CN114681675A - 一种3d打印水凝胶尿道支架的制备方法 - Google Patents

一种3d打印水凝胶尿道支架的制备方法 Download PDF

Info

Publication number
CN114681675A
CN114681675A CN202210366052.5A CN202210366052A CN114681675A CN 114681675 A CN114681675 A CN 114681675A CN 202210366052 A CN202210366052 A CN 202210366052A CN 114681675 A CN114681675 A CN 114681675A
Authority
CN
China
Prior art keywords
rgo
hydrogel
gel
solution
printing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210366052.5A
Other languages
English (en)
Inventor
张楷乐
李文尧
王丽阳
程婕
杨熙
陈剑锋
傅强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN202210366052.5A priority Critical patent/CN114681675A/zh
Publication of CN114681675A publication Critical patent/CN114681675A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/40Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
    • A61L27/44Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix
    • A61L27/443Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix with carbon fillers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/52Hydrogels or hydrocolloids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/54Biologically active materials, e.g. therapeutic substances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/56Porous materials, e.g. foams or sponges
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/58Materials at least partially resorbable by the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/10Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices containing or releasing inorganic materials
    • A61L2300/108Elemental carbon, e.g. charcoal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/40Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
    • A61L2300/404Biocides, antimicrobial agents, antiseptic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/40Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
    • A61L2300/41Anti-inflammatory agents, e.g. NSAIDs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/60Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a special physical form
    • A61L2300/602Type of release, e.g. controlled, sustained, slow
    • A61L2300/604Biodegradation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2305/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2301/00 or C08J2303/00
    • C08J2305/04Alginic acid; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2389/00Characterised by the use of proteins; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2405/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2401/00 or C08J2403/00
    • C08J2405/04Alginic acid; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2489/00Characterised by the use of proteins; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/042Graphene or derivatives, e.g. graphene oxides

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Dermatology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Materials For Medical Uses (AREA)

Abstract

本发明公开了一种3D打印水凝胶尿道支架的制备方法,包括以下步骤:S1,制备SA/Gel/rGO复合水凝胶溶液;S2,使用3D打印制备SA/Gel/rGO水凝胶支架;S3,将完成打印的SA/Gel/rGO水凝胶支架放入‑85℃至‑80℃低温环境中,冷冻时间为2‑2.5h;S4,将冷冻后的SA/Gel/rGO水凝胶支架放入真空冷冻干燥机中进行冻干,冻干时间为12‑13 h;S5,将冻干后的SA/Gel/rGO水凝胶支架与5%CaCl2进行交联,交联时间为30‑35分钟,交联后使用灭菌水进行清洗;S6,将清洗后的SA/Gel/rGO水凝胶支架进行二次冻干,之后保存在真空容器中,备用。通过将rGO溶液引入SA/Gel混合溶液中制备SA/Gel/rGO纳米复合水凝胶并进行打印,能够对水凝胶的溶胀能、孔径大小、拉伸性能得到好的改善。

