CN114679734A - 一种固定口径下大规模均匀紧致阵列的阵元间距优化方法 - Google Patents

一种固定口径下大规模均匀紧致阵列的阵元间距优化方法 Download PDF

Info

Publication number
CN114679734A
CN114679734A CN202210269618.2A CN202210269618A CN114679734A CN 114679734 A CN114679734 A CN 114679734A CN 202210269618 A CN202210269618 A CN 202210269618A CN 114679734 A CN114679734 A CN 114679734A
Authority
CN
China
Prior art keywords
array
channel capacity
element spacing
array element
optimization problem
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210269618.2A
Other languages
English (en)
Other versions
CN114679734B (zh
Inventor
张阳
王明磊
黄欣怡
郭云慧
张舒婷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xidian University
Original Assignee
Xidian University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xidian University filed Critical Xidian University
Priority to CN202210269618.2A priority Critical patent/CN114679734B/zh
Publication of CN114679734A publication Critical patent/CN114679734A/zh
Application granted granted Critical
Publication of CN114679734B publication Critical patent/CN114679734B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/382Monitoring; Testing of propagation channels for resource allocation, admission control or handover
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/391Modelling the propagation channel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种固定口径下大规模均匀紧致阵列的阵元间距优化方法,基于耦合效应的物理特性,构建均匀紧致阵列中阵元间距与耦合效应的第一关系矩阵;对关系矩阵中的每一列进行列归一化处理,得到第二关系矩阵;基于第二关系矩阵构建第一信道容量模型;对第一信道容量模型进行改写,得到第二信道容量模型;基于第二信道容量模型,以最大化信道容量为目标构建优化问题并求解,得到均匀紧致阵列的阵元间距;本发明可以充分利用基站有限物理空间资源,达到信道容量最大化的目标。

