periodically and linearly through the input a coupler couples the light of the light source onto the chip;
调节所述调相器,使得从所述光学天线发射的光从预设的第一方向发射;adjusting the phase modulator so that the light emitted from the optical antenna is emitted from a preset first direction;
调节所述调相器的电压或电流不变,使得所述光学天线在发射的同时,接收到的经过被测物体反射回来的接收光依次经过所述调相器和所述分束器,通过所述第一耦合器的第一耦合器输出端反向传输到所述第一耦合器的第四输入端,经过所述第四输入端传输到所述第二耦合器的第二输入端,其中,在所述第二耦合器中所述接收光与所述本地光进行拍频,拍频后的光波传输到所述平衡探测器,通过所述平衡探测器输出探测到的电信号;The voltage or current of the phase modulator is adjusted to remain unchanged, so that when the optical antenna transmits, the received light reflected by the measured object passes through the phase modulator and the beam splitter in sequence, and passes through the phase modulator and the beam splitter. The first coupler output terminal of the first coupler is reversely transmitted to the fourth input terminal of the first coupler, and then transmitted to the second input terminal of the second coupler through the fourth input terminal, Wherein, in the second coupler, the received light and the local light are beat frequency, the beat frequency light wave is transmitted to the balance detector, and the detected electrical signal is output through the balance detector;
继续调节所述调相器,使得从所述光学天线发射的光从预设的第二方向发射,并继续调节所述调相器的电压或电流不变,使得所述平衡探测器输出探测到的电信号的步骤,直到调节所述调相器,使得所述被测物体至少被所述相控阵激光雷达全部扫描一遍。Continue to adjust the phase modulator so that the light emitted from the optical antenna is emitted from a preset second direction, and continue to adjust the voltage or current of the phase modulator unchanged, so that the output of the balanced detector detects until the phase modulator is adjusted, so that the object to be measured is scanned at least once by the phased array lidar.
本申请实施例提供一种连续波调频相控阵激光雷达芯片、扫描方法及激光雷达,该连续波调频相控阵激光雷达芯片,包括:输入耦合器、第一耦合器、分束器、调相器、光学天线以及接收光处理层;所述输入耦合器和所述接收光处理层分别与所述第一耦合器通过波导连接,所述第一耦合器、分束器、调相器与光学天线依次通过波导连接;所述输入耦合器,用于将输入光耦合到所述芯片上;所述第一耦合器,用于将耦合到所述芯片上中的用于发射的光传输到所述分束器中;所述分束器,用于对所述用于发射光进行分束,输出多束发射光波;所述调相器,用于对所述发射光波进行调相;所述光学天线,用于将调相后的所述发射光波发射至空间,以及接收所述空间中被测物体反射回的反射光波,并将所述反射光波经所述调相器、所述分束器以及所述第一耦合器传输至接收光处理层;所述第一耦合器,还用于接收通过所述光学天线接收到所述芯片上的接收光,并将所述接收光传输至所述接收光处理层;所述接收光处理层,用于对所述接收光进行信号处理,输出电信号。由于该连续波调频相控阵激光雷达芯片通过第一耦合器将用于发射的信号光和接收信号光在芯片上分开,同时所述分束器、调相器和光学天线协同工作,实现了空间中不同角度光的发射和接收,实现了收发一体化,并且该连续波调频相控阵激光雷达芯片的发射和接收用同一套相控阵系统,结构紧凑,大大简化了整个系统的复杂程度。Embodiments of the present application provide a continuous wave frequency-modulated phased array laser radar chip, a scanning method, and a laser radar. The continuous-wave frequency-modulated phased array laser radar chip includes: an input coupler, a first coupler, a beam splitter, a a phaser, an optical antenna, and a received light processing layer; the input coupler and the received light processing layer are respectively connected with the first coupler through a waveguide, and the first coupler, the beam splitter, and the phase modulator are connected to The optical antennas are in turn connected by waveguides; the input coupler is used to couple the input light to the chip; the first coupler is used to transmit the light for emission coupled into the chip to In the beam splitter; the beam splitter is used for splitting the emitted light to output multiple beams of emitted light waves; the phase modulator is used for phase modulation of the emitted light waves; The optical antenna is used to transmit the phase-modulated emitted light wave to the space, and receive the reflected light wave reflected from the measured object in the space, and transmit the reflected light wave through the phase modulator, the splitter The beamer and the first coupler are transmitted to the receiving light processing layer; the first coupler is also used to receive the received light received on the chip through the optical antenna, and transmit the received light to The received light processing layer; the received light processing layer is used for performing signal processing on the received light and outputting an electrical signal. Because the continuous wave frequency modulated phased array lidar chip separates the signal light for transmission and the signal light for reception on the chip through the first coupler, and at the same time the beam splitter, the phase modulator and the optical antenna work together, realizing the The emission and reception of light from different angles in space realizes the integration of transceivers, and the CW FM phased array lidar chip uses the same phased array system for transmission and reception, with a compact structure, which greatly simplifies the complexity of the entire system .
应当理解,上述发明内容部分中所描述的内容并非旨在限定本申请的实施例的关键或重要特征,亦非用于限制本申请的范围。本申请的其它特征将通过以下的描述变得容易理解。It should be understood that the content described in the above summary section is not intended to limit the key or important features of the embodiments of the present application, nor is it intended to limit the scope of the present application. Other features of the present application will become readily understood from the following description.
附图说明Description of drawings
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the embodiments of the present application or the technical solutions in the prior art, the following will briefly introduce the accompanying drawings used in the description of the embodiments or the prior art. Obviously, the accompanying drawings in the following description These are some embodiments of the present application, and for those of ordinary skill in the art, other drawings can also be obtained from these drawings without any creative effort.
图1为本申请实施例提供的连续波调频相控阵激光雷达芯片的结构示意图;1 is a schematic structural diagram of a continuous-wave frequency-modulated phased array laser radar chip provided by an embodiment of the present application;
图2为本申请又一实施例提供的连续波调频相控阵激光雷达芯片的结构示意图;FIG. 2 is a schematic structural diagram of a continuous wave FM phased array lidar chip provided by another embodiment of the present application;
图3为本申请再一实施例提供的连续波调频相控阵激光雷达芯片的结构示意图;FIG. 3 is a schematic structural diagram of a continuous wave FM phased array lidar chip provided by still another embodiment of the present application;
图4为本申请另一实施例提供的连续波调频相控阵激光雷达芯片的结构示意图;4 is a schematic structural diagram of a continuous wave FM phased array lidar chip provided by another embodiment of the present application;
图5为本申请再一实施例提供的连续波调频相控阵激光雷达中含保护层的SOI衬底结构示意图;FIG. 5 is a schematic structural diagram of an SOI substrate containing a protective layer in a continuous-wave frequency-modulated phased-array lidar provided by yet another embodiment of the present application;
图6为本申请实施例提供的扫描方法的流程示意图;6 is a schematic flowchart of a scanning method provided by an embodiment of the present application;
图7为本申请再一实施例提供的扫描方法中发射过程的示意图;FIG. 7 is a schematic diagram of a transmission process in a scanning method provided by still another embodiment of the present application;
图8为本申请另一实施例提供的扫描方法中接收过程的示意图。FIG. 8 is a schematic diagram of a receiving process in a scanning method provided by another embodiment of the present application.