Description

一种3D打印水凝胶尿道支架的制备方法
技术领域
本发明属于3D打印水凝胶尿道支架技术领域,尤其涉及一种3D打印水凝胶尿道支架的制备方法。
背景技术
虽然仿生组织与器官可以在体外培养出来,但是使用传统方法,如静电纺丝、快速成型和冷冻干燥,制造的仿生组织与支架相比天然组织或器官不能形成三维结构。另外,细胞无法均匀地附着在支架上面。将细胞直接接种在支架上面可能会导致细胞死亡,进一步引起组织或器官的坏死。3D打印是一种新兴的技术,在组织工程领域已经有了广泛的应用。相比传统制造技术已经有了很大的进步,但是仍然存在细胞播种效率低,分布不均匀以及空间分辨率低等问题。
明胶链中由于含有精氨酸-甘氨酸-天冬氨酸(RGD)序列,有利于增强细胞附着和促进细胞生长的。海藻酸钠(SA)和明胶(Gel)作为天然水凝胶材料,具有生物相容性、低成本、可打印等优点,已被广泛成功地应用于组织工程,特别是骨骼和皮肤组织工程。然而,明胶作为胶原水解的产物,虽然分子链上具有细胞黏附位,但明胶水凝胶的交联是通过分子间氢键形成的。在生理温度(37℃)下,这种氢键交联是不稳定的,容易被破坏,导致其降解速率过快,不能与组织生长速率相配合。为了提高水凝胶的力学强度,大量工作及研究内容已经开展,开发了一些有效的方法,例如化学修饰、多种材料复合等。
研究发现,石墨烯基材料是一种很有前途的增强纳米材料。因为它们具有抗菌性能、血管生成潜能、高机械强度和低细胞毒性。研究表明,调节rGO表面氧含量可增强细胞的粘附和增殖。还原氧化石墨烯(rGO)的掺入使活性氧(ROS)浓度增加,促进细胞增殖和伤口愈合。
发明内容
针对现有技术不足,本发明的目的在于提供一种3D打印水凝胶尿道支架的制备方法,将rGO溶液引入SA/Gel混合溶液中制备SA/Gel/rGO纳米复合水凝胶并进行打印,以解决背景技术中提出的问题。
本发明提供如下技术方案:
一种3D打印水凝胶尿道支架的制备方法,包括以下步骤:
S1,制备SA/Gel/rGO复合水凝胶溶液;
S2,使用3D打印制备SA/Gel/rGO水凝胶支架;
S3,将完成打印的SA/Gel/rGO水凝胶支架放入-85℃至-80℃低温环境中,冷冻时间为2-2.5h;
S4,将冷冻后的SA/Gel/rGO水凝胶支架放入真空冷冻干燥机中进行冻干,冻干时间为12-13h;
S5,将冻干后的SA/Gel/rGO水凝胶支架与5%CaCl2进行交联,交联时间为30-35分钟,交联后使用灭菌水进行清洗;
S6,将清洗后的SA/Gel/rGO水凝胶支架进行二次冻干,之后保存在真空容器中,备用。
优选的,还包括步骤:S7,通过测试仪器分别对SA/Gel/rGO水凝胶支架进行定性分析。
优选的,步骤S1中,所述SA/Gel/rGO复合水凝胶溶液的制备,具体包括以下步骤:
A,使用石墨烯粉末、双蒸馏水制备rGO溶液;
B,将海藻酸钠和明胶添加到双蒸馏水中制备海藻酸钠/明胶溶液;
C,将rGO溶液添加到海藻酸钠/明胶溶液中,得到海藻酸钠/明胶/还原氧化石墨烯复合水凝胶溶液,即SA/Gel/rGO复合水凝胶溶液。
优选的,步骤A中,rGO溶液的制备,具体包括以下步骤:
a,将石墨烯粉末分散在双蒸馏水中,使用功率40KHz的超声2-2.5小时后得到还原氧化石墨烯水分散液;
b,将聚乙烯吡咯烷酮加入经过超声的还原氧化石墨烯水分散液中,在室温下继续超声2小时,得到还原氧化石墨烯悬浮液;
c,对还原氧化石墨烯悬浮液进行稀释,备用。
优选的,步骤C中,rGO溶液添加到海藻酸钠/明胶溶液中后,在37-40℃环境下搅拌溶解24小时,然后将离心管垂直静置,消除气泡,备用。
优选的,步骤S2中,使用器官打印整合系统进行对SA/Gel/rGO水凝胶支架的打印,其中支架的模型为15mm×15mm×0.75mm的网格结构,使用Slic3r将其转换为层高0.15mm,5层的G-Code文件,孔径为1.5mm,打印喷嘴的内径为200μm。
优选的,步骤S2中,打印前,先将装有SA/Gel/rGO复合水凝胶溶液的打印注射器在4℃下冷却8-10分钟,生物打印室温度设置为19-22℃,之后在生物打印机平台上一层一层地沉积成SA/Gel/rGO支架。
优选的,步骤S7中,所述测试仪器包括傅立叶变换红外光谱仪,采用傅立叶变换红外光谱(FTIR)对SA/Gel/rGO复合水凝胶溶液的官能团进行表征,将制备好的SA/Gel/rGO复合水凝胶溶液在真空冷冻干燥机中冷冻干燥,之后将其用KBr(1:100)精细研磨并压缩成薄片,用于红外光谱测量,测量范围在500-4000cm-1。
优选的,步骤S7中,所述测试仪器还包括拉曼光谱,通过拉曼光谱(Raman)对SA/Gel/rGO复合水凝胶溶液中还原氧化石墨烯的掺入进行定性分析。
优选的,步骤S7中,所述测试仪器还包括扫描电镜,用扫描电镜观察SA/Gel/rGO复合水凝胶支架形貌,将步骤S6中冻干的SA/Gel/rGO复合水凝胶支架进行剪裁,放在贴有导电胶的载物台上,之后在真空喷金仪内进行喷金处理,在扫描电镜下观察SA/Gel/rGO复合水凝胶支架材料的表面形貌,其中,加速电压为15KV,使用Image J可视化软件计算水凝胶的孔径和孔隙度分布(n=10)。