Description

一种固定口径下大规模均匀紧致阵列的阵元间距优化方法
技术领域
本发明属于移动通信技术领域,尤其涉及一种固定口径下大规模均匀紧致阵列的阵元间距优化方法。
背景技术
各类新型技术的发展对信息通信行业提出了更高的要求,由于5G在信道编码和调制方面的性能提升已趋于饱和,实现B5G/6G更高频谱效率/能量效率的希望依然寄托于空间维度。Massive MIMO可以深度挖掘空间维度的资源、大幅提髙系统容量。对于MassiveMIMO系统而言,由于使用了超大规模天线阵列,基站部署时面临的一个主要挑战便是所能安装的天线数量受到实际可利用物理空间的制约,天线阵列将不断向着小型化、紧凑化的方向发展。在紧致天线阵列中,小的阵元间距带来的电磁互耦合效应会对系统性能产生破坏性的影响,导致主瓣增益降低、阵列辐射方向图改变、频谱再生等问题。
现有技术存在的问题是:对于大规模天线阵列,只考虑到增加阵元数目带来的传输性能的提升,没有重视到这是以牺牲空间资源为代价的。而当阵列部署空间受限时,增加阵元数目带来的阵元间距的减小会造成电磁互耦效应的加剧,进而降低系统增益。固定空间内的阵列部署所能获得的系统性能,应是复用增益和耦合效应共同作用的结果。因此,在考虑紧致阵列耦合效应的前提下,如何设计天线阵列的最优间距,从而充分利用基站端有限的物理空间资源达到更好的系统传输性能,是现有技术存在的问题。
发明内容
本发明的目的是提供一种固定口径下大规模均匀紧致阵列的阵元间距优化方法,考虑了阵元数目增多带来的复用增益和阵元间距减小带来的耦合损失的共同作用,以充分利用基站端有限物理空间资源,达到信道容量最大化。
本发明采用以下技术方案:一种固定口径下大规模均匀紧致阵列的阵元间距优化方法,包括以下步骤:
基于耦合效应的物理特性,构建均匀紧致阵列中阵元间距与耦合效应的第一关系矩阵;
对关系矩阵中的每一列进行列归一化处理,得到第二关系矩阵;
基于第二关系矩阵构建第一信道容量模型;
对第一信道容量模型进行改写,得到第二信道容量模型;其中,第二信道模型中信道容量表征为基于阵元间距的函数;
基于第二信道容量模型,以最大化信道容量为目标构建优化问题并求解,得到均匀紧致阵列的阵元间距。
进一步地,当均匀紧致阵列为线阵列时,第一关系矩阵为:
Figure BDA0003552787490000021
其中,Ct为第一关系矩阵,Ct的维度为N*N,N为均匀紧致阵列中的阵元数量,α为相邻阵元之间的耦合效应强度,通过
Figure BDA0003552787490000022
计算得出,A>0为耦合系数,
Figure BDA0003552787490000023
Figure BDA0003552787490000024
归一化阵元间距,d为阵元间距,λ为中心传输频率对应的信号波长。
进一步地,列归一化处理具体方法为:
Figure BDA0003552787490000031
其中,
Figure BDA0003552787490000032
为第二关系矩阵中第i行第j列上的元素,ci,j为第一关系矩阵中第i行第j列上的元素,t为计数变量。
进一步地,第一信道模型为:
Figure BDA0003552787490000033
其中,Ccoupling为信道容量,K为用户数目,I为单位矩阵,P为基站端的总发射功率,σ2为噪声方差,H为信道矩阵。
进一步地,第二信道模型为:
Figure BDA0003552787490000034
进一步地,优化问题为:
Figure BDA0003552787490000041
其中,P1为优化问题,c1和c2为P1对应的约束条件,L为均匀紧致阵列的口径,L0为均匀紧致阵列的口径阈值。
进一步地,求解优化问题包括:
简化优化问题,得到优化问题P2;其中,
Figure BDA0003552787490000042
求解优化问题P2,得到均匀紧致阵列的阵元间距。
进一步地,求解优化问题P2包括:
采用一维精确算法求解优化问题P2。
本发明的另一种技术方案:一种固定口径下大规模均匀紧致阵列的阵元间距优化装置,包括:
第一构建模块,用于基于耦合效应的物理特性,构建均匀紧致阵列中阵元间距与耦合效应的第一关系矩阵;
归一化模块,用于对关系矩阵中的每一列进行列归一化处理,得到第二关系矩阵;
第二构建模块,用于基于第二关系矩阵构建第一信道容量模型;
改写模块,用于对第一信道容量模型进行改写,得到第二信道容量模型;其中,第二信道模型中信道容量表征为基于阵元间距的函数;
求解模块,用于基于第二信道容量模型,以最大化信道容量为目标构建优化问题并求解,得到均匀紧致阵列的阵元间距。
本发明的另一种技术方案:一种固定口径下大规模均匀紧致阵列的阵元间距优化装置,包括存储器、处理器以及存储在存储器中并可在处理器上运行的计算机程序,处理器执行计算机程序时实现上述的一种固定口径下大规模均匀紧致阵列的阵元间距优化方法。
本发明的有益效果是:本发明充分考虑到固定口径紧致阵列中复用增益和耦合损失对信道容量的共同作用,耦合效应分析建模,并构建基于阵元间距的函数(即信道容量),得到信道容量关于阵列口径的解析关系,并求解得到阵元间距,可以充分利用基站有限物理空间资源,达到信道容量最大化的目标。