附图标记:Reference number:
10-输入耦合器 20-第一耦合器 30-分束器 40-调相器 50-光学天线 60-接收光处理层 70-功率分配器 601-第二耦合器 602-平衡探测器 11-衬底硅层 12-埋氧化层13-顶部硅层 14-保护层10-input coupler 20-first coupler 30-beam splitter 40-phase modulator 50-optical antenna 60-received light processing layer 70-power splitter 601-second coupler 602-balanced detector 11-liner Bottom silicon layer 12 - buried oxide layer 13 - top silicon layer 14 - protective layer
具体实施方式Detailed ways
下面将参照附图更详细地描述本申请的实施例。虽然附图中显示了本申请的某些实施例,然而应当理解的是,本申请可以通过各种形式来实现,而且不应该被解释为限于这里阐述的实施例,相反提供这些实施例是为了更加透彻和完整地理解本申请。应当理解的是,本申请的附图及实施例仅用于示例性作用,并非用于限制本申请的保护范围。Embodiments of the present application will be described in more detail below with reference to the accompanying drawings. While certain embodiments of the present application are shown in the drawings, it is to be understood that the present application may be embodied in various forms and should not be construed as limited to the embodiments set forth herein, but rather are provided for the purpose of A more thorough and complete understanding of this application. It should be understood that the drawings and embodiments of the present application are only used for exemplary purposes, and are not used to limit the protection scope of the present application.
本申请实施例的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”、“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请实施例如能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含。The terms "first", "second", "third", "fourth", etc. (if any) in the description and claims of the embodiments of the present application and the above-mentioned drawings are used to distinguish similar objects, while It is not necessary to describe a particular order or sequence. It is to be understood that data so used may be interchanged under appropriate circumstances such that the embodiments of the application described herein can, for example, be practiced in sequences other than those illustrated or described herein. Furthermore, the terms "comprising" and "having", and any variations thereof, are intended to cover non-exclusive inclusion.
图1为本申请实施例提供的连续波调频相控阵激光雷达芯片的结构示意图。如图1所示,本实施例提供的连续波调频相控阵激光雷达芯片包括:输入耦合器10、第一耦合器20、分束器30、调相器40、光学天线50以及接收光处理层60。FIG. 1 is a schematic structural diagram of a continuous-wave frequency-modulated phased array laser radar chip provided by an embodiment of the present application. As shown in FIG. 1 , the continuous wave FM phased array lidar chip provided in this embodiment includes: an
其中,所述输入耦合器10和所述接收光处理层60分别与所述第一耦合器20通过波导连接,所述第一耦合器20、分束器30、调相器40与光学天线50依次通过波导连接。Wherein, the
具体地,所述输入耦合器10,用于将输入光耦合到所述芯片上。所述第一耦合器20,用于将耦合到所述芯片上中的用于发射的光传输到所述分束器中。所述分束器30,用于对所述用于发射光进行分束,输出多束发射光波;所述调相器40,用于对所述发射光波进行调相;所述光学天线50,用于将调相后的所述发射光波发射至空间,以及接收所述空间中被测物体反射回的反射光波,并将所述反射光波经所述调相器40、所述分束器30以及所述第一耦合器20传输至接收光处理层60;所述第一耦合器20,还用于接收通过所述光学天线50接收到所述芯片上的接收光,并将所述接收光传输至所述接收光处理层60;所述接收光处理层60,用于对所述接收光进行信号处理,输出电信号。其中,所述芯片还包括:SOI衬底;所述输入耦合器10、第一耦合器20、分束器30、调相器40、光学天线50、接收光处理层60位于所述SOI衬底的顶部硅层13上。其中,所述反射光波为发射光波到达所述空间中被测物体后反射回的光波。Specifically, the
在实际应用中,连续波调频相控阵激光雷达芯片可以集成在一片与CMOS工艺相兼容的标准衬底即SOI衬底上,芯片上各个器件之间可以通过波导连接。该SOI衬底由下至上包括:衬底硅层11、埋氧化层12和顶部硅层13。其中,输入耦合器10、第一耦合器20、分束器30、调相器40、光学天线50以及接收光处理层60等是在SOI衬底的顶部硅层13形成的。本实施例中对SOI衬底的每一层的材料和厚度不作限制。如可根据不同的需求进行每一层材料和厚度的定制,也可以采用常规标准CMOS工艺的SOI衬底产品,如衬底硅层11的材料为硅,其厚度为400~800μm;埋氧化层12的材料为二氧化硅,其厚度为2μm;顶部硅层13的材料为硅,其厚度为220nm。In practical applications, the continuous-wave frequency-modulated phased array lidar chip can be integrated on a standard substrate compatible with CMOS technology, that is, an SOI substrate, and the devices on the chip can be connected by waveguides. The SOI substrate includes from bottom to top: a
其中,所述输入耦合器10用于将芯片外的激光器发出的激光耦合到芯片上,这里的由芯片外的激光器发出的激光可以作为输入光,其频率进行了线性调制,该激光器是一个频率做周期性线性变化的激光器。由于目前的连续波调频相控阵激光雷达芯片为了实现光的发射和接收,通常是通过两套独立的相控阵系统来实现发射和接收的,这样芯片上的器件多了一倍,导致芯片上的器件繁杂,同样,激光雷达系统中用于驱动芯片正常工作的驱动电路也同样需要增大一倍的控制量,这对整个激光雷达系统都是不利的。The