优选的,步骤S7中,所述测试仪器还包括材料试验机,采用多功能材料试验机对SA/Gel/rGO复合水凝胶支架的拉伸性能进行了表征,以SA/Gel支架作为对照材料,制备长50mm、宽20mm的纵条SA/Gel/rGO复合水凝胶支架样品,然后测量样品在钳位与钳位之间的距离,在室温下,支架以10mm/min的速度拉伸,直到达到断裂点,每组测量5个样本,计算平均值和标准差,最终抗拉强度计算公式如下:
δ=F/S
式中,δ为抗拉强度,F为断点处的最大力,S为支架的横截面积。
与现有技术相比,本发明具有以下有益效果:
(1)本发明一种3D打印水凝胶尿道支架的制备方法,rGO溶液的引入能够降低水凝胶的溶胀能,SA含量越高,网络的亲水性越强,从而提高了SA的平衡溶胀比,随着rGO溶液浓度的增加,水凝胶的溶胀率呈下降趋势,且rGO溶液的引入对水凝胶的降解没有明显影响。
(2)本发明一种3D打印水凝胶尿道支架的制备方法,rGO溶液的加入能够影响水凝胶的孔径大小,随着rGO浓度的增加,水凝胶中孔隙尺寸先增大后减小,截面形貌呈现出多孔且相互连通的结构,其孔径范围在30-100μm。
(3)本发明一种3D打印水凝胶尿道支架的制备方法,rGO溶液的加入能够增强SA/Gel的拉伸性能,适当伸长的支架具有较好的弹性。
(4)本发明一种3D打印水凝胶尿道支架的制备方法,聚乙烯吡咯烷酮的加入显著增强了rGO溶液在水中和水凝胶中的分散性,随着rGO溶液浓度的增加,溶液颜色由浅变为黑色,在几周内它们都稳定存在且均匀。
附图说明
为了更清楚地说明本发明实施方式的技术方案,下面将对实施方式中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本发明的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为本发明的方法流程图。
图2为本发明的还原氧化石墨烯水凝胶溶液的形貌和光学图像。
图3为本发明的不同浓度SA/Gel/rGO支架的外观图。
图4为本发明的SA/Gel/rGO水凝胶的红外光谱分析。
图5为本发明的SA、SA/Gel、SA/Gel/rGO的拉曼光谱。
图6为本发明的不同rGO浓度下SA/Gel/rGO水凝胶的SEM图像和外观形貌。
图7为本发明的不同还原氧化石墨烯浓度下打印复合支架的力学性能。
图8为本发明的不同浓度的SA水凝胶溶液在不同浓度的rGO下的溶胀比。
图9为本发明的水凝胶的降解图。
具体实施方式
为使本发明实施方式的目的、技术方案和优点更加清楚,下面将结合本发明实施方式中的附图,对本发明实施方式中的技术方案进行清楚、完整地描述。显然,所描述的实施方式是本发明一部分实施方式,而不是全部的实施方式。基于本发明中的实施方式,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施方式,都属于本发明保护的范围。
因此,以下对在附图中提供的本发明的实施方式的详细描述并非旨在限制要求保护的本发明的范围,而是仅仅表示本发明的选定实施方式。基于本发明中的实施方式,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施方式,都属于本发明保护的范围。
实施例一
请参阅图1-9所示,一种3D打印水凝胶尿道支架的制备方法,包括以下步骤:
S1,制备SA/Gel/rGO复合水凝胶溶液;
S2,使用3D打印制备SA/Gel/rGO水凝胶支架;
S3,将完成打印的SA/Gel/rGO水凝胶支架放入-85℃至-80℃低温环境中,冷冻时间为2-2.5h;
S4,将冷冻后的SA/Gel/rGO水凝胶支架放入真空冷冻干燥机中进行冻干,冻干时间为12-13h;
S5,将冻干后的SA/Gel/rGO水凝胶支架与5%CaCl2进行交联,交联时间为30-35分钟,交联后使用灭菌水进行清洗;
S6,将清洗后的SA/Gel/rGO水凝胶支架进行二次冻干,之后保存在真空容器中,备用。
SA/Gel/rGO复合水凝胶的制备
步骤S1中,所述SA/Gel/rGO复合水凝胶溶液的制备,具体包括以下步骤:
A,使用石墨烯粉末、双蒸馏水制备rGO溶液;
B,将海藻酸钠和明胶添加到双蒸馏水中制备海藻酸钠/明胶溶液;
C,将rGO溶液添加到海藻酸钠/明胶溶液中,得到海藻酸钠/明胶/还原氧化石墨烯复合水凝胶溶液,即SA/Gel/rGO复合水凝胶溶液。
步骤A中,rGO溶液的制备,具体包括以下步骤:
a,将石墨烯粉末分散在双蒸馏水中,其浓度为1mg mL-1,使用功率40KHz的超声2-2.5小时后得到还原氧化石墨烯水分散液;
b,将聚乙烯吡咯烷酮加入经过超声的还原氧化石墨烯水分散液中,在室温下继续超声2小时,得到还原氧化石墨烯悬浮液;
c,对还原氧化石墨烯悬浮液进行稀释,备用。
具体过程为:将石墨烯粉末(rGO,20mg)分散在20ml双蒸馏水中,在功率40KHz的超声作用2小时后得到水分散液,将聚乙烯吡咯烷酮(PVP,100mg)加入经过超声的还原氧化石墨烯水分散液中,在室温下继续超声2小时,然后将1mg mL-1的还原氧化石墨烯悬浮液分别稀释至0.02、0.05、0.1和0.2mg mL-1
步骤C中,rGO溶液添加到海藻酸钠/明胶溶液中后,在37-40℃环境下搅拌溶解24小时,然后将离心管垂直静置,消除气泡,备用。