附图说明
图1为本发明实施例一种固定口径下大规模均匀紧致阵列的阵元间距优化方法的流程图;
图2为本发明实施例中通信系统架构示意图;
图3为本发明验证实施例中的效果对比示意图;
图4为本发明实施例一种固定口径下大规模均匀紧致阵列的阵元间距优化装置的结构示意图。
具体实施方式
下面结合附图和具体实施方式对本发明进行详细说明。
本发明公开了一种固定口径下大规模均匀紧致阵列的阵元间距优化方法,如图1所示,包括以下步骤:步骤S110、基于耦合效应的物理特性,构建均匀紧致阵列中阵元间距与耦合效应的第一关系矩阵;步骤S120、对关系矩阵中的每一列进行列归一化处理,得到第二关系矩阵;步骤S130、基于第二关系矩阵构建第一信道容量模型;步骤S140、对第一信道容量模型进行改写,得到第二信道容量模型;其中,第二信道模型中信道容量表征为基于阵元间距的函数;步骤S150、基于第二信道容量模型,以最大化信道容量为目标构建优化问题并求解,得到均匀紧致阵列的阵元间距。
在本发明实施例中,如图2所示,为Massive MIMO单小区多用户下行通信系统,基站端中配备一个N阵元的均匀紧致天线阵列,且其所占的物理空间大小是固定不变的。系统中有K个单天线用户,且K<<N,不同用户都在以λ为载波波长的同一时频资源中进行传输,其接收信号可以表示为:
Figure BDA0003552787490000061
其中,P表示发送信号功率;
Figure BDA0003552787490000062
为每个符号周期内的发送信号矢量;
Figure BDA0003552787490000063
是接收信号矢量;
Figure BDA0003552787490000064
是加性高斯白噪声矢量;
Figure BDA0003552787490000065
表示信道传输矩阵,在窄带传输场景中,信道的多径分量不可分辨,相当于大量统计独立的随机变量的总和,根据中心极限定理,独立同分布且数学期望和方差有限的的随机变量序列的标准化和的极限满足标准正态分布。因此,窄带密集多径信道可以被建模为H=[hij],
Figure BDA0003552787490000066
通常均匀紧致阵列包括面阵列和线阵列,本实施例中以线阵列为例,对于阵元数为N的紧致天线阵列,可以利用一个N×N的矩阵Ct来表征所有阵元间的电磁互耦合影响。值得注意的是,当阵元间距d>λ/2,阵元间的耦合效应数值非常小,通常可以忽略不记;而在实际天线部署时,为避免强耦合,一般不会将天线间距设置的过小。
因此,本发明中主要关注λ/4≤d≤λ/2的情况,此时只需考虑相邻两阵元间的耦合效应,而忽略不相邻的阵元间的耦合效应。以N元紧致ULA为例,第一关系矩阵Ct可以建模为N阶三对角Toeplitz矩阵的形式:
Figure BDA0003552787490000071
其中,主对角线上的元素值为1,表示的是阵元与其本身的耦合程度;两条次对角线上的元素值为α,表征的是阵元与相邻阵元间的耦合效应强度;其余位置元素值为0,表征的是两个不相邻的阵元间的耦合效应,其值非常小,可以忽略不记。
对于紧致天线阵列,需要考虑到耦合效应的影响。基于耦合效应随阵元间距减小而不断增强的物理特性,结合经典感应电动势方法的数值结果,采用负指数模型来表征紧致阵列中耦合效应与阵元间距之间的数值关系,即
Figure BDA0003552787490000072
A>0为耦合系数,
Figure BDA0003552787490000073
Figure BDA0003552787490000074
归一化阵元间距,d为阵元间距,λ为中心传输频率对应的信号波长,A的数值越小,表示阵元间的耦合越紧密。对于半波长的偶极子天线阵列,A=13.4,此时耦合矩阵的数值非常接近通过感应电动势方法获得的结果。
另外,当为面阵列时,需要进行适应性修改。具体来说,耦合矩阵的建模受阵列拓扑形状的影响,对于紧致UPA,不仅要考虑水平和垂直方向上相邻阵元间的耦合效应,还要考虑四个斜对角方向,其对应的耦合矩阵形式将更为复杂,但仍是一个Toeplitz矩阵。
此外,为保证耦合效应只表征不同天线间的相互影响,而不会改变天线阵列的总辐射功率,需要对耦合矩阵的每一列进行列归一化处理,使每列中的所有元素和为1。作为一种具体的实现方法,列归一化处理具体方法为:
Figure BDA0003552787490000081
其中,
Figure BDA0003552787490000082
为第二关系矩阵中第i行第j列上的元素,ci,j为第一关系矩阵中第i行第j列上的元素,t为计数变量。
在一个实施例中,以香农公式为基础,考虑发射阵列的耦合效应,单位带宽下的平均每用户信道容量(即第一信道模型)可以表征为:
Figure BDA0003552787490000083
其中,Ccoupling为信道容量,K为用户数目,I为单位矩阵,P为基站端的总发射功率,σ2为噪声方差,H为信道矩阵。