为了解决以上问题,本实施例中采用第一耦合器20以及分束器30、调相器40、和光学天线50的协同工作,实现了空间中不同角度光的发射和接收,使得连续波调频相控阵激光雷达芯片的发射和接收用同一套相控阵系统,实现了收发一体化的同时,由于芯片上的结构紧凑,减小了整个系统的复杂度。In order to solve the above problems, in this embodiment, the
具体地,分束器30、调相器40和光学天线50是所述相控阵激光雷达的相控阵模块。其中,分束器30可以将一束光分为若干束,具体数量本申请不做限定。Specifically, the
比如,第一耦合器20将利用输入耦合器10把输入光耦合到所述芯片上中的用于发射的光传输到所述分束器30中,分束器30将光分成了8束,然后每一束光都被调相器40分别调制相位,并经过光学天线50发射;同样,在光学天线50接收信号时,分束器30、调相器40和光学天线50也以同样的形式工作,但是工作顺序相反,即用于发射的光从光学天线50从自由空间中发射并经过被测物体反射后被接收到芯片上的波导中,并被调相器40调相后经过分束器汇合到一路波导中传输至第一耦合器中。通过各个器件的协同工作,实现了不同角度光的发射和接收,且发射和接收共用一组上述器件,即收发同模块。For example, the
其中,输入耦合器10,用于将光波耦合到芯片上,其能够将大功率输入光耦合进芯片中,然后通过第一耦合器20将耦合到芯片上的光中用于发射的光传输到所述分束器30中,分束器30对该用于发射的光进行分束,所以耦合进输入耦合器10的光中用于发射的光经过分束器30后被分为若干份光波,再通过调相器40调节分束后每束或每份光波的相位,即改变波导中的光波的相位。波导中的光波通过调相器40调好相位后通过波导传输到光学天线50中发射至空间中,发射光经过被测物体反射回来通过光学天线50接收到芯片上,并经过调相器40和分束器30传输到第二耦合器601的输出端口即与分束器30连接的端口,然后反向传输到第二耦合器601的一个输入端口即与接收光处理层60连接的端口,传输到所述接收光处理层60,使得接收光处理层60对接收光进行信号处理,输出电信号。Among them, the
本实施例提供的连续波调频相控阵激光雷达芯片,包括:输入耦合器10、第一耦合器20、分束器30、调相器40、光学天线50以及接收光处理层60;所述输入耦合器10和所述接收光处理层60分别与所述第一耦合器20通过波导连接,所述第一耦合器20、分束器30、调相器40与光学天线50依次通过波导连接;所述输入耦合器10,用于将输入光耦合到所述芯片上;所述第一耦合器20,用于将耦合到所述芯片上中的用于发射的光传输到所述分束器30中;所述分束器30,用于对所述用于发射光进行分束,输出多束发射光波;所述调相器40,用于对所述发射光波进行调相;所述光学天线50,用于将调相后的所述发射光波发射至空间,以及接收所述空间中被测物体反射回的反射光波,并将所述反射光波经所述调相器40、所述分束器30以及所述第一耦合器20传输至接收光处理层60;所述第一耦合器20,还用于接收通过所述光学天线50接收到所述芯片上的接收光,并将所述接收光传输至所述接收光处理层60;所述接收光处理层60,用于对所述接收光进行信号处理,输出电信号。由于该连续波调频相控阵激光雷达芯片通过第一耦合器20将用于发射的信号光和接收信号光在芯片上分开,同时所述分束器30、调相器40和光学天线50协同工作,实现了空间中不同角度光的发射和接收,实现了收发一体化,并且该连续波调频相控阵激光雷达芯片的发射和接收用同一套相控阵系统,结构紧凑,大大简化了整个系统的复杂程度。The continuous wave frequency modulated phased array lidar chip provided in this embodiment includes: an input coupler 10, a first coupler 20, a beam splitter 30, a phase modulator 40, an optical antenna 50, and a received light processing layer 60; the The input coupler 10 and the received light processing layer 60 are respectively connected with the first coupler 20 through waveguides, and the first coupler 20 , the beam splitter 30 , the phase modulator 40 and the optical antenna 50 are sequentially connected through waveguides ; the input coupler 10 for coupling the input light to the chip; the first coupler 20 for transmitting the light for emission coupled into the chip to the splitter In the device 30; the beam splitter 30 is used for splitting the emitted light to output multiple beams of emitted light waves; the phase modulator 40 is used for phase modulation of the emitted light waves; the The optical antenna 50 is used for transmitting the phase-modulated emitted light wave to space, and receiving the reflected light wave reflected by the measured object in the space, and passing the reflected light wave through the phase modulator 40, the The beam splitter 30 and the first coupler 20 are transmitted to the received light processing layer 60; the first coupler 20 is also used to receive the received light received on the chip through the optical antenna 50, and to The received light is transmitted to the received light processing layer 60; the received light processing layer 60 is used to perform signal processing on the received light and output an electrical signal. Since the continuous wave frequency modulated phased array lidar chip separates the signal light for transmission and the signal light for reception on the chip through the
为了实现在光源不同强度的场景下,精确调节发射光和本地光的能量,将发射光或用于发射的光传依次输至第一耦合器20、分束器30、调相器40以及光学天线50发射至空间中,参见图2,图2为本申请又一实施例提供的连续波调频相控阵激光雷达芯片的结构示意图。本实施例在上述实施例的基础上,对连续波调频相控阵激光雷达芯片进行了详细说明。该连续波调频相控阵激光雷达芯片,还包括:功率分配器70。In order to precisely adjust the energy of the emitted light and the local light in the scenarios of different intensities of the light source, the emitted light or the light used for emission is transmitted to the
其中,所述功率分配器70的输入端通过波导连接所述输入耦合器10,所述功率分配器70的输出端连接所述第一耦合器20以及所述接收光处理层60。具体地,所述功率分配器70,用于对耦合到所述芯片上的光进行能量分配,得到发射光和本地光,所述发射光被传输至所述第一耦合器20,所述本地光被传输至所述接收光处理层60。The input end of the