具体过程为:将海藻酸钠(2%w/v)和明胶(2%w/v,300g Bloom)添加到双蒸馏水中制备0rGO组作为对照,分别将0、0.02、0.05、0.1和0.2mg mL-1rGO溶液添加到海藻酸钠/明胶溶液中,得到的海藻酸钠/明胶/还原氧化石墨烯复合水凝胶溶液分别命名为SA/Gel、SA/Gel/rGO0.02、SA/Gel/rGO0.05、SA/Gel/rGO0.1和SA/Gel/rGO0.2,为保持海藻酸钠和明胶浓度不变,制备不同体积的灭菌水和还原氧化石墨烯分散液,用于不同SA/Gel/rGO复合水凝胶溶液的配方,例如,制备SA/Gel/rGO0.05复合水凝胶溶液,将1.0mL rGO溶液(1mg mL-1)与19mL灭菌水混合成均匀溶液,然后将400mg海藻酸钠和400mg明胶加入上述溶液中,在37℃下搅拌溶解24小时,直至完全溶解。最后将离心管垂直静置,消除气泡,备用。
步骤S2中,使用器官打印整合系统进行对SA/Gel/rGO水凝胶支架的打印,其中支架的模型为15mm×15mm×0.75mm的网格结构,使用Slic3r将其转换为层高0.15mm,5层的G-Code文件,孔径为1.5mm,打印喷嘴的内径为200μm。
步骤S2中,打印前,先将装有SA/Gel/rGO复合水凝胶溶液的打印注射器在4℃下冷却8-10分钟,生物打印室温度设置为19-22℃,之后在生物打印机平台上一层一层地沉积成SA/Gel/rGO支架。
具体过程为:SA/Gel/rGO支架使用Organ Printing United System(OPUS)打印,包括多喷嘴打印和多材料混合,支架的模型为15mm×15mm×0.75mm的网格结构,使用Slic3r将其转换为层高0.15mm(5层)的G-Code文件,孔径为1.5mm。选用内径为200μm的打印喷嘴。SA/Gel/rGO水凝胶在37℃下是一种流动性的液体,将其注入一个特殊的打印注射器(3cc)中。由于墨水(SA/Gel/rGO复合水凝胶溶液)太稀,在这种状态下无法打印。因此,将带墨水的打印注射器在4℃下冷却8~10分钟。生物打印室温度设置为19℃。在生物打印机平台上一层一层地沉积成SA/Gel/rGO支架。
打印完每个支架后,将其放在-80℃超低温冰箱。然后在真空冷冻干燥机中冻干12h。接下来,冻干的支架与5%CaCl2交联30分钟,并用灭菌水彻底清洗。将支架进行二次冻干,保存在真空容器中,备用。
表1为实验药品、试剂,表1实验药品
Figure BDA0003585884780000101
表2为实验仪器,表2实验仪器
Figure BDA0003585884780000102
Figure BDA0003585884780000111
实施例二
在实施例一的基础上,还包括步骤:S7,通过测试仪器分别对SA/Gel/rGO水凝胶支架进行定性分析。
步骤S7中,所述测试仪器包括傅立叶变换红外光谱仪,采用傅立叶变换红外光谱(FTIR)对SA/Gel/rGO复合水凝胶溶液的官能团进行表征,将制备好的SA/Gel/rGO复合水凝胶溶液在真空冷冻干燥机中冷冻干燥,之后将其用KBr(1:100)精细研磨并压缩成薄片,用于红外光谱测量,测量范围在500-4000cm-1
步骤S7中,所述测试仪器还包括拉曼光谱,通过拉曼光谱(Raman)对SA/Gel/rGO复合水凝胶溶液中还原氧化石墨烯的掺入进行定性分析。
步骤S7中,所述测试仪器还包括扫描电镜,用扫描电镜观察SA/Gel/rGO复合水凝胶支架形貌,将步骤S6中冻干的SA/Gel/rGO复合水凝胶支架进行剪裁,放在贴有导电胶的载物台上,之后在真空喷金仪内进行喷金处理,在扫描电镜下观察SA/Gel/rGO复合水凝胶支架材料的表面形貌,其中,加速电压为15KV,使用Image J可视化软件计算水凝胶的孔径和孔隙度分布(n=10)。
步骤S7中,所述测试仪器还包括材料试验机,采用多功能材料试验机对SA/Gel/rGO复合水凝胶支架的拉伸性能进行了表征,以SA/Gel支架作为对照材料,制备长50mm、宽20mm的纵条SA/Gel/rGO复合水凝胶支架样品,然后测量样品在钳位与钳位之间的距离,在室温下,支架以10mm/min的速度拉伸,直到达到断裂点,每组测量5个样本,计算平均值和标准差,最终抗拉强度计算公式如下:
δ=F/S
式中,δ为抗拉强度,F为断点处的最大力,S为支架的横截面积。
步骤S7中,所述测试仪器还包括溶胀动力学分析,用普通重量法对灭菌水浸泡5天后的水凝胶的溶胀性能进行分析,研究三种不同浓度的SA(1%、1.5%、2%)复合水凝胶,将冻干的水凝胶样品称重(Wd),置于24孔板中,在室温下加入一定体积的灭菌水,然后取出样品,用滤纸轻轻擦去表面的水分,最后称重样品(Ww),取三组平行组进行重复实验,记录数据。
Figure BDA0003585884780000131
其中Wd为冻干水凝胶样品的重量,Ww为水凝胶吸水后的重量。
步骤S7中,还包括降解实验,通过定量检测SA/Gel水凝胶在不同还原氧化石墨烯浓度下的体外降解性能,将这些样品浸泡在灭菌水中7、14、21和30天后取出,然后冷冻干燥,称取冻干后的样品,WI为初始干质量,WT为浸水后T天(T=7、14、21和30天)的质量,最后,通过以下公式计算剩余重量,这些实验以三次重复的方式进行。