在高信噪比的渐进域下,可近似为:
Figure BDA0003552787490000084
利用对数的运算法则以及矩阵行列式的乘法公式,结合发射端天线阵列中耦合矩阵Ct为对角矩阵的特性,可将上式改写为:
Figure BDA0003552787490000085
对上式中的第一部分,可利用随机矩阵理论进行分析,当发射信号x服从一维高斯分布时,系统的信道容量可以表示为:
Figure BDA0003552787490000091
其中,λi(HHH)表示的是HHH的第i个特征值。β=N/K,fβ(x)是HHH的特征值的经验概率密度函数,
Figure BDA0003552787490000092
Figure BDA0003552787490000093
分别表示fβ(x)的积分上下界。随机矩阵理论的中心结果表明,在基站端天线数目与用户终端数目均趋向于无穷大,但两者比值有界,即满足N→∞,K→∞且
Figure BDA0003552787490000094
的非有利传播条件下,HHH的特征值是非随机的,其经验分布几乎肯定收敛。根据
Figure BDA0003552787490000098
定理,其经验概率密度函数可以表示为:
Figure BDA0003552787490000095
其中,(z)+=max(0,z),δ(x)是单位冲激函数。进一步计算可得:
Figure BDA0003552787490000096
其中,
Figure BDA0003552787490000097
对于紧致信道容量表达式中的第二部分,可利用不同阶数间的递推关系求解耦合矩阵行列式值。将Dn按照其第一行进行展开,可以发现如下递推关系:
Dn=Dn-12Dn-2 (10)
其中,Di(1≤i≤N)表示的是i阶的Ct所对应的行列式。可以将上式看作:
Figure BDA0003552787490000101
Figure BDA0003552787490000102
其中,
Figure BDA0003552787490000103
Figure BDA0003552787490000104
因此θ、
Figure BDA0003552787490000105
是方程x2-x+α2=0的两个解,可分别表示为:
Figure BDA0003552787490000106
Figure BDA0003552787490000107
利用递推关系进行反复运算,可得:
Figure BDA0003552787490000108
Figure BDA0003552787490000109
联合
Figure BDA00035527874900001010
Figure BDA00035527874900001011
Figure BDA00035527874900001012
因此,当方程x2-x+α2=0的两个根θ和
Figure BDA00035527874900001013
均存在且不相等,即判别式Δ=1-4α2≠0时,将上述两式联立可得:
Figure BDA00035527874900001014
再将θ和
Figure BDA00035527874900001015
带入可得:
Figure BDA00035527874900001016
经过上述推导,配置紧致ULA的系统的信道容量可以被完全表征为紧致阵列中阵元数目N和阵元间距d的函数(即第二信道模型),即有:
Figure BDA0003552787490000111
可以看到,当信噪比
Figure BDA0003552787490000112
和用户数K都为定值时,信道容量只与阵元数目N和阵元间距d有关,即建立起了紧致ULA中信道容量与阵列口径之间的数学解析关系。
综上分析,优化问题创建为:
Figure BDA0003552787490000113
其中,P1为优化问题,c1和c2为P1对应的约束条件,约束条件c1表示的是发射端天线阵列的固定口径约束,约束条件c2表示的是在弱耦合场景下进行耦合建模所带来的约束,L为均匀紧致阵列的口径,L0为均匀紧致阵列的口径阈值。
在优化问题的求解过程中,大致分为:简化优化问题,得到优化问题P2;其中,
Figure BDA0003552787490000121
求解优化问题P2,得到均匀紧致阵列的阵元间距。
具体的,对于上述优化问题中的非凸约束c1,由于在阵元数目相同的条件下,更大的口径能减轻阵元间的耦合效应,从而提升信道容量。因此,可将非凸约束c1等价转换为仿射约束c3:L=L0,with L=(N-1)×d,原优化问题P1变为一个单约束优化问题,即优化问题P2。由于约束c1到约束c3的转化并不改变优化问题的最优阵元数目,因此P1和P2是完全等价的,两者具有相同的最优解。
将优化问题P2的目标函数带入到凹函数的定义式中,可证明其是阵元数目的凹函数。因此可以找到一个确定的最优阵元数目,使信道容量最大化。
对于P2这种只有单一变量的凸优化问题,可以采用工程优化领域常用一维精确算法,如牛顿法、二分法、黄金分割法、成功失败算法、三点二次插值法等进行求解。