本实施例中,功率分配器70的前端通过波导与输入耦合器10连接,功率分配器70的后端通过波导分别与第一耦合器20的前端(即第一耦合器20的一个输入端)和接收光处理层60的前端(接收光处理层60的一个输入端)连接。其中,所述功率分配器70可以为光开关型功率分配器,可以精确调节用于发射的光的能量和用于接收光处理层60处理的本地光的能量之比,并将调节后的用于发射的光(或发射光)传输至所述分束器30,将调节后的本地光传输至所述接收光处理层60。由于通常情况下,该功率分配器70可以用特定结构的定向耦合器来代替,但是,该定向耦合器的结构一旦确定了,则发射光和本地光的能量之比就固定了,所以能量之比不可调,因此,这会一定程度地影响该用于收发一体的连续波调频相控阵激光雷达的灵活性,故可以采用一个可调的功率分配器70来精细分配发射光和本地光的功率。In this embodiment, the front end of the
为了实现对接收光的信号处理,输出探测到的电信号,参见图3,图3为本申请再一实施例提供的连续波调频相控阵激光雷达芯片的结构示意图,本实施例在上述实施例的基础上,例如,在图2所述的实施例的基础上,对连续波调频相控阵激光雷达芯片进行了详细说明。所述接收光处理层60包括:平衡探测器602和第二耦合器601;所述第二耦合器601的输入端通过波导与所述功率分配器70的输出端以及所述第一耦合器20连接,所述第二耦合器601的输出端通过波导与所述平衡探测器602连接;所述第二耦合器601,用于将所述本地光和所述反射光波进行拍频,并将拍频后的光波传输至所述平衡探测器602中;所述平衡探测器602,用于探测所述拍频后的光波,并输出探测到的光波的电信号。In order to realize the signal processing of the received light and output the detected electrical signal, see FIG. 3 , which is a schematic structural diagram of a continuous-wave frequency-modulated phased array lidar chip provided by yet another embodiment of the present application. On the basis of the example, for example, on the basis of the embodiment described in FIG. 2 , the continuous wave FM phased array lidar chip is described in detail. The received
本实施例中,第二耦合器601具有两个输入端和一个输出端,所述第二耦合器601可以为50:50定向耦合器或者2*2多模干涉耦合器,根据不同的场景可以选用不同类型的第二耦合器601。其中,第二耦合器601的一个输入端即第一输入端与功率分配器70的后端连接,第二耦合器601的另一个输入端即第二输入端与第一耦合器20连接,第二耦合器601的输出端即第二耦合器输出端与平衡探测器602连接。In this embodiment, the
在一种可能的设计中,所述第二耦合器输出端为含有两个第一输出端口;所述平衡探测器602为两个波导型硅锗探测器。In a possible design, the output end of the second coupler includes two first output ports; the
其中,可以设置有两个输入波导端口。平衡探测器602中的两个输入波导端口分别与所述第二耦合器输出端的两个第一输出端口通过波导连接。Therein, two input waveguide ports may be provided. The two input waveguide ports in the
具体地,第一输入端用于将所述功率分配器70分配的用于平衡探测的本地光输入进来,第二输入端口用于将从所述第一耦合器20的输出端口反向传输到的第一耦合器20的输入端口的接收光输入进来。其中两束光具有不同的频率,在所述第二耦合器601中拍频并将拍频后的信号通过第二耦合器601的两个第一输出端口传输到平衡探测器602中,使得平衡探测器602探测所述拍频后的光波(信号),输出探测到的光波的电信号。Specifically, the first input port is used for inputting the local light distributed by the
在一种可能的设计中,第一耦合器20设置有第三输入端、第四输入端和第一耦合器输出端,所述第一耦合器20的结构可以为2*1多模干涉耦合器或2*2多模干涉耦合器,根据不同的场景可以选用不同类型的第二耦合器601。In a possible design, the
其中,所述第三输入端为与所述功率分配器70连接的端口,所述第四输入端为与所述接收光处理层60连接的端口,所述第一耦合器输出端为与所述分束器30连接的端口。Wherein, the third input end is a port connected to the
具体地,所述第一耦合器20,具体用于:通过所述第三输入端将所述功率分配器70调节后的用于发射的光传输到所述分束器30中,通过所述第一耦合器输出端接收通过所述光学天线50接收到所述芯片上后依次经过所述调相器40和分束器30传输的接收光,并反向传输到所述第四输入端,通过所述第四输入端将所述接收光传输至所述第二输入端。Specifically, the
本实施例中,第一耦合器20具有两个输入端口和一个输出端口。其中,第一耦合器20的一个输入端口即第三输入端与功率分配器70的后端连接,第一耦合器20的另一个输入端口即第四输入端与第二耦合器601的第二输入端连接,第一耦合器20的输出端即第一耦合器输出端与分束器30连接。In this embodiment, the
具体地,第一耦合器20是用于将用于发射的光和接收光在芯片上分离,其中,其中第一耦合器20的第三输入端用于将与其连接的功率分配器70分配好的用于发射的光传输到与第一耦合器20的第一耦合器输出端连接的分束器30中,该用于发射的光经过调相器40和光学天线50发射到空间中;发射光经过被测物体反射回来通过光学天线50接收到芯片上,并经过调相器40和分束器30传输到第一耦合器输出端,通过第一耦合器输出端反向传输到第一耦合器20的另一个输入端口即第四输入端,通过第四输入端传输到所述第二耦合器601中。Specifically, the
需要注意的是,第一耦合器输出端可以包含一个输出端口,也可以包含两个输出端口。若第一耦合器20为2*1多模干涉耦合器,则第一耦合器输出端包含一个输出端口,参见图1-图3任一图所示,该第一耦合器20在芯片上的位置连接关系与上述实施例描述相同,在此不再赘述。若第一耦合器为2*2多模干涉耦合器,则第一耦合器输出端包含两个输出端口,该第一耦合器20除了上述图1-图3所述的实施例的功能以外,还具有第一级分束器的功能。It should be noted that, the output end of the first coupler may include one output port, or may include two output ports. If the
具体地,参见图4,图4为本申请另一实施例提供的连续波调频相控阵激光雷达芯片的结构示意图。该两个输出端口分别与分束器30连接,第一耦合器20除了上述实施例所描述的功能外,还包含了一个一分二分束器的功能,即在分束器30中直接将第一耦合器20的两个输出端口分别输出的两个输出波导进行下一级的分束,而不同于上述实施例中的分束器30需要从一个波导进行分束。提高了激光雷达系统整体的工作效率。Specifically, referring to FIG. 4 , FIG. 4 is a schematic structural diagram of a continuous-wave frequency-modulated phased array laser radar chip provided by another embodiment of the present application. The two output ports are respectively connected to the