Mass remaining%=WT/WI×100%。
数据分析:所有实验的统计意义采用单因素方差分析和配对样本t检验。误差条表示对每个样本组进行测量的平均值±标准差(SD)。p<0.05,差异有统计学意义(*p<0.05,**p<0.01,***p<0.001,****p<0.0001)。
实施例3
在实施例二的基础上,还原氧化石墨烯(rGO)的表征及复合水凝胶的构建
还原氧化石墨烯粉体的单层率提高了80%,其直径为0.5-5μm,厚度为0.8-1.2nm。在SEM和TEM下,rGO为单层(图2a和b)。rGO的分散液(1mg mL-1)被稀释到浓度分别为0.02、0.05、0.1和0.2mg mL-1,在几周内它们都稳定存在且均匀,说明PVP可以使还原氧化石墨烯在水中很好地分散。随着还原氧化石墨烯浓度的增加,溶液颜色由浅变为黑色,如图2c所示。为了证实还原氧化石墨烯在SA/Gel水凝胶复合溶液中的分散,在光学显微镜下观察了它们。结果表明还原氧化石墨烯并没有发生聚集,并且均匀分布(如图2d-g所示)。
3D打印SA/Gel/rGO水凝胶支架
使用器官打印整合系统(OPUS,苏州诺普再生医学有限公司)打印SA/Gel/rGO支架,包括多喷嘴打印和多材料混合。支架模型为15mm×15mm×0.75mm的结构,层高0.15mm(5层),孔径1.5mm。并选择了内径为200μm的打印喷嘴。将打印的支架(15mm×15mm)在-80℃冷冻,然后在真空冷冻干燥机中冻干。然后,将冻干的支架用5%氯化钙交联30分钟,并用无菌水彻底清洗。支架再次冻干,含有不同浓度rGO的水凝胶支架的形状如图3所示,从左到右分别是SA/Gel、SA/Gel/rGO0.02、SA/Gel/rGO0.05、SA/Gel/rGO0.1和SA/Gel/rGO0.2。随着rGO浓度的增加,支架的颜色越来越深。
傅里叶红外光谱分析
为了验证还原氧化石墨烯在SA/Gel水凝胶中的加入,通过FTIR光谱确定了SA/Gel/rGO复合水凝胶的结构,如图4所示。SA的羟基键(O-H)在3445cm-1波数左右,CH2基团的伸缩振动在2935cm-1波数左右,酰胺I的羰基键(C=O)伸缩振动在1632cm-1波数左右。SA在1632cm-1和1401cm-1波数附近的特征谱带分别是羧基(-COOH)键和羧酸盐基团的不对称和对称拉伸峰。1542cm-1波数是酰胺II的NH基团弯曲振动,1238cm-1波数是明胶中酰胺III的NH基团。1177cm-1波数左右是不对称拉伸的C-O-C。1028cm-1波数是SA中伸缩和振动的C-O-H键。还原氧化石墨烯的特征峰在2930cm-1和2854cm-1波数附近,分别与CH2和CH3基团相关。有趣的是,随着还原氧化石墨烯浓度的增加,在2930cm-1和2854cm-1波数附近出现了强吸收峰。FTIR结果表明复合水凝胶中存在还原氧化石墨烯。其中(图3a)为SA/Gel水凝胶,(图3b)为SA/Gel/rGO0.02水凝胶,(图3c)为SA/Gel/rGO0.05水凝胶,(图3d)为SA/Gel/rGO0.2水凝胶。
拉曼光谱分析
SA/Gel/rGO的拉曼光谱分析显示G和D两个特征波段,如图5所示。D波段在1342cm-1左右,G波段在1584cm-1左右。D带反映了碳sp2杂化干扰导致石墨层间的无序。G带反映了其对称性和结晶程度,这是由于sp2杂化的碳原子平面内拉伸振动。D和G带的强度比为ID/IG,表明石墨片层中缺陷的程度。强度比越高,C原子晶体缺陷越多。Chakraborty报道,GO和rGO的ID/IG分别为0.9和1.1。
SA/Gel/rGO水凝胶内部结构分析
随着还原氧化石墨烯浓度的增加,SA/Gel/rGO水凝胶的颜色变深。如图6所示,SEM图像显示了不同rGO浓度(0、0.02、0.05、0.1、0.2mg mL-1)下水凝胶的多孔结构。水凝胶的孔隙大小与细胞粘附、生长和增殖以及基质中的营养交换密切相关。这种多孔结构的水凝胶能够快速高效地在环境中运输生物分子。所有SA/Gel/rGO水凝胶的截面形貌都呈现出多孔且相互连通的结构(图6a-j)。结果表明,随着还原氧化石墨烯浓度的增加,水凝胶中孔隙尺寸先增大后减小。SA/Gel/rGO水凝胶的孔径分布如图6k-o所示。所有水凝胶的孔径均呈连续的网状结构。SA/Gel的孔径分布主要在40~60μm之间。随着还原氧化石墨烯浓度的增加,SA/Gel/rGO水凝胶的孔径减小(图6p)。SA/Gel和SA/Gel/rGO0.02水凝胶的孔径分别为59.08±11.28μm和91.59±11.6μm(**p<0.01)。SA/Gel/rGO0.05(69.39±7.97μm)和SA/Gel/rGO0.1(47.20±7.26μm)与SA/Gel水凝胶比较无统计学意义。SA/Gel/rGO0.2的孔径最小(36.29±17.77μm,*p<0.05)。这些结果清楚地表明,还原氧化石墨烯的加入确实会影响水凝胶的孔径大小。图6中(a-e):1000×放大倍数,40μm;(f-j):300×放大倍数,比例尺:200μm。SA/Gel/rGO水凝胶的孔径和分布。(k-o)SA/Gel/rGO水凝胶的孔径分布。(p)SA/Gel/rGO水凝胶的孔径(rGO的浓度分别为0、0.02、0.05、0.1和0.2mg mL-1)。(*p<0.05;**p<0.01;n.s.的意思是无意义)。