在本发明实施例中,还对上述的方法进行了验证分析。具体的,假设ULA的固定口径为100λ,UPA的固定口径为
Figure BDA0003552787490000122
用户数为50,SNR为20dB。对比算法为相同口径条件下的半波长间距阵列。
如图3所示,可以看出相同的条件下,本发明实施例所提出的最优间距阵列达到了阵元数目增加带来的分集增益与阵元间距减小带来的耦合损失的折中,因此相比于半波长间距阵列,具有更高的信道容量性能。由此可知,本发明以最大化信道容量为目标,达到了充分利用了基站中有限的物理空间资源的目的。
本发明综合考虑发射阵列中的耦合效应及固定阵列口径的限制,建立单小区多用户Massive MIMO下行链路场景下的系统模型;基于对耦合效应的物理特性分析,对发射端紧致天线阵列的耦合效应矩阵建模;利用大规模阵列的渐进特性和耦合矩阵的Toeplitz性质进行容量分析,得到信道容量关于阵列口径的解析表达式;建立以容量最大化为目标,以阵元间距为变量的优化问题,对固定口径下的紧致阵列进行拓扑优化设计;对优化问题进行凸性分析,并使用精确一维搜索算法得到最优解,确定固定口径下紧致均匀阵列的最优阵元间距。
本发明在单小区多用户的Massive MIMO场景下,基于对耦合效应的分析建模,利用大规模阵列的渐进特性和耦合矩阵的Toeplitz性质,得到信道容量关于阵列口径的解析关系。在此基础上,以最大化信道容量为目标,对固定口径下大规模均匀紧致阵列进行阵元间距优化设计,达到充分利用基站有限物理空间资源的目的。
本发明还公开了一种固定口径下大规模均匀紧致阵列的阵元间距优化装置,如图4所示,包括:第一构建模块210,用于基于耦合效应的物理特性,构建均匀紧致阵列中阵元间距与耦合效应的第一关系矩阵;归一化模220,用于对关系矩阵中的每一列进行列归一化处理,得到第二关系矩阵;第二构建模块230,用于基于第二关系矩阵构建第一信道容量模型;改写模块240,用于对第一信道容量模型进行改写,得到第二信道容量模型;其中,第二信道模型中信道容量表征为基于阵元间距的函数;求解模块250,用于基于第二信道容量模型,以最大化信道容量为目标构建优化问题并求解,得到均匀紧致阵列的阵元间距。
需要说明的是,上述装置的模块之间的信息交互、执行过程等内容,由于与本申请方法实施例基于同一构思,其具体功能及带来的技术效果,具体可参见方法实施例部分,此处不再赘述。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将所述装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。实施例中的各功能模块可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中,上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。另外,各功能模块的具体名称也只是为了便于相互区分,并不用于限制本申请的保护范围。上述系统中单元、模块的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
本发明还公开了一种固定口径下大规模均匀紧致阵列的阵元间距优化装置,包括存储器、处理器以及存储在存储器中并可在处理器上运行的计算机程序,处理器执行计算机程序时实现上述的一种固定口径下大规模均匀紧致阵列的阵元间距优化方法。
装置可以是桌上小型计算机、笔记本、掌上电脑及云端服务器等计算设备。该装置可包括但不仅限于,处理器、存储器。本领域技术人员可以理解,该装置可以包括更多或更少的部件,或者组合某些部件,或者不同的部件,例如还可以包括输入输出设备、网络接入设备等。
处理器可以是中央处理单元(Central Processing Unit,CPU),该处理器还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
存储器在一些实施例中可以是所述装置的内部存储单元,例如装置的硬盘或内存。所述存储器在另一些实施例中也可以是所述装置的外部存储设备,例如所述装置上配备的插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)等。进一步地,所述存储器还可以既包括所述装置的内部存储单元也包括外部存储设备。所述存储器用于存储操作系统、应用程序、引导装载程序(BootLoader)、数据以及其他程序等,例如所述计算机程序的程序代码等。所述存储器还可以用于暂时地存储已经输出或者将要输出的数据。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述或记载的部分,可以参见其它实施例的相关描述。本领域普通技术人员可以意识到,结合本发明中所公开的实施例描述的各示例的模块及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。