在一种可能的设计中,为了实现各个器件之间的光路连接,在上述实施例的基础上,本实施例提供的连续波调频相控阵激光雷达芯片中的波导为TE模的单模波导,该TE模的单模波导的形状为脊形波导或者条形波导。采用TE模的单模波导,能够定向引导该波导中的光波的结构。其中各个器件均设置在SOI衬底的顶部硅层13。In a possible design, in order to realize the optical path connection between various devices, on the basis of the above embodiment, the waveguide in the continuous wave frequency modulation phased array lidar chip provided by this embodiment is a single-mode waveguide of TE mode , the shape of the single-mode waveguide of the TE mode is a ridge waveguide or a strip waveguide. A single-mode waveguide using the TE mode is a structure capable of directionally guiding light waves in the waveguide. Wherein each device is arranged on the
在一种可能的设计中,本实施例在上述实施例的基础上,对所述连续波调频相控阵激光雷达芯片上各个器件进行了详细说明。所述输入耦合器10为端面耦合器或者光栅耦合器;所述分束器30为定向耦合器或者多模干涉耦合器(或者级联的1*2多模干涉耦合器);所述光学天线50为光栅型光学天线。其中光栅为二级衍射光栅。In a possible design, on the basis of the above-mentioned embodiments, this embodiment describes in detail each device on the continuous-wave frequency-modulated phased array lidar chip. The
具体地,本实施例中,各波导中的光波通过调相器40调好相位后,由波导传输到光学天线50发射至空间中。本实施例中光学天线50可以为在硅阵列波导上刻二级衍射光栅,即光栅型光学天线。其中光栅的具体参数,如光栅周期、占空比、刻蚀深度等,都与工作波长相关。在波导上进行光栅刻蚀时,需要先根据刻蚀深度计算光栅周期。为了获得小的沿波导方向的远场发散角,及高的纵向雷达扫描分辨率,设计光学天线50的二级衍射光栅刻蚀深度较浅,为20~100nm。由于光波波段为1.5~1.6μm,波导阵列对于此波段的有效折射率约为2.38,根据二级衍射光栅公式得到二级衍射光栅周期为600~680nm,即在硅波导上均匀地在每个光栅周期的距离上进行光栅刻蚀。而光栅的宽度则由占空比来决定,也就是光栅宽度与光栅周期的比值。通过计算可知,在光波波段1.5~1.6μm,二级衍射光栅占空比为0.4~0.6时,向外辐射效率最高。Specifically, in this embodiment, after the phase of the light waves in each waveguide is adjusted by the
本实施例中,可以选择输入耦合器10为端面耦合器或者光栅耦合器,然后端面耦合器或光栅耦合器将光波耦合到芯片后,光波通过TE模的单模波导传输到多模干涉耦合器、星型耦合器或者定向耦合器任一种分束器30对应的波导中,光波被分为足够多份,通过调相器40对各束光波进行调相后传输至光学天线50,使得光学天线50对通过该调相器40改变相位的光波发射至空间中,实现了不同角度光的发射和接收,保证了与传统收发分立的相控阵系统性能一致的同时,简化了整个激光雷达系统的结构。In this embodiment, the
在一种可能的设计中,本实施例在上述实施例的基础上,对调相器40进行了详细说明。如上述的连续波调频相控阵激光雷达芯片中的调相器40可以为热光调相器或电光调相器。In a possible design, the
其中,该热光调相器,用于为所述波导加热,通过热光效应改变所述波导的折射率来改变波导中光波的相位;所述电光调相器,用于向所述波导注入电流,通过电光效应改变波导的折射率来改变波导中光波的相位。Wherein, the thermo-optic phase modulator is used for heating the waveguide, and the refractive index of the waveguide is changed by the thermo-optic effect to change the phase of the light wave in the waveguide; the electro-optic phase modulator is used for injecting into the waveguide The electric current changes the phase of the light waves in the waveguide by changing the refractive index of the waveguide through the electro-optic effect.
具体地,热光调相器可选用顶部加热型或者两侧加热型,即把加热电极设置在波导的顶部或者两侧,通过加电流或者电压偏制,加热电极产生的热传递到波导(可以为硅波导)中,由于硅是一种热光系数很高的材料,所以很容易改变波导中折射率,而改变各波导中的光波的相位。需要注意的是,为了避免加热电极离波导太近,会吸收波导中的光,从而造成较大的损耗,加热电极需要离波导一定距离,一般大于2um。本实施例中对加热电极和金属引线的材料不做限定,但一般加热电极的电阻率要比金属引线大接近一个量级。电光调相器向所述波导注入电流,当有电流通过时,可以调控硅的折射率,从而改变各波导中的光波的相位。Specifically, the thermo-optic phase modulator can be of a top heating type or a two-sided heating type, that is, the heating electrode is arranged on the top or both sides of the waveguide, and the heat generated by the heating electrode is transferred to the waveguide by applying current or voltage biasing (can be In the case of silicon waveguide), since silicon is a material with a high thermo-optic coefficient, it is easy to change the refractive index in the waveguide and change the phase of the light wave in each waveguide. It should be noted that, in order to avoid the heating electrode being too close to the waveguide, the light in the waveguide will be absorbed, resulting in a large loss, the heating electrode needs to be a certain distance from the waveguide, generally greater than 2um. The materials of the heating electrode and the metal lead wire are not limited in this embodiment, but generally, the resistivity of the heating electrode is larger than that of the metal lead wire by an order of magnitude. The electro-optical phase modulator injects current into the waveguide, and when the current passes through, the refractive index of silicon can be regulated, thereby changing the phase of the light waves in each waveguide.