力学性能结果分析
用作植入物的组织支架必须要有足够的力学性能,以维持其物理完整性,甚至承受一定的负载。SA/Gel/rGO支架的力学性能对尿道修复和组织再生具有重要意义。不同浓度的还原氧化石墨烯对SA/Gel/rGO支架的力学特性进行了评估,支架的拉伸过程如图7a-c所示。调整试样与夹钳之间的适当距离(图7a)。然后,试样以10mm/min的速度拉伸(图7b),直到达到断裂点(图7c)。所有试样均表现为线弹性,如图7d所示。与添加还原氧化石墨烯的支架相比,未添加还原氧化石墨烯的SA/Gel支架的杨氏模量(139.68±0.144KPa)较低,如图7e所示。浓度为0、0.02、0.05、0.2mg mL-1rGO的SA/Gel支架的抗拉强度范围为139.87±1.02~240.66±3.57KPa(图7f)。而随着rGO浓度的增加,SA/Gel/rGO0.2支架的抗拉强度降低(162.57±1.37KPa)。在SA/Gel/rGO0.05中,断裂伸长率升高为211.10±1.34%(****p<0.0001),如图7g所示。适当伸长的支架具有较好的弹性。SA/Gel/rGO0.2支架的断裂伸长率为92.57±0.62%(***p<0.001)。这可能是SA/Gel支架在高浓度rGO作用下易碎的原因。图7中(a-c)为利用多功能材料试验机拉伸支架的过程;(d)为应力-应变曲线;(e)为杨氏模量;(f)为断裂时的拉伸强度;(g)为断裂伸长率。(**p<0.01,***p<0.001,****p<0.0001)。
溶胀动力学分析
溶胀行为在组织再生中对其表面性能和力学完整性起着至关重要的作用。同时,溶胀性影响营养物质的扩散和吸收。由于水凝胶具有适当的吸水能力,可以为伤口愈合提供湿润的环境。最重要的是,水凝胶可以防止伤口过度脱水。各种水凝胶的溶胀行为,如图8所示。结果表明,当SA浓度从1%增加到2%时,溶胀率增大,最大溶胀率分别为415%、489%和601%。SA含量越高,网络的亲水性越强。从而提高了SA的平衡溶胀比。随着还原氧化石墨烯浓度从0.02mg mL-1增加到0.2mg mL-1,水凝胶的溶胀率呈下降趋势。2%、1.5%和1%SA的最小溶胀率分别为435%、387%和308%。由于还原氧化石墨烯的引入,使其与SA/Gel的氢键相互作用,成为多功能交联剂,从而增加SA/Gel水凝胶交联网络的密度。结果表明,水凝胶的交联程度对其溶胀性能有很大的影响。例如,当交联密度较高时,水分子比较难进入水凝胶的内部,导致膨胀比低。这一现象与水凝胶的SEM分析结果一致。
降解实验分析
水凝胶在水中浸泡一段时间后会发生水解降解,使水凝胶的质量发生了变化。降解程度以30天内剩余水凝胶的质量(%)来评价。不同程度的降解如图9所示。各种SA/Gel/rGO水凝胶在前7天均有明显的减重,这可能与水凝胶的水解有关。水凝胶的质量百分比(%)约为42.62±1.98%~55.58±1.44%。在接下来的几天里,水凝胶的重量略有下降,这与交联结构的降解有关。添加还原氧化石墨烯和未添加还原氧化石墨烯的SA/Gel水凝胶降解程度无显著差异。因此,结果表明还原氧化石墨烯的加入不影响SA/Gel水凝胶的降解。
通过加入聚乙烯吡咯烷酮(PVP)将rGO粉末均匀分散在水中,并加入到SA/Gel水凝胶溶液中,制备了具有不同浓度的SA/Gel/rGO纳米复合水凝胶材料,研究rGO对纳米复合水凝胶的溶胀、降解、内部形貌以及打印支架的力学性能的影响,并通过红外光谱和拉曼光谱验证rGO与聚合物链的结合。所产生的有益效果如下:
(1)PVP的加入显著增强了rGO在水中和水凝胶中的分散性,随着rGO浓度的增加,溶液颜色由浅变为黑色,在几周内它们都稳定存在且均匀。
(2)rGO显著降低水凝胶的溶胀能,SA含量越高,网络的亲水性越强。从而提高了SA的平衡溶胀比。随着rGO浓度从0.02mg mL-1增加到0.2mg mL-1,水凝胶的溶胀率呈下降趋势。2%、1.5%和1%SA的最小溶胀率分别为435%、387%和308%。对水凝胶的降解没有明显的影响。
(3)rGO的加入影响水凝胶的孔径大小,随着rGO浓度的增加,水凝胶中孔隙尺寸先增大后减小。截面形貌都呈现出多孔且相互连通的结构,其孔径范围在30-100μm。
(4)rGO的加入增强了SA/Gel的拉伸性能。浓度为0、0.02、0.05、0.2mg mL-1rGO的SA/Gel支架的抗拉强度范围为139.87±1.02~240.66±3.57KPa,在rGO的浓度为0.05mgmL-1时,抗拉强度为240.66±3.57KPa,断裂伸长率升高为211.10±1.34%。适当伸长的支架具有较好的弹性。
以上所述仅为本发明的优选实施方式而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化;凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (7)