Claims (10)

1.一种固定口径下大规模均匀紧致阵列的阵元间距优化方法,其特征在于,包括以下步骤:
基于耦合效应的物理特性,构建均匀紧致阵列中阵元间距与耦合效应的第一关系矩阵;
对所述关系矩阵中的每一列进行列归一化处理,得到第二关系矩阵;
基于所述第二关系矩阵构建第一信道容量模型;
对所述第一信道容量模型进行改写,得到第二信道容量模型;其中,所述第二信道模型中信道容量表征为基于阵元间距的函数;
基于所述第二信道容量模型,以最大化信道容量为目标构建优化问题并求解,得到所述均匀紧致阵列的阵元间距。
2.如权利要求1所述的一种固定口径下大规模均匀紧致阵列的阵元间距优化方法,其特征在于,当所述均匀紧致阵列为线阵列时,所述第一关系矩阵为:
Figure FDA0003552787480000011
其中,Ct为第一关系矩阵,Ct的维度为N*N,N为所述均匀紧致阵列中的阵元数量,α为相邻阵元之间的耦合效应强度,通过
Figure FDA0003552787480000012
计算得出,A>0为耦合系数,
Figure FDA0003552787480000013
Figure FDA0003552787480000014
归一化阵元间距,d为阵元间距,λ为中心传输频率对应的信号波长。
3.如权利要求2所述的一种固定口径下大规模均匀紧致阵列的阵元间距优化方法,其特征在于,所述列归一化处理具体方法为:
Figure FDA0003552787480000021
其中,
Figure FDA0003552787480000022
为所述第二关系矩阵中第i行第j列上的元素,ci,j为所述第一关系矩阵中第i行第j列上的元素,t为计数变量。
4.如权利要求2或3所述的一种固定口径下大规模均匀紧致阵列的阵元间距优化方法,其特征在于,所述第一信道模型为:
Figure FDA0003552787480000023
其中,Ccoupling为信道容量,K为用户数目,I为单位矩阵,P为基站端的总发射功率,σ2为噪声方差,H为信道矩阵。
5.如权利要求4所述的一种固定口径下大规模均匀紧致阵列的阵元间距优化方法,其特征在于,所述第二信道模型为:
Figure FDA0003552787480000024
6.如权利要求5所述的一种固定口径下大规模均匀紧致阵列的阵元间距优化方法,其特征在于,所述优化问题为:
Figure FDA0003552787480000031
Figure FDA0003552787480000032
其中,P1为优化问题,c1和c2为P1对应的约束条件,L为所述均匀紧致阵列的口径,L0为所述均匀紧致阵列的口径阈值。
7.如权利要求6所述的一种固定口径下大规模均匀紧致阵列的阵元间距优化方法,其特征在于,求解所述优化问题包括:
简化所述优化问题,得到优化问题P2;其中,
Figure FDA0003552787480000033
求解所述优化问题P2,得到所述均匀紧致阵列的阵元间距。
8.如权利要求7所述的一种固定口径下大规模均匀紧致阵列的阵元间距优化方法,其特征在于,求解所述优化问题P2包括:
采用一维精确算法求解所述优化问题P2。
9.一种固定口径下大规模均匀紧致阵列的阵元间距优化装置,其特征在于,包括:
第一构建模块,用于基于耦合效应的物理特性,构建均匀紧致阵列中阵元间距与耦合效应的第一关系矩阵;
归一化模块,用于对所述关系矩阵中的每一列进行列归一化处理,得到第二关系矩阵;
第二构建模块,用于基于所述第二关系矩阵构建第一信道容量模型;
改写模块,用于对所述第一信道容量模型进行改写,得到第二信道容量模型;其中,所述第二信道模型中信道容量表征为基于阵元间距的函数;
求解模块,用于基于所述第二信道容量模型,以最大化信道容量为目标构建优化问题并求解,得到所述均匀紧致阵列的阵元间距。
10.一种固定口径下大规模均匀紧致阵列的阵元间距优化装置,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时实现如权利要求1-8任一项所述的一种固定口径下大规模均匀紧致阵列的阵元间距优化方法。
CN202210269618.2A 2022-03-18 2022-03-18 固定口径下大规模均匀紧致阵列阵元间距优化方法及装置 Active CN114679734B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210269618.2A CN114679734B (zh) 2022-03-18 2022-03-18 固定口径下大规模均匀紧致阵列阵元间距优化方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210269618.2A CN114679734B (zh) 2022-03-18 2022-03-18 固定口径下大规模均匀紧致阵列阵元间距优化方法及装置