在一种可能的设计中,本实施例在上述任一实施例的基础上,对连续波调频相控阵激光雷达芯片进行了详细说明。如上述的连续波调频相控阵激光雷达芯片还包括:保护层14。该保护层14位于顶部硅层13的上方并完全覆盖,所述保护层14的材料为与CMOS工艺相兼容的材料,且所述保护层14的折射率低于硅的折射率。In a possible design, this embodiment provides a detailed description of a continuous wave frequency-modulated phased array lidar chip on the basis of any of the above-mentioned embodiments. The continuous wave FM phased array lidar chip as described above further includes: a
本实施例中,保护层14覆盖在整个连续波调频相控阵激光雷达芯片上,该保护层14为低折射率保护层。该低折射率保护层的材料可选为二氧化硅,厚度可为2~5um。其中,该保护层14厚度与工作波长相匹配。In this embodiment, the
具体地,参见图3或图4,并结合图5所示,图5为本申请再一实施例提供的连续波调频相控阵激光雷达中含保护层的SOI衬底结构示意图。该相控阵激光雷达可以包括:该相控阵激光雷达包括:输入耦合器10、平衡探测器602、功率分配器70、两个耦合器(即第一耦合器20和第二耦合器601)、分束器30、调相器40和光学天线50;上述所有器件均设置于SOI衬底上,该衬底包括:衬底硅层11、埋氧化层12和顶部硅层13;所述输入耦合器10用于将芯片外的激光器发出的激光耦合到芯片上;所述平衡探测器602用于探测接收信号,其结构可以为波导型硅锗探测器,输入有两路波导接口;所述功率分配器70是用于调节用于发射的光的能量和用于平衡探测本地光的能量之比;然后将分配好的两种光波分别对应传输至第一耦合器20和第二耦合器601中,其中第二耦合器601是用于将接收光和本地光做片上的信号拍频并输出到所述平衡探测器602中,平衡探测器602输出探测到的电信号;第一耦合器20是用于将用于发射的光和接收光在片上分开,用于发射的光依次经过所述分束器30、调相器40和光学天线50发射至空间中,发射光经过被测物体反射回来通过光学天线50接收到芯片上,并经过调相器40和分束器30传输到第二耦合器601的第二耦合器输出端,再反向传输到第二耦合器601的第四输入端,传输到所述第一耦合器20中。通过所述分束器30、调相器40和光学天线50的协同工作,实现了空间中不同角度光的发射和接收。由于用于收发一体的连续波调频相控阵激光雷达芯片的发射和接收用同一套相控阵系统,结构紧凑,大大简化了整个相控阵激光系统的复杂程度,尤其是对于大阵列的相控阵激光雷达,改善效果更加显著。Specifically, referring to FIG. 3 or FIG. 4 , and in conjunction with FIG. 5 , FIG. 5 is a schematic structural diagram of an SOI substrate with a protective layer in a continuous-wave frequency-modulated phased array laser radar according to another embodiment of the present application. The phased array lidar may include: the phased array lidar includes: an input coupler 10 , a balanced detector 602 , a power divider 70 , and two couplers (ie, the first coupler 20 and the second coupler 601 ) , beam splitter 30, phase modulator 40 and optical antenna 50; all the above devices are arranged on SOI substrate, the substrate includes: substrate silicon layer 11, buried oxide layer 12 and top silicon layer 13; the input The coupler 10 is used to couple the laser light emitted by the off-chip laser to the chip; the balanced detector 602 is used to detect the received signal, its structure can be a waveguide type silicon germanium detector, and the input has two waveguide interfaces; the The power divider 70 is used to adjust the ratio of the energy used for the emitted light and the energy used to balance the detection of the local light; then the distributed two light waves are respectively correspondingly transmitted to the first coupler 20 and the second coupler 601 , wherein the second coupler 601 is used to make the signal beat frequency of the received light and the local light on-chip and output it to the balanced detector 602, and the balanced detector 602 outputs the detected electrical signal; the first coupler 20 It is used to separate the light for emission and the light for reception on the chip, the light for emission passes through the beam splitter 30, the phase modulator 40 and the optical antenna 50 in turn and is emitted into the space, and the emitted light is reflected by the measured object It is received on the chip through the optical antenna 50, and transmitted to the second coupler output of the second coupler 601 through the phase modulator 40 and the beam splitter 30, and then reversely transmitted to the fourth input of the second coupler 601 terminal, and transmitted to the first coupler 20. Through the cooperative work of the
本申请实施例提供了一种相控阵激光雷达,该相控阵激光雷达包括上述任一个实施例所述的连续波调频相控阵激光雷达芯片。An embodiment of the present application provides a phased array laser radar, where the phased array laser radar includes the continuous wave frequency-modulated phased array laser radar chip described in any one of the foregoing embodiments.
本实施例中,该相控阵激光雷达包括连续波调频相控阵激光雷达芯片,由于该芯片,包括:输入耦合器10、第一耦合器20、分束器30、调相器40、光学天线50以及接收光处理层60;所述输入耦合器10和所述接收光处理层60分别与所述第一耦合器20通过波导连接,所述第一耦合器20、分束器30、调相器40与光学天线50依次通过波导连接;所述输入耦合器10,用于将输入光耦合到所述芯片上;所述第一耦合器20,用于将耦合到所述芯片上中的用于发射的光传输到所述分束器30中;所述分束器30,用于对所述用于发射的光进行分束;所述调相器40,用于调节分束后每束光波的相位;所述光学天线50,用于对通过所述调相器40改变相位的光波发射至空间中,将发射至空间中的发射光经过被测物体反射回来的光波接收到所述芯片上;所述第一耦合器20,还用于接收通过所述光学天线50接收到所述芯片上的接收光,并将所述接收光传输至所述接收光处理层60。由于该连续波调频相控阵激光雷达芯片通过第一耦合器20将用于发射的信号光和接收信号光在芯片上分开,同时所述分束器30、调相器40和光学天线50协同工作,实现了空间中不同角度光的发射和接收,实现了收发一体化,并且该连续波调频相控阵激光雷达芯片的发射和接收用同一套相控阵系统,结构紧凑,大大简化了整个相控阵激光雷达系统的复杂程度。In this embodiment, the phased array laser radar includes a continuous wave frequency-modulated phased array laser radar chip, because the chip includes: an
为了方便理解连续波调频相控阵激光雷达芯片的结构以及具体如何工作进而实现保证与传统收发分立的相控阵系统性能一致的同时,减少整个系统的复杂度,可以通过以下方式说明,需要注意的,以下方式中,对连续波调频相控阵激光雷达芯片适用的场景以及实现方式不做限定。In order to facilitate the understanding of the structure of the CW FM phased array lidar chip and how it works in order to ensure the performance of the traditional phased array system with discrete transceivers and reduce the complexity of the entire system, it can be explained in the following ways. Yes, in the following manner, the applicable scenarios and implementation manners of the CW FM phased array lidar chip are not limited.
参见图6所示,图6为本申请实施例提供的扫描方法的流程示意图。结合图3和图4,本实施例对扫描方法进行了详细说明。所述方法包括:Referring to FIG. 6 , FIG. 6 is a schematic flowchart of a scanning method provided by an embodiment of the present application. With reference to FIG. 3 and FIG. 4 , the scanning method is described in detail in this embodiment. The method includes:
步骤S101、当光源打开时,调节所述功率分配器70,将用于发射的光和用于平衡探测的本地光调整到预设的比例,其中,所述光源是一个频率做周期性线性变化的激光器通过输入耦合器将光源的光耦合到所述芯片上。Step S101, when the light source is turned on, adjust the
本实施例中,该方法应用于如上述的连续波调频相控阵激光雷达芯片的相控阵激光雷达。首先打开光源,该光源是一个频率做周期性线性变化的激光器,即首先打开线性调频激光器,并通过输入耦合器将光源的耦合到相控阵激光雷达芯片中。然后调节功率分配器70,通过功率分配器70分配发射光功率及本地光功率。具体地,调节所述功率分配器70,将用于发射的光和用于平衡探测的本地光调整到合适的比例,例如用于发射的光的强度是用于平衡探测本地光强度的10倍。In this embodiment, the method is applied to the phased array laser radar of the continuous wave frequency modulation phased array laser radar chip as described above. First turn on the light source, which is a laser whose frequency changes periodically and linearly, that is, first turn on the chirp laser, and couple the light source to the phased array lidar chip through the input coupler. Then, the
步骤S102、调节所述调相器,使得从所述光学天线发射的光从预设的第一方向发射。Step S102: Adjust the phase modulator so that the light emitted from the optical antenna is emitted from a preset first direction.