1.一种3D打印水凝胶尿道支架的制备方法,其特征在于,包括以下步骤:
S1,制备SA/Gel/rGO复合水凝胶溶液;
S2,使用3D 打印制备SA/Gel/rGO水凝胶支架;
S3,将完成打印的SA/Gel/rGO水凝胶支架放入-85℃至-80℃低温环境中,冷冻时间为2-2.5h;
S4,将冷冻后的SA/Gel/rGO水凝胶支架放入真空冷冻干燥机中进行冻干,冻干时间为12-13 h;
S5,将冻干后的SA/Gel/rGO水凝胶支架与5% CaCl2进行交联,交联时间为30-35分钟,交联后使用灭菌水进行清洗;
S6,将清洗后的SA/Gel/rGO水凝胶支架进行二次冻干,之后保存在真空容器中,备用。
2.根据权利要求1所述一种3D打印水凝胶尿道支架的制备方法,其特征在于,还包括步骤:S7,通过测试仪器分别对SA/Gel/rGO水凝胶支架进行定性分析。
3.根据权利要求1所述一种3D打印水凝胶尿道支架的制备方法,其特征在于,步骤S1中,所述SA/Gel/rGO复合水凝胶溶液的制备,具体包括以下步骤:
A,使用石墨烯粉末、双蒸馏水制备rGO溶液;
B,将海藻酸钠和明胶添加到双蒸馏水中制备海藻酸钠/明胶溶液;
C,将rGO溶液添加到海藻酸钠/明胶溶液中,得到海藻酸钠/明胶/还原氧化石墨烯复合水凝胶溶液,即SA/Gel/rGO复合水凝胶溶液。
4.根据权利要求3所述一种3D打印水凝胶尿道支架的制备方法,其特征在于,步骤A中,rGO溶液的制备,具体包括以下步骤:
a,将石墨烯粉末分散在双蒸馏水中,使用功率40 KHz的超声2-2.5小时后得到还原氧化石墨烯水分散液;
b,将聚乙烯吡咯烷酮加入经过超声的还原氧化石墨烯水分散液中,在室温下继续超声2小时,得到还原氧化石墨烯悬浮液;
c,对还原氧化石墨烯悬浮液进行稀释,备用。
5.根据权利要求3所述一种3D打印水凝胶尿道支架的制备方法,其特征在于,步骤C中,rGO溶液添加到海藻酸钠/明胶溶液中后,在37-40℃环境下搅拌溶解24小时,然后将离心管垂直静置,消除气泡,备用。
6.根据权利要求1所述一种3D打印水凝胶尿道支架的制备方法,其特征在于,步骤S2中,使用器官打印整合系统进行对SA/Gel/rGO水凝胶支架的打印,其中支架的模型为15 mm× 15 mm × 0.75 mm的网格结构,使用Slic3r将其转换为层高0.15 mm ,5层的G-Code文件,孔径为1.5 mm,打印喷嘴的内径为200μm。
7.根据权利要求6所述一种3D打印水凝胶尿道支架的制备方法,其特征在于,步骤S2中,打印前,先将装有SA/Gel/rGO复合水凝胶溶液的打印注射器在4℃下冷却8-10分钟,生物打印室温度设置为19-22℃,之后在生物打印机平台上一层一层地沉积成SA/Gel/rGO支架。
CN202210366052.5A 2022-04-08 2022-04-08 一种3d打印水凝胶尿道支架的制备方法 Pending CN114681675A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210366052.5A CN114681675A (zh) 2022-04-08 2022-04-08 一种3d打印水凝胶尿道支架的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210366052.5A CN114681675A (zh) 2022-04-08 2022-04-08 一种3d打印水凝胶尿道支架的制备方法

Publications (1)

Publication Number Publication Date
CN114681675A true CN114681675A (zh) 2022-07-01

Family

ID=82142350

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210366052.5A Pending CN114681675A (zh) 2022-04-08 2022-04-08 一种3d打印水凝胶尿道支架的制备方法

Country Status (1)

Country Link
CN (1) CN114681675A (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103480343A (zh) * 2013-10-16 2014-01-01 苏州大学 一种氧化石墨烯多孔复合材料及其制备方法
CN103483617A (zh) * 2013-10-16 2014-01-01 苏州大学 一种医用抑菌型氧化石墨烯多孔复合材料的制备方法
CN107690355A (zh) * 2015-03-23 2018-02-13 韩国科学技术院 用于制备含有经还原的氧化石墨烯的水凝胶的方法
IL257357A (en) * 2018-02-05 2018-03-29 Univ Ramot Injectable scaffolds and their uses
WO2018088978A1 (en) * 2016-11-09 2018-05-17 T. C. Istanbul Medipol Universitesi A method for coating graphene oxide and biocompatible graphene oxide obtained from thereof
CN108404203A (zh) * 2018-03-30 2018-08-17 福州大学 一种还原氧化石墨烯/生物玻璃纳米纤维支架的制备方法
CN109054111A (zh) * 2018-07-12 2018-12-21 信阳师范学院 一种经修饰改性的氧化石墨烯/海藻酸钠复合水凝胶的制备方法
CN110124105A (zh) * 2019-04-15 2019-08-16 杭州电子科技大学 可调控凝胶-溶胶相变温度的生物3d打印墨水制备方法
CN112480746A (zh) * 2020-11-23 2021-03-12 苏州千里眼医疗科技有限公司 一种以鱼皮胶原蛋白为基质的3d打印墨水及其制备方法
CN113290844A (zh) * 2021-05-14 2021-08-24 清华大学 一种构建复杂异质组织/器官的多级悬浮打印方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103480343A (zh) * 2013-10-16 2014-01-01 苏州大学 一种氧化石墨烯多孔复合材料及其制备方法
CN103483617A (zh) * 2013-10-16 2014-01-01 苏州大学 一种医用抑菌型氧化石墨烯多孔复合材料的制备方法
CN107690355A (zh) * 2015-03-23 2018-02-13 韩国科学技术院 用于制备含有经还原的氧化石墨烯的水凝胶的方法
WO2018088978A1 (en) * 2016-11-09 2018-05-17 T. C. Istanbul Medipol Universitesi A method for coating graphene oxide and biocompatible graphene oxide obtained from thereof
IL257357A (en) * 2018-02-05 2018-03-29 Univ Ramot Injectable scaffolds and their uses
CN108404203A (zh) * 2018-03-30 2018-08-17 福州大学 一种还原氧化石墨烯/生物玻璃纳米纤维支架的制备方法
CN109054111A (zh) * 2018-07-12 2018-12-21 信阳师范学院 一种经修饰改性的氧化石墨烯/海藻酸钠复合水凝胶的制备方法
CN110124105A (zh) * 2019-04-15 2019-08-16 杭州电子科技大学 可调控凝胶-溶胶相变温度的生物3d打印墨水制备方法
CN112480746A (zh) * 2020-11-23 2021-03-12 苏州千里眼医疗科技有限公司 一种以鱼皮胶原蛋白为基质的3d打印墨水及其制备方法
CN113290844A (zh) * 2021-05-14 2021-08-24 清华大学 一种构建复杂异质组织/器官的多级悬浮打印方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
AMIR SEYEDSALEHI ET AL: "Fabrication and characterization of mechanically competent 3D printed polycaprolactone‑reduced graphene oxide scaffolds", 《NATURE RESEARCH》 *
中国大坝工程学会水库泥沙处理与资源利用技术专业委员会编著: "《水库泥沙处理与资源利用研究文集2017年》", 31 July 2018, 黄河水利出版社 *
彭俊: "基于石墨烯复合支架的3D生物打印制备及检测", 《中国优秀硕士学位论文全文数据库工程科技Ⅰ辑》 *

Similar Documents

Publication Publication Date Title
Di et al. A transparent wound dressing based on bacterial cellulose whisker and poly (2-hydroxyethyl methacrylate)
Golafshan et al. Tough and conductive hybrid graphene-PVA: Alginate fibrous scaffolds for engineering neural construct
Bu et al. A conductive sodium alginate and carboxymethyl chitosan hydrogel doped with polypyrrole for peripheral nerve regeneration
Hou et al. Development and biocompatibility evaluation of biodegradable bacterial cellulose as a novel peripheral nerve scaffold
Kawaguchi et al. Preparation of carbon nanotube-alginate nanocomposite gel for tissue engineering
Yang et al. Biomimetic composite scaffolds based on surface modification of polydopamine on electrospun poly (lactic acid)/cellulose nanofibrils
Liu et al. In vitro evaluation of alginate/halloysite nanotube composite scaffolds for tissue engineering
Marrella et al. Enhanced mechanical performances and bioactivity of cell laden-graphene oxide/alginate hydrogels open new scenario for articular tissue engineering applications
Serrano et al. 3D free-standing porous scaffolds made of graphene oxide as substrates for neural cell growth
Ali et al. Dual nanofiber scaffolds composed of polyurethane-gelatin/nylon 6-gelatin for bone tissue engineering
Luo et al. Exploring excellent dispersion of graphene nanosheets in three-dimensional bacterial cellulose for ultra-strong nanocomposite hydrogels
Pawar et al. Increasing capillary diameter and the incorporation of gelatin enhance axon outgrowth in alginate-based anisotropic hydrogels
CN102051702B (zh) 介孔氧化硅粒子/可降解聚合物纳米复合纤维及其制备方法和应用
Lin et al. Microfibrillated cellulose enhancement to mechanical and conductive properties of biocompatible hydrogels
Badakhshanian et al. Enhancement of mechanical properties of nanohydrogels based on natural gum with functionalized multiwall carbon nanotube: study of swelling and drug release
Buyanov et al. High-strength cellulose–polyacrylamide hydrogels: Mechanical behavior and structure depending on the type of cellulose
Zhang et al. Immobilization of lecithin on bacterial cellulose nanofibers for improved biological functions
Wang et al. Effect of thermal annealing on mechanical properties of polyelectrolyte complex nanofiber membranes
Vedhanayagam et al. Dimension effect: Dendrimer functionalized carbon based nanomaterial mediated collagen scaffold for wound healing application
Liu et al. Ultrasound-mediated preparation and evaluation of a collagen/PVP-PCL micro-and nanofiber scaffold electrospun from chloroform/ethanol mixture
Hu et al. 3D printing GelMA/PVA interpenetrating polymer networks scaffolds mediated with CuO nanoparticles for angiogenesis
Wan et al. Submicrofiber‐Incorporated 3D Bacterial Cellulose Nanofibrous Scaffolds with Enhanced Cell Performance
Alesaeidi et al. Soy protein isolate/sodium alginate hybrid hydrogel embedded with hydroxyapatite for tissue engineering
Dorishetty et al. Microporosity engineered printable silk/graphene hydrogels and their cytocompatibility evaluations
WO2012006720A1 (en) Cellulose composite gels

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20220701