Publications (2)

Publication Number Publication Date
CN114679734A true CN114679734A (zh) 2022-06-28
CN114679734B CN114679734B (zh) 2023-03-31

Family

ID=82073827

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210269618.2A Active CN114679734B (zh) 2022-03-18 2022-03-18 固定口径下大规模均匀紧致阵列阵元间距优化方法及装置

Country Status (1)

Country Link
CN (1) CN114679734B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115276861A (zh) * 2022-07-01 2022-11-01 网络通信与安全紫金山实验室 用于mimo无线通信信道的耦合特性分析方法、装置及存储介质

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103916170A (zh) * 2014-03-26 2014-07-09 河海大学 一种实现移动终端多天线位置优化配置的智能优化方法
CN107275800A (zh) * 2017-05-16 2017-10-20 南京航空航天大学 一种大规模mimo阵列的天线结构
WO2018102163A1 (en) * 2016-11-29 2018-06-07 Motorola Mobility Llc Method and apparatus for determining parameters and conditions for line of sight mimo communication
US20190173538A1 (en) * 2016-08-10 2019-06-06 Huawei Technologies Co., Ltd. Precoding matrix determining method and apparatus
CN113098574A (zh) * 2021-03-29 2021-07-09 电子科技大学 一种用于大规模mimo系统的不规则子阵高效求解方法
CN113315552A (zh) * 2021-05-26 2021-08-27 西安电子科技大学 一种紧致平面天线阵列Massive MIMO系统的能效优化方法
CN113315556A (zh) * 2021-05-28 2021-08-27 西安电子科技大学 一种适用于紧致阵列Massive MIMO系统的两级功率分配方法
WO2022021657A1 (zh) * 2020-07-30 2022-02-03 重庆邮电大学 一种电磁涡旋波多输入多输出矩形阵列的稀疏优化方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103916170A (zh) * 2014-03-26 2014-07-09 河海大学 一种实现移动终端多天线位置优化配置的智能优化方法
US20190173538A1 (en) * 2016-08-10 2019-06-06 Huawei Technologies Co., Ltd. Precoding matrix determining method and apparatus
WO2018102163A1 (en) * 2016-11-29 2018-06-07 Motorola Mobility Llc Method and apparatus for determining parameters and conditions for line of sight mimo communication
CN107275800A (zh) * 2017-05-16 2017-10-20 南京航空航天大学 一种大规模mimo阵列的天线结构
WO2022021657A1 (zh) * 2020-07-30 2022-02-03 重庆邮电大学 一种电磁涡旋波多输入多输出矩形阵列的稀疏优化方法
CN113098574A (zh) * 2021-03-29 2021-07-09 电子科技大学 一种用于大规模mimo系统的不规则子阵高效求解方法
CN113315552A (zh) * 2021-05-26 2021-08-27 西安电子科技大学 一种紧致平面天线阵列Massive MIMO系统的能效优化方法
CN113315556A (zh) * 2021-05-28 2021-08-27 西安电子科技大学 一种适用于紧致阵列Massive MIMO系统的两级功率分配方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YANG ZHANG,MENGQIONG ZHAO,LIHUA PANG,SHUTING ZHANG,YIJIAN CHEN等: "Asymptotic Analysis and Beamforming Design for High Frequency Massive MIMO With a Compact Planar Array", 《IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY (VOLUME: 70, ISSUE: 11, NOVEMBER 2021)》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115276861A (zh) * 2022-07-01 2022-11-01 网络通信与安全紫金山实验室 用于mimo无线通信信道的耦合特性分析方法、装置及存储介质
CN115276861B (zh) * 2022-07-01 2024-03-19 网络通信与安全紫金山实验室 用于mimo无线通信信道的耦合特性分析方法、装置及存储介质