本实施例中,调节调相器40的电压或电流,并通过优化算法优化发射光斑,将发射光朝着一个特定方向即预设的第一方向发射,此时发射光的方向(预设的第一方向)记为方向1,该发射过程的示意图如图7所示,图7为本申请再一实施例提供的扫描方法中发射过程的示意图。本实施例中对图7中的器件类型不做具体限定,比如第一耦合器20可以是2*1多模干涉耦合器或2*2多模干涉耦合器。具体地,经过功率分配器70分配的用于发射的光依次通过芯片上第一耦合器20、分束器30、调相器40以及光学天线50最终发射到空间中。其中,该优化算法可以为穷举法、梯度下降法、随机梯度下降法或其他优化算法,只要能得到一个收敛的最优结果就可以,本实施例对优化光斑的算法不做限定。In this embodiment, the voltage or current of the
步骤S103、调节所述调相器的电压或电流不变,使得所述光学天线在发射的同时,接收到的经过被测物体反射回来的接收光依次经过所述调相器和所述分束器,通过所述第一耦合器的第一耦合器输出端反向传输到所述第一耦合器的第四输入端,经过所述第四输入端传输到所述第二耦合器601的所述第二输入端,其中,在所述第二耦合器601中所述接收光与所述本地光进行拍频,拍频后的光波传输到所述平衡探测器602,通过所述平衡探测器602输出探测到的电信号。Step S103: Adjust the voltage or current of the phase modulator to remain unchanged, so that the received light reflected by the object to be measured passes through the phase modulator and the beam splitter in sequence while the optical antenna transmits. The first coupler output terminal of the first coupler is reversely transmitted to the fourth input terminal of the first coupler, and then transmitted to all the
本实施例中,保持调相器40的电压或电流不变,相控阵激光雷达同步接收发射光经被测物体反射回的光斑。具体地,由于光路可逆,若经步骤S102发射的光需要以同样的路径回到芯片上并最大功率地合束到第一耦合器中,需保持所述调相器40的电压或电流与步骤S102中的电压或电流一致,光学天线50在发射的同时也用于接收。其中当调相器40为热光调相器时,是电压驱动,当调相器40为电光调相器时,是电流驱动。In this embodiment, the voltage or current of the
然后接收光(即接收的信号或接收信号光)经过芯片上的调相器40、分束器30、第一耦合器等器件与本地光在第二耦合器601中进行拍频。拍频后的光信号(即拍频后的光波)传输到平衡探测器602中,进行探测并输出探测得到的电信号。Then the received light (ie the received signal or the received signal light) passes through the
具体地,参见图8所示,图8为本申请另一实施例提供的扫描方法中接收过程的示意图。拍频后的光信号传输到所述平衡探测器602的两个输入波导中,平衡探测器602可以将一部分噪声信号消除,最终输出探测到的电信号。其中,本实施例中对图8中的器件类型不做具体限定,比如第一耦合器20可以是2*1多模干涉耦合器或2*2多模干涉耦合器。Specifically, referring to FIG. 8 , FIG. 8 is a schematic diagram of a receiving process in a scanning method provided by another embodiment of the present application. The beat-frequency optical signal is transmitted to the two input waveguides of the
S104、继续调节所述调相器,使得从所述光学天线发射的光从预设的第二方向发射,并继续调节所述调相器的电压或电流不变,使得所述平衡探测器输出探测到的电信号的步骤,直到调节所述调相器,使得所述被测物体至少被所述相控阵激光雷达全部扫描一遍。S104. Continue to adjust the phase modulator, so that the light emitted from the optical antenna is emitted from a preset second direction, and continue to adjust the voltage or current of the phase modulator, so that the balanced detector outputs The step of detecting the electrical signal, until the phase modulator is adjusted, so that the object to be measured is completely scanned by the phased array lidar at least once.
本实施例中,探测被测物体的下一个位置,直到该被测物体的所有位置至少被相控阵激光雷达全部扫描一遍,得到多个被测物体的轮廓信息。In this embodiment, the next position of the object to be measured is detected until all the positions of the object to be measured are scanned at least once by the phased array lidar to obtain contour information of multiple objects to be measured.
具体地,当被测物体的第一个位置被测完后,调节调相器40的电压或电流,使从光天线发射的光从新的方向(预设的第二方向)发射,记为方向2,并不断重复步骤S102到步骤S103中的操作,探测出新的探测信号,以此类推,直到该被测物体至少被激光雷达全部扫描一遍,得到足够多被测物体的轮廓信息。Specifically, after the first position of the object to be measured is measured, the voltage or current of the
本实施例中,通过所述分束器30、调相器40和光学天线50的协同工作,实现了空间中不同角度光的发射和接收。由于用于收发一体的连续波调频相控阵激光雷达芯片的发射和接收用同一套相控阵系统,结构紧凑,大大简化了整个相控阵激光系统的复杂程度,尤其是对于大阵列的相控阵激光雷达,改善效果更加显著。In this embodiment, through the cooperative work of the
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。Finally, it should be noted that the above embodiments are only used to illustrate the technical solutions of the present application, but not to limit them; although the present application has been described in detail with reference to the foregoing embodiments, those of ordinary skill in the art should understand that: The technical solutions described in the foregoing embodiments can still be modified, or some or all of the technical features thereof can be equivalently replaced; and these modifications or replacements do not make the essence of the corresponding technical solutions deviate from the technical solutions of the embodiments of the present application. scope.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011603608.5A CN114690150A (en) | 2020-12-29 | 2020-12-29 | Continuous wave frequency modulation phased array laser radar chip, scanning method and laser radar |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011603608.5A CN114690150A (en) | 2020-12-29 | 2020-12-29 | Continuous wave frequency modulation phased array laser radar chip, scanning method and laser radar |
Publications (1)
Publication Number | Publication Date |
---|---|
CN114690150A true CN114690150A (en) | 2022-07-01 |
Family
ID=82133056
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011603608.5A Pending CN114690150A (en) | 2020-12-29 | 2020-12-29 | Continuous wave frequency modulation phased array laser radar chip, scanning method and laser radar |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114690150A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115184903A (en) * | 2022-09-09 | 2022-10-14 | 北京摩尔芯光半导体技术有限公司 | Laser radar receiving and transmitting assembly and laser radar device |
CN116106862A (en) * | 2023-04-10 | 2023-05-12 | 深圳市速腾聚创科技有限公司 | Optical chip, laser radar, automatic driving system and movable equipment |
WO2025020247A1 (en) * | 2023-07-25 | 2025-01-30 | 北京遥测技术研究所 | Transceiving coaxial phased array lidar chip and control method therefor |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20190101647A1 (en) * | 2017-09-29 | 2019-04-04 | Intel Corporation | Integrated Optical Transmitter and Receiver |
CN109991582A (en) * | 2019-03-13 | 2019-07-09 | 上海交通大学 | Silicon Hybrid Integrated LiDAR Chip System |
CN111007483A (en) * | 2019-12-24 | 2020-04-14 | 联合微电子中心有限责任公司 | Laser radar based on silicon optical chip |
CN111190161A (en) * | 2020-01-20 | 2020-05-22 | 杭州洛微科技有限公司 | Solid-state laser radar device adopting optical phased array chip |
CN111220963A (en) * | 2018-11-27 | 2020-06-02 | 北京万集科技股份有限公司 | Multi-layer material phased array laser radar transmitting chip, manufacturing method and laser radar |
CN111665518A (en) * | 2020-06-30 | 2020-09-15 | 浙江大学昆山创新中心 | Laser phased array radar with safety for human eyes |
CN111722237A (en) * | 2020-06-02 | 2020-09-29 | 上海交通大学 | LIDAR detection device based on lens and integrated beam transceiver |
-
2020
- 2020-12-29 CN CN202011603608.5A patent/CN114690150A/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20190101647A1 (en) * | 2017-09-29 | 2019-04-04 | Intel Corporation | Integrated Optical Transmitter and Receiver |
CN111220963A (en) * | 2018-11-27 | 2020-06-02 | 北京万集科技股份有限公司 | Multi-layer material phased array laser radar transmitting chip, manufacturing method and laser radar |
CN109991582A (en) * | 2019-03-13 | 2019-07-09 | 上海交通大学 | Silicon Hybrid Integrated LiDAR Chip System |
CN111007483A (en) * | 2019-12-24 | 2020-04-14 | 联合微电子中心有限责任公司 | Laser radar based on silicon optical chip |
CN111190161A (en) * | 2020-01-20 | 2020-05-22 | 杭州洛微科技有限公司 | Solid-state laser radar device adopting optical phased array chip |
CN111722237A (en) * | 2020-06-02 | 2020-09-29 | 上海交通大学 | LIDAR detection device based on lens and integrated beam transceiver |
CN111665518A (en) * | 2020-06-30 | 2020-09-15 | 浙江大学昆山创新中心 | Laser phased array radar with safety for human eyes |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115184903A (en) * | 2022-09-09 | 2022-10-14 | 北京摩尔芯光半导体技术有限公司 | Laser radar receiving and transmitting assembly and laser radar device |
CN115184903B (en) * | 2022-09-09 | 2022-11-29 | 北京摩尔芯光半导体技术有限公司 | Laser radar receiving and transmitting assembly and laser radar device |
CN116106862A (en) * | 2023-04-10 | 2023-05-12 | 深圳市速腾聚创科技有限公司 | Optical chip, laser radar, automatic driving system and movable equipment |
CN116106862B (en) * | 2023-04-10 | 2023-08-04 | 深圳市速腾聚创科技有限公司 | Optical chip, laser radar, automatic driving system and movable equipment |
WO2025020247A1 (en) * | 2023-07-25 | 2025-01-30 | 北京遥测技术研究所 | Transceiving coaxial phased array lidar chip and control method therefor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3904902B1 (en) | Multi-layer phased array lidar transmission chip, manufacturing method, and lidar | |
CN110174661B (en) | An optical phased array two-dimensional laser radar scanning chip based on polarization multiplexing | |
US7835600B1 (en) | Microwave receiver front-end assembly and array | |
CN111551914B (en) | Optical phased array device, lidar and detection method based on lidar | |
US8098185B2 (en) | Millimeter and sub-millimeter wave portal | |
CN114690150A (en) | Continuous wave frequency modulation phased array laser radar chip, scanning method and laser radar | |
CN105527772A (en) | Optical phased array | |
US12287432B2 (en) | Phased array LiDAR transmitting chip of mixed materials, manufacturing method thereof, and lidar device | |
CN112764287B (en) | A half-wave arrangement two-dimensional scanning optical phased array based on flat grating antenna | |
CN113534167B (en) | Phased array laser radar chip capable of switching antennas, using method and laser radar | |
CN112946929B (en) | One-dimensional optical phased array based on apodization modulation | |
WO2023134702A1 (en) | Programmable two-dimensional simultaneous multi-beam optically controlled phased array receiver chip and multi-beam control method | |
US12072445B2 (en) | Phased array LiDAR transmitting chip of multi-layer materials, manufacturing method thereof, and LiDAR device | |
CN115754989A (en) | Three-dimensional solid-state laser radar chip and detection method and system thereof | |
US20080112705A1 (en) | Frequency selective mmw source | |
Shi et al. | Optically controlled phase array antenna | |
RU2298810C1 (en) | Receiving-transmitting optoelectronic module of an antenna with a phased antenna array | |
Zhang et al. | Two-Dimensional High-Efficiency Transceiver Integrated Optical Phased Array with Dual-Port Antenna | |
US20250208265A1 (en) | Phased array lidar chip and lidar | |
Che et al. | Photonic THz beam steering using fiber chromatic dispersion | |
CN118444434B (en) | Coherent optical module optical fiber array | |
CN118688754A (en) | A tunable mode-locked laser and parallel FMCW lidar system | |
US20250023232A1 (en) | Optical beamforming processor with a differentially segmented aperture antenna | |
CN118732308A (en) | Optical modulation module, wavelength demultiplexing device and laser radar | |
CN120195658A (en) | Optical phased array chip and laser radar |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
TA01 | Transfer of patent application right | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20231219 Address after: 430200, 7th floor, Building 3, Phase II, Modern Service Industry Demonstration Base, Huazhong University of Science and Technology Science Park, Guandong Street, Donghu New Technology Development Zone, Wuhan City, Hubei Province Applicant after: Wuhan Wanji Photoelectric Technology Co.,Ltd. Address before: 100193 building 12, Zhongguancun Software Park, Haidian District, Beijing Applicant before: BEIJING WANJI TECHNOLOGY Co.,Ltd. |