Also Published As

Publication number Publication date
CN114679734B (zh) 2023-03-31

Similar Documents

Publication Publication Date Title
CN111817768B (zh) 一种用于智能反射表面无线通信的信道估计方法
Zhou et al. Stochastic learning-based robust beamforming design for RIS-aided millimeter-wave systems in the presence of random blockages
Qi et al. Integrating sensing, computing, and communication in 6G wireless networks: Design and optimization
CN108234101B (zh) 能效最大化导频信号设计方法及大规模多天线系统
CN111698045B (zh) 一种基于非正交多址接入的毫米波通信系统中能效功率分配方法
CN105071843B (zh) 大规模mimo系统低复杂度多项式展开矩阵求逆方法及应用
Werner et al. Low-complexity constrained affine-projection algorithms
CN110138425B (zh) 低复杂度阵列天线多输入多输出系统混合预编码算法
CN113382445B (zh) 提高swipt系统安全速率的方法、装置、终端及存储介质
CN113315560B (zh) 一种紧凑型平面阵列Massive MIMO系统的波束赋形方法
CN113949427B (zh) 一种多用户无线网络安全能效优化设计方法和系统
CN114679734B (zh) 固定口径下大规模均匀紧致阵列阵元间距优化方法及装置
Kaushik et al. Energy efficient ADC bit allocation and hybrid combining for millimeter wave MIMO systems
TWI639319B (zh) 用於多輸入多輸出通訊的方法、通訊裝置及通訊系統
CN115606157A (zh) 天线阵列的信道估计
CN110518944B (zh) 一种毫米波mimo通信系统中天线选择方法和系统
CN112990547A (zh) 智能电网能量优化方法及装置
CN114050852B (zh) 一种大规模mimo系统抑制天线耦合影响的波束赋形方法及装置
CN114665931B (zh) 一种基于Massive MIMO系统的平面阵列设计方法、装置及存储介质
CN114599044B (zh) 基于智能反射面技术的认知网络中波束赋形优化方法
CN113839695B (zh) Fdd大规模mimo和速率最优统计预编码方法及设备
Mohammad et al. A memory-efficient learning framework for symbol level precoding with quantized NN weights
Majumder One-bit spectrum sensing using Gustafson–Kessel fuzzy clustering for cognitive radio network
CN113328770A (zh) 一种大规模mimo信道状态估计方法及装置
CN114553275B (zh) 一种适用于非均匀线/面阵mimo系统的改进型码本设计方法及装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant